
1

Unix Unix

 Unix 6
 Unix

 Unix Unix
 Unix Unix BSD

Unix 6
 Unix

 Andrew S. Tanenbaum
Unix Minix PC 20 80 90

Minix Unix Unix Minix Unix
 Unix ”Shell

 Unix
Minix Minix

 Linus Torvalds Minix Unix
 PC Unix

Unix Tanenbaum

Linus Torvalds
 Unix Linus Torvalds Linux

Linus Torvalds Linux

”FSF
 FSF Unix Unix GNU “Gnu is Not Unix

 Linux Linus Torvalds
 Linux FSF FSF GNU

 C gcc gdb Shell Web Apache Mozilla
 Netscape

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

2

Linux Minix Minix Linux
Minix Unix Linux Unix Unix

Unix

“Client/Server

Micro­Kernel
Embedded System

EPROM
PSOS

VxWorks

Macro­Kernel ”

Monolithic Kernel
Linux

Unix

“setup
DOS/Windows Linux

Linux Linux

Linux

Linux Intel 80386 CPU
Alpha M68K MIPS SPARC Power PC Pentium Pentium II i386
Linux CPU Linux

CPU CPU i386 CPU
CPU CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

3

Linux /usr/src/linux GNU Linux
tar linux linux

Linux

Linux .c .h

CPU CPU
net

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

4

Linux
Linux

Linux Linux
Linux

Linux
Linux “x.yy.zz
x 0 9 yy zz 0 99

pNN NN 0 20
0.99p15 0.99 15

Linux

Linux x.yy.zz x
yy

yy

yy

zz
2.0.34 2.0.35 2.0.34

zz 2.3
2.3.99 2.2.18

Linux 0.0.2 1991 2.2 1999 1 Linux
2.3.28 2.4.0

Linux Linus
Linux distribution Red Hat Caldera

Linux
Linux Linux
“Red Hat 6.0 Caldera 2.2 2.2.5

FTP

Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

5

Linux

Embedded Linux
RT­Linux Baby Linux

Linux Linux
FSF GPL

Linux Linux
Linux
FSF FSF GNU GPL General Public License

Copyleft Copyright Copyright
Copyleft

GPL GPL GNU GNU
GPL GNU

GPL GNU GNU
GNU

GNU
GNU

)
GNU API GPL

GPL
Linux

Linux

GPL
FSF

Undocumented DOS
Undocumented Windows DOS/Windows

Andrew Schulman David Maxey Matt Pietrek
DOS/Windows API Microsoft

Microsoft
Microsoft

Microsoft Microsoft
DOS/Windows Microsoft

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

6

Microsoft
FSF Microsoft

GPL COPYING Linux
/usr/scr/linux/COPYING Linux tar

1.2 Intel X86 CPU

Intel 4004 Intel
X86 Intel 16 8086 CPU

8086 8088 80186 80286 80386 80486
Pentium IBM 8088 PC X86 IBM PC

80186 IBM PC 80186
Linux

X86 8086 8088 16 80386 32 80286
8088 80386 16 32 80286 16

CPU “16 “32 ALU
ALU

8 CPU
8 256

8 CPU 16 8 CPU
8 CPU 16 CPU 8

16 16
64K

Intel 1M 64K 16
1M

4M

Intel 16 CPU 8086 1M
20 Intel

20 CPU ALU 16 16
8 CPU

20 CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

7

PDP­11 16 MMU 16 24
Intel

Intel 8086 CPU CS DS SS ES
16 16

16 CPU
20 16 20

20 16
12 16 4

64K

CPU

8086

8086 Intel 80286 Protected Mode 80286
32 80386

CPU 8088/8086 80386 16 CPU 32
CPU 80286 80386 Intel CPU 80486

Pentium Pentium II
i386 i386 CPU

80386 i386
80386 32 CPU ALU 32

32 4G 4
32 CPU

80386 80386

CPU Intel

Intel 16
FS GS

Intel

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

8

(1)

(2)
(3)
(4)
(5)
(6)

CPU CPU
CPU

80386

80386 CPU GDTR global descriptor
table register LDTR local descriptor table register)

13 3
index 1.1

1.1

GDTR LDTR
3 GDTR LDTR

8
1.2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

9

1.2 8

B31 B24 B23 B16 bit16 bit23 bit24 bit31 L19 L16
L15 L0 Limit bit0 bit15 bit16 bit19 DPL 2 type

4 1.3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

10

1.3 TYPE

typedef struct {

 unsigned int base24_31:8; /* 8 */

 unsigned int g:1; /* granularity 0 1 4KB */

 unsigned int d_b:1; /* default operation size 0=16 1=32 */

 unsigned int unused:1; /* 0 *

 unsigned int avl:1; /* avalaible */

 unsigned int seg_limit_16_19:4; /* 4 *

 unsigned int p:1; /* segment present 0 */

 unsigned int dpl:2; /* Descriptor privilege level */

 unsigned int s:1; /* 1 0 */

 unsigned int type:4; /* S */

 unsigned int base_0_23:24; /* 24 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

11

 unsigned int seg_limit_0_15:16; /* 16 */

} ;

type “:4 4 64 8
8

24 Intel 24
32 g 1 4KB

16 64K 64K×4K=256M 24
Intel 24 32

80286 Intel

MOV POP CPU
CPU CPU

CPU
80386

0 0 32
0 CPU

Intel
Flat Linux gcc

80386
Intel

80386
CPU GDTR LDTR

CPU CPU p “present p 0
CPU

exception
p 1

p 0
i386

GDTR LDTR
LGDT/LLDT SGDT/SLDT

GDTR LDTR

80386

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

12

80386 CPU
0 3 LGDT 0

IN OUT 0 1
3 CS

dpl dpl “descriptor privilege level dpl
0 dpl

16 13 3

typedef struct {

 unsigned short seg_idx:13; /* 13 */

 unsigned short ti:1; /* 0 GDT 1 LDT */

 unsigned short rpl:2; /* Requested Privilege Level */

} ;

CS ti 1 0
rpl CPU

dpl

GDTR LDTR i386 CPU
IDTR Intel Task TR
”TSS Intel

i386 CPU
OS/2

CPU 80386 Unix Linux
0 3 Unix

1.3 i386

80 Unix

Intel 80286
X86 CPU

80386 80386
80286

80386 32

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

13

32

8192 13

80386
CPU Unix
PDP­11 PDP­11 CPU PSW

80386
80386

Intel

80386 4K 4K
4K

)
GDTR LDTR

32

typedef struct {

 unsigned int dir:10; /* */

 unsigned int page:10; /* */

 unsigned int offset:12; /* 4K */

} ;

1.4
31 22 21 12 11 0

dir offset

1.4

210 = 1024
1024 GDTR LDTR CR3

(1) CR3
(2) dir
(3) page
(4) offset

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

14

(5) 1.5

1.5

dir page
20 1K×1K=1M 4K

4K×1M=4G 32 4G

4G
0

4K 4 1024 4K
1024 64

Alpha CPU 8K 8

4K 12 0
20 12

typedef struct {

 unsigned int ptba:20; /* 20 */

 unsigned int avail:3; /* */

 unsigned int g:1; /* global */

 unsigned int ps:1; /* 0 4K */

 unsigned int reserved:1; /* 0 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

15

 unsigned int a:1; /* accessed */

 unsigned int pcd:1; /* */

 unsigned int pwt:1; /* Write Through */

 unsigned int u_s:1; /* 0 1 */

 unsigned int r_w:1; /* */

 unsigned int p:1; /* 0 */

} ;

1.6

1.6

ps 8 7
D Dirty

p 0
CPU Page Fault

p 1
p 0 p 0

ps page size 0
4K Linux Pentium Intel
PSE ps 1 4M

22 4M
1024×4M=4G

4M
Intel

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

16

i386 CPU CR0 PG PG
1 CPU

Pentium Pro Intel Intel
CR4 PAE Physical Address Extension PAE 1

36 4
36 64G Intel

Intel 64 IA­64 Linux IA­64
Linux Alpha CPU 64 80386

1.4 Linux C

Linux GNU C GNU gcc GNU C
ANSI C

GNU C

Linux

gcc C++ “inline “const GNU C C++ gcc
C C++ C++ C inline

#define inline
inline

inline
inline .c .h

64 CPU Alpha 64 gcc “long
long int

C attribute “aligned “packed gcc
C C

ANSI C gcc inline
“inline C++ inline

gcc “inline “__
“__inline__ “inline “__asm__ “asm

“asm “__asm__
gcc “attribute

struct foo {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

17

 char a;

 int x[z] attribute__ ((packed));

}

“packed a x 32
“packed
Linux gcc C Linux gcc

gcc Linux Linux gcc
gcc Linux gcc

Linux
GNU

gcc CPU Unix Unix
B Unix C C Unix

Unix C Unix C
Linux

CPU gcc CPU gcc CPU

Linux inline

fs/proc/kcore.c

==================== fs/proc/kcore.c 163 163 ====================
163 #define DUMP_WRITE(addr,nr) do { memcpy(bufp,addr,nr); bufp += nr; } while(0)

do­while
do­while

163 #define DUMP_WRITE(addr,nr) memcpy(bufp,addr,nr); bufp += nr;

if

if (addr)

 DUMP_WRITE(addr,nr);

else

 do_something_else();

if (addr)

 memcpy(bufp,addr,nr); bufp += nr;

else

 do_something_else();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

18

gcc gcc if memcpy()
else DUMP_WRITE() do_something_else()

bufp += nr

163 #define DUMP_WRITE(addr,nr) {memcpy(bufp,addr,nr); bufp += nr;}

if (addr)

 {memcpy(bufp,addr,nr); bufp += nr;};

else

 do_something_else();

gcc else “; if else if
do­while

Linux CPU

include/asm­i386/system.h prepare_to_switch()

==================== include/asm­i386/system.h 14 14 ====================
14 #define prepare_to_switch() do { } while(0)

CPU prepare_to_switch()
CPU

foo

typedef struct foo

{

 struct foo *prev;

 struct foo *next;

} foo;

foo

Linux
prev next

list_head

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

19

include/linux/list.h
”

==================== include/linux/list.h 16 18 ====================
16 struct list_head {

17 struct list_head *next, *prev;

18 };

list_head page
include/linux/mm.h

==================== include/linux/mm.h 134 135 ====================
134 typedef struct page {

135 struct list_head list;

==================== include/linux/mm.h 138 138 ====================
138 struct page *next_hash;

==================== include/linux/mm.h 141 141 ====================
141 struct list_head lru;

==================== include/linux/mm.h 148 148 ====================
148 } mem_map_t;

page list_head page
next_hash

list_head
INIT_LIST_HEAD

==================== include/linux/list.h 25 27 ====================
25 #define INIT_LIST_HEAD(ptr) do { \

26 (ptr)­>next = (ptr); (ptr)­>prev = (ptr); \

27 } while (0)

ptr list_head list_head

page ”list
list_add() inline include/linux/list.h

==================== include/linux/list.h 53 56 ====================
53 static __inline__ void list_add(struct list_head *new, struct list_head *head)

54 {

55 __list_add(new, head, head­>next);

56 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

20

new list_head head
list_head

inline inline __list_add()

==================== include/linux/list.h 29 43 ====================
[list_add()>__list_add()]
29 /*

30 * Insert a new entry between two known consecutive entries.

31 *

32 * This is only for internal list manipulation where we know

33 * the prev/next entries already!

34 */

35 static __inline__ void __list_add(struct list_head * new,

36 struct list_head * prev,

37 struct list_head * next)

38 {

39 next­>prev = new;

40 new­>next = next;

41 new­>prev = prev;

42 prev­>next = new;

43 }

list_add()

list_add() __list_add()
__list_add()

list_del()

==================== include/linux/list.h 90 93 ====================
90 static __inline__ void list_del(struct list_head *entry)

91 {

92 __list_del(entry­>prev, entry­>next);

93 }

inline __list_del()

==================== include/linux/list.h 78 83 ====================
[list_del()>__list_del()]
78 static __inline__ void __list_del(struct list_head * prev,

79 struct list_head * next)

80 {

81 next­>prev = prev;

82 prev­>next = next;

83 }

__list_del() entry list_head entry
list_head

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

21

list_head
list_head list_add()

list_del() list_head
list_head

mm/page_alloc.c

==================== mm/page_alloc.c 188 188 ====================
[rmqueue()]
188 page = memlist_entry(curr, struct page, list);

memlist_entry() list_head curr
page memlist_entry() page

rmqueue() list

memlist_entry list_entry list_entry()

==================== mm/page_alloc.c 48 48 ====================
48 #define memlist_entry list_entry

list_entry include/linux/list.h

==================== include/linux/list.h 135 142 ====================
135 /**

136 * list_entry ­ get the struct for this entry

137 * @ptr: the &struct list_head pointer.

138 * @type: the type of the struct this is embedded in.

139 * @member: the name of the list_struct within the struct.

140 */

141 #define list_entry(ptr, type, member) \

142 ((type *)((char *)(ptr)­(unsigned long)(&((type *)0)­>member)))

188 C

page=((struct page*)((char*)(curr)­(unsigned long)(&((struct page*)0)­>list)));

curr page list page
curr list page

&((struct page*)0)­>list page 0 list

page lru member lru

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

22

list_head next

1.5 Linux

Unix Sys V 3 2000
20 .s .m

• C
386 inb outb

C CPU

• CPU C
CPU

Pentium Pentium II Pentium MMX

•

C

•

Linux
.s

C
.S .S C #include #ifdef

.h
C ANSI C

C GNU C gcc

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

23

Intel
Intel i386 Linux GNU i386

Linux i386
GNU

386 C
C C

386 C
386

1.5.1 GNU 386

DOS/Windows 386 Intel
386 Unix

AT&T AT&T Unix 80386 Unix
Unix PDP­11 VAX 68000

Intel AT&T 386
Unixware GNU Unix

GNU “GNU is Not Unix Unix
GNU AT&T 386 Intel

(1) Intel AT&T
(2) AT&T “% Intel
(3) AT&T 386 Intel 386

Intel AT&T
eax ebx Intel “MOVE EBX, EAX AT&T

“move %eax, %ebx Intel “EBX = EAX AT&T
“%eax ­> %ebx

(4) AT&T
b 8 w 16 l

32 Intel “BYTE PTR “WORD
PTR “DWORD PTR FOO 8
AL

MOV AL, BYTE PTR FOO (Intel)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

24

movb FOO, %al (AT&T)

(5) AT&T “$ Intel Intel
“PUSH 4 AT&T “pushl $4

(6) AT&T jump/call
“* C Intel

(7) AT&T “ljmp “lcall
Intel “JMP FAR “CALL FAR

CALL FAR SECTION:OFFSET (Intel)

JMP FAR SECTION:OFFSET (Intel)

lcall $section, $offset (AT&T)

ljmp $section, $offset (AT&T)

RET FAR STACK—ADJUST (Intel)

lret $stack_adjust (AT&T)

(8)

SECTION:[BASE+INDEX*SCALE+DISP] (Intel)

Section:disp(base, index, scale) (AT&T)

base
scale index disp

AT&T SECTION INDEX SCALE
BASE EBP DISP 4

[ebp­4] (Intel)

­4(%ebp) (AT&T)

AT&T base (%ebp)
(%ebp, ,) (%ebp, 0, 0) INDEX EAX SCALE 4 32

DISP foo

[foo+EAX*4] (Intel)

foo(, %EAX, 4) (AT&T)

1.5.2 C 386

C gcc “asm

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

25

include/asm­i386/io.h

==================== include/asm­i386/io.h 40 40 ====================
40 #define __SLOW_DOWN_IO __asm__ __volatile__ ("outb %al, $0x80")

asm volatile “__ gcc C
8

“b 8 0x80 “$
al “% AT&T Intel

asm
__SLOW_DOWN_IO

==================== include/asm­i386/io.h 38 38 ====================
38 #define __SLOW_DOWN_IO __asm__ __volatile__ ("jmp 1f \n1:\tjmp 1f \n1:)

“\n “\t TAB
gcc gas

jmp 1f

1: jmp 1f

1:

1f f forward 1
1b Unix Unix 6

CPU
C

C

include/asm­i386/atomic.h

==================== include/asm­i386/atomic.h 29 35 ====================
29 static __inline__ void atomic_add(int i, atomic_t *v)

30 {

31 __asm__ __volatile__(

32 LOCK "addl %1,%0"

33 :"=m" (v­>counter)

34 :"ir" (i), "m" (v­>counter));

35 }

C
C

C

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

26

C

C “:

: : :

“: 1:

C C
C

C
gcc

gcc gcc
gcc

gcc

gcc gas
% %0 %1

CPU
gcc gas

“%
“%

constraint “=

:"=m" (v­>counter)

“=m %0 v­>counter

gcc
“=

"ir" (i) %1 i
immediate C i "m"

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

27

(v­>countcr) gcc

%1 gcc movl i

gcc pushl
popl

gcc
0

“%
32

16

% “b “h

“m “v “o” ——

“r” ——

“q” —— eax ebx ecx edx
“i “h” ——

“E “F” ——

“g” ——

“a “b “c “d” —— eax ebx ecx edx
“S “D” —— esi edi
“I” —— 0 31

“memory

“:
i v­>counter

LOCK addl CPU
CPU C
“v­>counter += i;

atomic C

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

28

include/asm­i386/bitops.h

==================== include/asm­i386/bitops.h 18 32 ====================
18 #ifdef CONFIG_SMP

19 #define LOCK_PREFIX "lock ; "

20 #else

21 #define LOCK_PREFIX ""

22 #endif

23

24 #define ADDR (*(volatile long *) addr)

25

26 static __inline__ void set_bit(int nr, volatile void * addr)

27 {

28 __asm__ __volatile__(LOCK_PREFIX

29 "btsl %1,%0"

30 :"=m" (ADDR)

31 :"Ir" (nr));

32 }

btsl 32 1 nr

include/asm­i386/string.h

==================== include/asm­i386/string.h 199 215 ====================
199 static inline void * __memcpy(void * to, const void * from, size_t n)

200 {

201 int d0, d1, d2;

202 __asm__ __volatile__(

203 "rep ; movsl\n\t"

204 "testb $2,%b4\n\t"

205 "je 1f\n\t"

206 "movsw\n"

207 "1:\ttestb $1,%b4\n\t"

208 "je 2f\n\t"

209 "movsb\n"

210 "2:"

211 : "=&c" (d0), "=&D" (d1), "=&S" (d2)

212 :"0" (n/4), "q" (n),"1" ((long) to),"2" ((long) from)

213 : "memory");

214 return (to);

215 }

memcpy() __memcpy() memcpy()

%0 %2 d0
%0 ecx d1 %1 edi

d2 %2 esi %3 %6

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

29

%3 %0 ecx gcc
n/4 n n/4 n gcc

%5 %6 to from %1 %2
edi esi

%4

“rep movsl ecx
1 0 n/4 movsl esi

edi esi edi 4 203
204 ecx

esi edi %0 %3 %2 %6 %1 %5

testb %4 n bit1
1 movsw esi edi 2

testb \t TAB
%4 bit0 1 movsb

2 C
objdump

strncmp() i386 Intel

==================== include/asm­i386/string.h 127 147 ====================
127 static inline int strncmp(const char * cs,const char * ct,size_t count)

128 {

129 register int __res;

130 int d0, d1, d2;

131 __asm__ __volatile__(

132 "1:\tdecl %3\n\t"

133 "js 2f\n\t"

134 "lodsb\n\t"

135 "scasb\n\t"

136 "jne 3f\n\t"

137 "testb %%al,%%al\n\t"

138 "jne 1b\n"

139 "2:\txorl %%eax,%%eax\n\t"

140 "jmp 4f\n"

141 "3:\tsbbl %%eax,%%eax\n\t"

142 "orb $1,%%al\n"

143 "4:"

144 :"=a" (__res), "=&S" (d0), "=&D" (d1), "=&c" (d2)

145 :"1" (cs),"2" (ct),"3" (count));

146 return __res;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

30

147 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

31

2

2.1 Linux

i386 CPU Pentium

i386 CPU

1024 32
32

Linux CPU 64 CPU Alpha
i386 CPU MMU

CPU Linux

PGD PMD PT PT PTE PTE “Page Table Entry”
PGD PMD PT 4

PGD PMD
2.1

CPU Linux

(1) PGD
PMD

(2) PMD
(3) PTE

(4)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

32

2.1

CPU MMU i386 CPU

PMD Pentium Pro Intel PAE
32 36 Pentium Pro

CPU CPU PAE
i386 CPU Linux

include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 106 110 ====================
106 #if CONFIG_X86_PAE

107 # include <asm/pgtable­3level.h>

108 #else

109 # include <asm/pgtable­2level.h>

110 #endif

Linux config include/asm
CPU i386 CPU include/asm­i386

PAE CPU Pentium Pro
36 CONFIG_X86_PAE 1 0

pgtable­3level.h pgtable­2level.h 36 32
32 32

36
include/asm­i386/pgtable­2level.h PGD PMD

==================== include/asm­i386/pgtable­2level.h 4 18 ====================
4 /*

5 * traditional i386 two­level paging structure:

6 */

7

8 #define PGDIR_SHIFT 22

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

33

9 #define PTRS_PER_PGD 1024

10

11 /*

12 * the i386 is two­level, so we don't really have any

13 * PMD directory physically.

14 */

15 #define PMD_SHIFT 22

16 #define PTRS_PER_PMD 1

17

18 #define PTRS_PER_PTE 1024

PGDIR_SHIFT PGD 22 bit22
23 PGD 23 32 10

include/asm­i386/pgtable.h PGDIR_SIZE

==================== include/asm­i386/pgtable.h 117 117 ====================
117 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)

PGD PGD 1×222

pgtable_2level.h PTRS_PER_PGD PGD 1024
PGD 10 210=1024

i386 CPU MMU PAE i386 MMU 10
1024 32 4 PGD 4KB

PMD PMD_SHIFT 22 PGD_SHIFF PMD
0 PMD PGD PMD

PTRS_PER_PMD 1 PMD i386 CPU
MMU Linux i386

4 PMD 0 PMD
1 20=1

4 i386 MMU
(1) MMU PGD MMU 10

PGD PMD
MMU PMD

(2) PMD

(3) MMU MMU PT
PTE

(4) MMU

i386 CPU MMU PMD

80286 VM86

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

34

0

32 4G Linux 4G 1G
0xC0000000 0xFFFFFFFF 3G

0x0 0xBFFFFFFF
3G

3G

4G 3G
1G 2.2

2.2

1G 0
0xC0000000

PAGE_OFFSET include/asm­i386/page.h

==================== include/asm­i386/page.h 68 82 ====================
68 /*

69 * This handles the memory map.. We could make this a config

70 * option, but too many people screw it up, and too few need

71 * it.

72 *

73 * A __PAGE_OFFSET of 0xC0000000 means that the kernel has

74 * a virtual address space of one gigabyte, which limits the

75 * amount of physical memory you can use to about 950MB.

76 *

77 * If you want more physical memory than this then see the CONFIG_HIGHMEM4G

78 * and CONFIG_HIGHMEM64G options in the kernel configuration.

79 */

80

81 #define __PAGE_OFFSET (0xC0000000)

82

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

35

==================== include/asm­i386/page.h 113 116 ====================
113

114 #define PAGE_OFFSET ((unsigned long)__PAGE_OFFSET)

115 #define __pa(x) ((unsigned long)(x)­PAGE_OFFSET)

116 #define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

x x PAGE_OFFSET
x x+PAGE_OFFSET

PAGE_OFFSET TASK_SIZE
include/asm­i386/processor.h

==================== include/asm­i386/processor.h 258 261 ====================
258 /*

259 * User space process size: 3GB (default).

260 */

261 #define TASK_SIZE (PAGE_OFFSET)

CPU __pa()
CR3

PGD CR3
__pa() include/asm­i386/mmu_context.h

==================== include/asm­i386/mmu_context.h 43 44 ====================
43 /* Re­load page tables */

44 asm volatile("movl %0,%%cr3": :"r" (__pa(next­>pgd)));

next­>pgd __pa()
mov CR3 CR3

next PGD
LDT GDT

TSS TSS
GDT GDT GDT

13 GDT 8192 GDT 2 3
4 5 1

0 8180 4090

2.2

Linux MMU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

36

CPU
i386

i386
i386 CPU

CPU Linux Intel
Linux

Linux
VM86 80286

Linux i386 CPU
i386

M68K Power PC UNIX
i386

#include <stdio.h>

greeting()

{

printf("Hello, world!\n");

}

main()

{

greeting();

}

C main()
greeting() “Hello, world!

hello gcc ld Linux
objdump

$objdump ­d hello

08048368 <greeting>:

 8048368: 55 push %ebp

 8048369: 89 e5 mov %esp,%ebp

 804836b: 83 ec 08 sub $0x8,%esp

 804836e: 83 ec 0c sub $0xc,%esp

 8048371: 68 84 84 04 08 push $0x8048484

 8048376: e8 35 ff ff ff call 80482b0 <printf@plt>

 804837b: 83 c4 10 add $0x10,%esp

 804837e: c9 leave

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

37

 804837f: c3 ret

08048380 <main>:

 8048380: 55 push %ebp

 8048381: 89 e5 mov %esp,%ebp

 8048383: 83 ec 08 sub $0x8,%esp

 8048386: 83 e4 f0 and $0xfffffff0,%esp

 8048389: b8 00 00 00 00 mov $0x0,%eax

 804838e: 83 c0 0f add $0xf,%eax

 8048391: 83 c0 0f add $0xf,%eax

 8048394: c1 e8 04 shr $0x4,%eax

 8048397: c1 e0 04 shl $0x4,%eax

 804839a: 29 c4 sub %eax,%esp

 804839c: e8 c7 ff ff ff call 8048368 <greeting>

 80483a1: c9 leave

 80483a2: c3 ret

 80483a3: 90 nop

ld greeting() 0x08048368 elf ld
0x8000000

CPU main() “call
08048368 0x08048368

0x08048368
CPU ”EIP i386 CPU CS

GDT LDT CS
2.3

2.3

bit2 0 GDT 1 LDT Intel GDT
LDT RPL 4 0

CS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

38

include/asm­i386/processor.h

==================== include/asm­i386/processor.h 408 417 ====================
408 #define start_thread(regs, new_eip, new_esp) do { \

409 __asm__("movl %0,%%fs ; movl %0,%%gs": :"r" (0)); \

410 set_fs(USER_DS); \

411 regs­>xds = __USER_DS; \

412 regs­>xes = __USER_DS; \

413 regs­>xss = __USER_DS; \

414 regs­>xcs = __USER_CS; \

415 regs­>eip = new_eip; \

416 regs­>esp = new_esp; \

417 } while (0)

regs­>xds DS CS
USE_CS USER_DS SS

USER_DS Intel
Linux Linux

USER_CS USER_DS include/asm­i386/segment.h

==================== include/asm­i386/segment.h 4 8 ====================
4 #define __KERNEL_CS 0x10

5 #define __KERNEL_DS 0x18

6

7 #define __USER_CS 0x23

8 #define __USER_DS 0x2B

Linux

TI 0 GDT Intel Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

39

LDT LDT VM86 wine Linux
Windows DOS

RPL 0 3 0 3

CS __USER_CS 0x23 CPU 4 GDT

GDT arch/i386/kernel/head.S

==================== arch/i386/kernel/head.S 444 458 ====================
444 /*

445 * This contains typically 140 quadwords, depending on NR_CPUS.

446 *

447 * NOTE! Make sure the gdt descriptor in head.S matches this if you

448 * change anything.

449 */

450 ENTRY(gdt_table)

451 .quad 0x0000000000000000 /* NULL descriptor */

452 .quad 0x0000000000000000 /* not used */

453 .quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */

454 .quad 0x00cf92000000ffff /* 0x18 kernel 4GB data at 0x00000000 */

455 .quad 0x00cffa000000ffff /* 0x23 user 4GB code at 0x00000000 */

456 .quad 0x00cff2000000ffff /* 0x2b user 4GB data at 0x00000000 */

457 .quad 0x0000000000000000 /* not used */

458 .quad 0x0000000000000000 /* not used */

GDT 0
GDT Intel 2 5 4 4

4

2.4

(1)

• B0­B15 B16­B31 0 —— 0
• L0­L15 L16­L19 1 —— 0xffffff
• C 1 —— 4KB
• D 1 —— 32
• P 1 ——

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

40

0 4GB
Linux

(2) bit40 bit46 type S DPL

• KERNEL_CS DPL=0 0 S 1 type 1010

• KERNEL_DS DPL=0 0 S 1 type 0010

• USER_CS DPL=3 3 S 1 type 1010

• USER_DS 5 DPL=3 3 S 1 type
0010

DPL 0 3
CPU DPL 0

CS DPL 3 CPU
CS

i386 CPU MMU i386 CPU
MMU

Linux i386 CPU
CS DS

i386 Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

41

2.4

Linux 0x08048368

GDT
PGD mm_struct

CR3 MMU CR3
CPU MMU

inline switch_mm()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

42

include/asm­i386/mmu_context.h

==================== include/asm­i386/mmu_context.h 28 29 ====================
28 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk,

unsigned cpu)

29 {

==================== include/asm­i386/mmu_context.h 44 44 ====================
44 asm volatile("movl %0,%%cr3": :"r" (__pa(next­>pgd)));

==================== include/asm­i386/mmu_context.h 59 59 ====================
59 }

__pa() PGD
%%cr3 CR3 CR3

0X08048368 CR3
0X08048368

0000 1000 0000 0100 1000 0011 0110 1000

10 0000100000 32 i386 CPU
CPU MMU 32

20 CPU 20 12 0
4K 12 0

32 12 P 1

CPU 10 0X08048368 10
0001001000 72 CPU

P 1 32 20
12 0

12
12 0x368

0x740000 greeting() 0x740368
greeting()

i386 CPU
cache

Linux Windows DOS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

43

2.2.1 modify_ldt(int func, void *ptr, unsigned bytecount)

FSF Linux
“WINE “Windows Emulation Linux

Windows Windows MS Word
Linux Linux Linux

Windows
modify_ldt() WINE func 0

ptr func 1 ptr
modify_ldt_ldt_s bytecount sizeof(struct modify_ldt_ldt_s)

include/asm­i386/ldt.h

==================== include/asm­i386/ldt.h 15 25 ====================
15 struct modify_ldt_ldt_s {

16 unsigned int entry_number;

17 unsigned long base_addr;

18 unsigned int limit;

19 unsigned int seg_32bit:1;

20 unsigned int contents:2;

21 unsigned int read_exec_only:1;

22 unsigned int limit_in_pages:1;

23 unsigned int seg_not_present:1;

24 unsigned int useable:1;

25 };

entry_number

Linux

2.2.2 vm86(struct vm86_struct *info)

modify_ldt() vm86() linux DOS i386 CPU
VM86 real­mode

Windows 0S/2 DOS
DOS 80386

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

44

VM86 Intel
include/asm­i386/vm86.h arch/i386/kemel/vm86.c

Linux
Windows DOS

2.3

Linux PGD PT
GDT LDT

PGD PMD PT pgd_t pmd_t pte_t
include/asm­i386/page.h

==================== include/asm­i386/page.h 36 50 ====================
36 /*

37 * These are used to make use of C type­checking..

38 */

39 #if CONFIG_X86_PAE

40 typedef struct { unsigned long pte_low, pte_high; } pte_t;

41 typedef struct { unsigned long long pmd; } pmd_t;

42 typedef struct { unsigned long long pgd; } pgd_t;

43 #define pte_val(x) ((x).pte_low | ((unsigned long long)(x).pte_high << 32))

44 #else

45 typedef struct { unsigned long pte_low; } pte_t;

46 typedef struct { unsigned long pmd; } pmd_t;

47 typedef struct { unsigned long pgd; } pgd_t;

48 #define pte_val(x) ((x).pte_low)

49 #endif

50 #define PTE_MASK PAGE_MASK

32 pgd_t pmd_t pte_t 36
long long gcc

pte_val() pgd_val()
Linux PTE

20 4K
20 pte_t 12

pte_t include/asm­i386/page.h
pgprot_t

==================== include/asm­i386/page.h 52 52 ====================
52 typedef struct { unsigned long pgprot; } pgprot_t;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

45

pgprot i386 MMU 12 9
1

==================== include/asm­i386/pgtable.h 162 172 ====================
162 #define _PAGE_PRESENT 0x001

163 #define _PAGE_RW 0x002

164 #define _PAGE_USER 0x004

165 #define _PAGE_PWT 0x008

166 #define _PAGE_PCD 0x010

167 #define _PAGE_ACCESSED 0x020

168 #define _PAGE_DIRTY 0x040

169 #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */

170 #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */

171

172 #define _PAGE_PROTNONE 0x080 /* If not present */

_PAGE_PROTNONE bit7 Intel
MMU

pgprot 0x1000 pte 0x1000
include/asm­i386/pgtable­2level.h

mk_pte

==================== include/asm­i386/pgtable­2level.h 61 61 ====================
61 #define __mk_pte(page_nr,pgprot) __pte(((page_nr) << PAGE_SHIFT) | pgprot_val(pgprot))

12
include/asm­i386/page.h

==================== include/asm­i386/page.h 56 58 ====================
56 #define pgprot_val(x) ((x).pgprot)

58 #define __pte(x) ((pte_t) { (x) })

mem_map page page
page
20 MMU

mem_map page
12 0

set_pte()
include/asm­i386/pgtable­2level.h

==================== include/asm­i386/pgtable­2level.h 42 42 ====================
42 #define set_pte(pteptr, pteval) (*(pteptr) = pteval)

MMU P _PAGE_PRESENT
P 1 MMU

MMU MMU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

46

set_pte()

==================== include/asm­i386/pgtable­2level.h 60 60 ====================
60 #define pte_none(x) (!(x).pte_low)

==================== include/asm­i386/pgtable.h 248 248 ====================
248 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))

0
0 P 0

==================== include/asm­i386/pgtable.h 269 271 ====================
269 static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }

270 static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }

271 static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }

P 1
P 1 20 20

12 0
20 12

page
include/asm­i386/pgtable­2level.h

==================== include/asm­i386/pgtable­2level.h 59 59 ====================
59 #define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))

mem_map page page mem_map+x &mem_map[x]
page

include/asm­i386/page.h

==================== include/asm­i386/page.h 117 117 ====================
117 #define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

page include/linux/mm.h

==================== include/linux/mm.h 126 148 ====================
126 /*

127 * Try to keep the most commonly accessed fields in single cache lines

128 * here (16 bytes or greater). This ordering should be particularly

129 * beneficial on 32­bit processors.

130 *

131 * The first line is data used in page cache lookup, the second line

132 * is used for linear searches (eg. clock algorithm scans).

133 */

134 typedef struct page {

135 struct list_head list;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

47

136 struct address_space *mapping;

137 unsigned long index;

138 struct page *next_hash;

139 atomic_t count;

140 unsigned long flags; /* atomic flags, some possibly updated asynchronously */

141 struct list_head lru;

142 unsigned long age;

143 wait_queue_head_t wait;

144 struct page **pprev_hash;

145 struct buffer_head * buffers;

146 void *virtual; /* non­NULL if kmapped */

147 struct zone_struct *zone;

148 } mem_map_t;

page map
index

index
16

page mem_map_t
page mem_map page

page
ZONE_DMA ZONE_NORMAL

ZONE_HIGHMEM 1GB
ZONE_DMA DMA DMA

DMA I/O
i386 CPU

CPU CPU MMU DMA MMU
ISA

DMA
DMA MMU DMA

DMA CPU MMU
DMA

zone_struct zone_struct
free_area_t ”

1
2 4 8 16 2MAX_ORDER MAX_ORDER 10

210=1024 4M
include/linux/mmzone.h

==================== include/linux/mmzone.h 11 58 ====================
11 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

48

12 * Free memory management ­ zoned buddy allocator.

13 */

14

15 #define MAX_ORDER 10

16

17 typedef struct free_area_struct {

18 struct list_head free_list;

19 unsigned int *map;

20 } free_area_t;

21

22 struct pglist_data;

23

24 typedef struct zone_struct {

25 /*

26 * Commonly accessed fields:

27 */

28 spinlock_t lock;

29 unsigned long offset;

30 unsigned long free_pages;

31 unsigned long inactive_clean_pages;

32 unsigned long inactive_dirty_pages;

33 unsigned long pages_min, pages_low, pages_high;

34

35 /*

36 * free areas of different sizes

37 */

38 struct list_head inactive_clean_list;

39 free_area_t free_area[MAX_ORDER];

40

41 /*

42 * rarely used fields:

43 */

44 char *name;

45 unsigned long size;

46 /*

47 * Discontig memory support fields.

48 */

49 struct pglist_data *zone_pgdat;

50 unsigned long zone_start_paddr;

51 unsigned long zone_start_mapnr;

52 struct page *zone_mem_map;

53 } zone_t;

54

55 #define ZONE_DMA 0

56 #define ZONE_NORMAL 1

57 #define ZONE_HIGHMEM 2

58 #define MAX_NR_ZONES 3

offset mem_map

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

49

free_area_struct list_head
linux prev

next page list_head page
free_area_struct

CPU
Uniform Memory Architecture UMA

CPU

• PCI
• CPU CPU

CPU
• CPU
•

CPU
CPU

”

Non­Uniform Memory Architecture NUMA NUMA
node CPU 1

4 3
CPU 2 4

UMA CPU PC
RAM ROM BIOS RAM UMA

”RAM
NUMA

Linux 2.4.0 NUMA

NUMA
page

zone_struct page
pglist_data include/linux/mmzone.h

==================== include/linux/mmzone.h 79 90 ====================
79 typedef struct pglist_data {

80 zone_t node_zones[MAX_NR_ZONES];

81 zonelist_t node_zonelists[NR_GFPINDEX];

82 struct page *node_mem_map;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

50

83 unsigned long *valid_addr_bitmap;

84 struct bootmem_data *bdata;

85 unsigned long node_start_paddr;

86 unsigned long node_start_mapnr;

87 unsigned long node_size;

88 int node_id;

89 struct pglist_data *node_next;

90 } pg_data_t;

pglist_data node_next
node_mem_map page node_zones[]

zone_struct zone_pgdat pglist_data

pglist_data node_zonelists[]

==================== include/linux/mmzone.h 71 74 ====================
71 typedef struct zonelist_struct {

72 zone_t * zones [MAX_NR_ZONES+1]; // NULL delimited

73 int gfp_mask;

74 } zonelist_t;

zones[]
zones[0] zones[1]

CPU 1 ZONE_DMA
4 ZONE_DMA zonelist_t

pglist_data
zonelist_t NR_GFPINDEX

==================== include/linux/mmzone.h 76 76 ====================
76 #define NR_GFPINDEX 0x100

256

”

3G

Linux vm_area_struct include/linux/mm.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

51

==================== include/linux/mm.h 35 69 ====================
35 /*

36 * This struct defines a memory VMM memory area. There is one of these

37 * per VM­area/task. A VM area is any part of the process virtual memory

38 * space that has a special rule for the page­fault handlers (ie a shared

39 * library, the executable area etc).

40 */

41 struct vm_area_struct {

42 struct mm_struct * vm_mm; /* VM area parameters */

43 unsigned long vm_start;

44 unsigned long vm_end;

45

46 /* linked list of VM areas per task, sorted by address */

47 struct vm_area_struct *vm_next;

48

49 pgprot_t vm_page_prot;

50 unsigned long vm_flags;

51

52 /* AVL tree of VM areas per task, sorted by address */

53 short vm_avl_height;

54 struct vm_area_struct * vm_avl_left;

55 struct vm_area_struct * vm_avl_right;

56

57 /* For areas with an address space and backing store,

58 * one of the address_space­>i_mmap{,shared} lists,

59 * for shm areas, the list of attaches, otherwise unused.

60 */

61 struct vm_area_struct *vm_next_share;

62 struct vm_area_struct **vm_pprev_share;

63

64 struct vm_operations_struct * vm_ops;

65 unsigned long vm_pgoff; /* offset in PAGE_SIZE units, *not* PAGE_CACHE_SIZE */

66 struct file * vm_file;

67 unsigned long vm_raend;

68 void * vm_private_data; /* was vm_pte (shared mem) */

69 };

vma
vm_start vm_end vm_start vm_end

vm_page_prot vm_flags
vm_next

vm_next

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

52

vm_next
AVL Adelson­Velskii and Landis AVL

AVL
O(lg n) vm_area_struct

vm_avl_height vm_avl_left vm_avl_right AVL AVL

swap

demand paging
Linux mmap() Unix Sys V

R4.2
lseek() read() write()

vm_area_struct
mapping vm_next_share vm_pprev_share vm_file

vm_ops vm_operations_struct
include/linux/mm.h

==================== include/linux/mm.h 115 124 ====================
115 /*

116 * These are the virtual MM functions ­ opening of an area, closing and

117 * unmapping it (needed to keep files on disk up­to­date etc), pointer

118 * to the functions called when a no­page or a wp­page exception occurs.

119 */

120 struct vm_operations_struct {

121 void (*open)(struct vm_area_struct * area);

122 void (*close)(struct vm_area_struct * area);

123 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);

124 };

open close nopage

nopage page fault 3

vm_area_struct vm_mm mm_struct
include/linux/sched.h

==================== include/linux/sched.h 203 227 ====================
203 struct mm_struct {

204 struct vm_area_struct * mmap; /* list of VMAs */

205 struct vm_area_struct * mmap_avl; /* tree of VMAs */

206 struct vm_area_struct * mmap_cache; /* last find_vma result */

207 pgd_t * pgd;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

53

208 atomic_t mm_users; /* How many users with user space? */

209 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */

210 int map_count; /* number of VMAs */

211 struct semaphore mmap_sem;

212 spinlock_t page_table_lock;

213

214 struct list_head mmlist; /* List of all active mm's */

215

216 unsigned long start_code, end_code, start_data, end_data;

217 unsigned long start_brk, brk, start_stack;

218 unsigned long arg_start, arg_end, env_start, env_end;

219 unsigned long rss, total_vm, locked_vm;

220 unsigned long def_flags;

221 unsigned long cpu_vm_mask;

222 unsigned long swap_cnt; /* number of pages to swap on next pass */

223 unsigned long swap_address;

224

225 /* Architecture­specific MM context */

226 mm_context_t context;

227 };

mm
vm_area_struct mm_struct

task_struct mm_struct
mm_struct

mmap mmap_avl
AVL mmap_cache

map_count AVL
pgd

CR3
mm_struct vm_area_struct

P V
semaphore mmap_sem page_table_lock

mm_struct mm_struct
vfork() clone() 4

mm_struct mm_struct mm_users
mm_count atomic_t

segment LDT
VM86 LDT

start_code end_code start_data end_data

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

54

mm_struct vm_area_struct

“Page Fault
Page Fault

mm_struct vm_area_struct page zone_struct

2.5

2.5

vm_area_struct find_vma() mm/mmap.c

==================== mm/mmap.c 404 440 ====================
404 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */

405 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)

406 {

407 struct vm_area_struct *vma = NULL;

408

409 if (mm) {

410 /* Check the cache first. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

55

411 /* (Cache hit rate is typically around 35%.) */

412 vma = mm­>mmap_cache;

413 if (!(vma && vma­>vm_end > addr && vma­>vm_start <= addr)) {

414 if (!mm­>mmap_avl) {

415 /* Go through the linear list. */

416 vma = mm­>mmap;

417 while (vma && vma­>vm_end <= addr)

418 vma = vma­>vm_next;

419 } else {

420 /* Then go through the AVL tree quickly. */

421 struct vm_area_struct * tree = mm­>mmap_avl;

422 vma = NULL;

423 for (;;) {

424 if (tree == vm_avl_empty)

425 break;

426 if (tree­>vm_end > addr) {

427 vma = tree;

428 if (tree­>vm_start <= addr)

429 break;

430 tree = tree­>vm_avl_left;

431 } else

432 tree = tree­>vm_avl_right;

433 }

434 }

435 if (vma)

436 mm­>mmap_cache = vma;

437 }

438 }

439 return vma;

440 }

mm_struct
35%

mm_struct mmap_cache
AVL mmap_avl AVL

mmap_cache vm_area_struct
NULL

insert_vm_struct() mm_struct AVL insert_vm_struct()

==================== mm/mmap.c 961 968 ====================
961 void insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vmp)

962 {

963 lock_vma_mappings(vmp);

964 spin_lock(¤t­>mm­>page_table_lock);

965 __insert_vm_struct(mm, vmp);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

56

966 spin_unlock(¤t­>mm­>page_table_lock);

967 unlock_vma_mappings(vmp);

968 }

vm_area_struct __insert_vm_struct()
vm_area_struct

mm_struct
__insert_vm_struct()

find_vma()
AVL AVL mm­>mmap_avl 0

==================== mm/mmap.c 913 939 ====================
913 /* Insert vm structure into process list sorted by address

914 * and into the inode's i_mmap ring. If vm_file is non­NULL

915 * then the i_shared_lock must be held here.

916 */

917 void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vmp)

918 {

919 struct vm_area_struct **pprev;

920 struct file * file;

921

922 if (!mm­>mmap_avl) {

923 pprev = &mm­>mmap;

924 while (*pprev && (*pprev)­>vm_start <= vmp­>vm_start)

925 pprev = &(*pprev)­>vm_next;

926 } else {

927 struct vm_area_struct *prev, *next;

928 avl_insert_neighbours(vmp, &mm­>mmap_avl, &prev, &next);

929 pprev = (prev ? &prev­>vm_next : &mm­>mmap);

930 if (*pprev != next)

931 printk("insert_vm_struct: tree inconsistent with list\n");

932 }

933 vmp­>vm_next = *pprev;

934 *pprev = vmp;

935

936 mm­>map_count++;

937 if (mm­>map_count >= AVL_MIN_MAP_COUNT && !mm­>mmap_avl)

938 build_mmap_avl(mm);

939

==================== mm/mmap.c 959 959 ====================
959 }

AVL AVL_MIN_MAP_COUNT 32 build_mmap_avl()
AVL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

57

2.4

CPU
CPU Page Fault Exception

•

•
•

mmap()
munmap()

Invalid Address

CPU
do_page_fault()

do_page_fault() arch/i386/mm/fault.c

==================== arch/i386/mm/fault.c 106 152 ====================
106 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)

107 {

108 struct task_struct *tsk;

109 struct mm_struct *mm;

110 struct vm_area_struct * vma;

111 unsigned long address;

112 unsigned long page;

113 unsigned long fixup;

114 int write;

115 siginfo_t info;

116

117 /* get the address */

118 __asm__("movl %%cr2,%0":"=r" (address));

119

120 tsk = current;

121

122 /*

123 * We fault­in kernel­space virtual memory on­demand. The

124 * 'reference' page table is init_mm.pgd.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

58

125 *

126 * NOTE! We MUST NOT take any locks for this case. We may

127 * be in an interrupt or a critical region, and should

128 * only copy the information from the master page table,

129 * nothing more.

130 */

131 if (address >= TASK_SIZE)

132 goto vmalloc_fault;

133

134 mm = tsk­>mm;

135 info.si_code = SEGV_MAPERR;

136

137 /*

138 * If we're in an interrupt or have no user

139 * context, we must not take the fault..

140 */

141 if (in_interrupt() || !mm)

142 goto no_context;

143

144 down(&mm­>mmap_sem);

145

146 vma = find_vma(mm, address);

147 if (!vma)

148 goto bad_area;

149 if (vma­>vm_start <= address)

150 goto good_area;

151 if (!(vma­>vm_flags & VM_GROWSDOWN))

152 goto bad_area;

i386 CPU CPU
CR2 C

CR2
%0 address

pt_regs regs
CPU

error_code
task_struct current

task_struct task_struct
mm_struct CPU

mm_struct
mm_struct

in_interrupt() 0
mm

in_interrupt()
0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

59

in_interrupt() goto no_cotext

P/V
down()/up() mm_struct mmap_sem

down()

find_vma() find_vma()

3G
bad_area

148
good_area

brk()

150
find_vma() vm_flags VM_GROWSDOWN

0

goto bad_area 224

==================== arch/i386/mm/fault.c 220 239 ====================
[do_page_fault()]
220 /*

221 * Something tried to access memory that isn't in our memory map..

222 * Fix it, but check if it's kernel or user first..

223 */

224 bad_area:

225 up(&mm­>mmap_sem);

226

227 bad_area_nosemaphore:

228 /* User mode accesses just cause a SIGSEGV */

229 if (error_code & 4) {

230 tsk­>thread.cr2 = address;

231 tsk­>thread.error_code = error_code;

232 tsk­>thread.trap_no = 14;

233 info.si_signo = SIGSEGV;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

60

234 info.si_errno = 0;

235 /* info.si_code has been set above */

236 info.si_addr = (void *)address;

237 force_sig_info(SIGSEGV, &info, tsk);

238 return;

239 }

mm_struct
up() error_code

==================== arch/i386/mm/fault.c 96 105 ====================
96 /*

97 * This routine handles page faults. It determines the address,

98 * and the problem, and then passes it off to one of the appropriate

99 * routines.

100 *

101 * error_code:

102 * bit 0 == 0 means no page found, 1 means protection fault

103 * bit 1 == 0 means read, 1 means write

104 * bit 2 == 0 means kernel, 1 means user­mode

105 */

error_code bit2 1 CPU
229 task_struct

SIGSEGV

SIGSEGV

SIGSEGV
“Segment Fault

do_page_fault()

2.5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

61

CPU
%esp 2.6

2.6

CPU
(%esp ­ 4) (%esp ­ 4)

arch/i386/mm/fault.c 151

==================== arch/i386/mm/fault.c 151 164 ====================
[do_page_fault()]
151 if (!(vma­>vm_flags & VM_GROWSDOWN))

152 goto bad_area;

153 if (error_code & 4) {

154 /*

155 * accessing the stack below %esp is always a bug.

156 * The "+ 32" is there due to some instructions (like

157 * pusha) doing post­decrement on the stack and that

158 * doesn't show up until later..

159 */

160 if (address + 32 < regs­>esp)

161 goto bad_area;

162 }

163 if (expand_stack(vma, address))

164 goto bad_area;

VM_GROWSDOWN 1 CPU
bit2 1

%esp­4
%esp­40

4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

62

%esp­4 i386 CPU pusha 32 8 32
%esp­32

bad_area

expand_stack() include/linux/mm.h
inline

==================== include/linux/mm.h 487 504 ====================
[do_page_fault()>expand_stack()]
487 /* vma is the first one with address < vma­>vm_end,

488 * and even address < vma­>vm_start. Have to extend vma. */

489 static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)

490 {

491 unsigned long grow;

492

493 address &= PAGE_MASK;

494 grow = (vma­>vm_start ­ address) >> PAGE_SHIFT;

495 if (vma­>vm_end ­ address > current­>rlim[RLIMIT_STACK].rlim_cur ||

496 ((vma­>vm_mm­>total_vm + grow) << PAGE_SHIFT) > current­>rlim[RLIMIT_AS].rlim_cur)

497 return ­ENOMEM;

498 vma­>vm_start = address;

499 vma­>vm_pgoff ­= grow;

500 vma­>vm_mm­>total_vm += grow;

501 if (vma­>vm_flags & VM_LOCKED)

502 vma­>vm_mm­>locked_vm += grow;

503 return 0;

504 }

vma vm_area_struct

task_struct rlim
RLIMIT_STACK

­ENOMEM 0
expand_stack() 0 ­ENOMEM do_page_fault() bad_area

expand_stack()
expand_stack() vm_area_struct

good_area

==================== arch/i386/mm/fault.c 165 207 ====================
[do_page_fault()]
165 /*

166 * Ok, we have a good vm_area for this memory access, so

167 * we can handle it..

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

63

168 */

169 good_area:

170 info.si_code = SEGV_ACCERR;

171 write = 0;

172 switch (error_code & 3) {

173 default: /* 3: write, present */

174 #ifdef TEST_VERIFY_AREA

175 if (regs­>cs == KERNEL_CS)

176 printk("WP fault at %08lx\n", regs­>eip);

177 #endif

178 /* fall through */

179 case 2: /* write, not present */

180 if (!(vma­>vm_flags & VM_WRITE))

181 goto bad_area;

182 write++;

183 break;

184 case 1: /* read, present */

185 goto bad_area;

186 case 0: /* read, not present */

187 if (!(vma­>vm_flags & (VM_READ | VM_EXEC)))

188 goto bad_area;

189 }

190

191 /*

192 * If for any reason at all we couldn't handle the fault,

193 * make sure we exit gracefully rather than endlessly redo

194 * the fault.

195 */

196 switch (handle_mm_fault(mm, vma, address, write)) {

197 case 1:

198 tsk­>min_flt++;

199 break;

200 case 2:

201 tsk­>maj_flt++;

202 break;

203 case 0:

204 goto do_sigbus;

205 default:

206 goto out_of_memory;

207 }

switch error_code
error_code bit0

0 bit1 1 2
196

handle_mm_fault() mm/memory.c

==================== mm/memory.c 1189 1208 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

64

[do_page_fault()>handle_mm_fault()]
1189 /*

1190 * By the time we get here, we already hold the mm semaphore

1191 */

1192 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,

1193 unsigned long address, int write_access)

1194 {

1195 int ret = ­1;

1196 pgd_t *pgd;

1197 pmd_t *pmd;

1198

1199 pgd = pgd_offset(mm, address);

1200 pmd = pmd_alloc(pgd, address);

1201

1202 if (pmd) {

1203 pte_t * pte = pte_alloc(pmd, address);

1204 if (pte)

1205 ret = handle_pte_fault(mm, vma, address, write_access, pte);

1206 }

1207 return ret;

1208 }

mm_struct pgd_offset()
include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 311 312 ====================
311 /* to find an entry in a page­table­directory. */

312 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD­1))

==================== include/asm­i386/pgtable.h 316 316 ====================
316 #define pgd_offset(mm, address) ((mm)­>pgd+pgd_index(address))

pmd_alloc() i386
include/asm_i386/pgtable_2level.h “return (pmd_t *)pgd i386

CPU 1 i386 CPU
pmd_alloc() pmd 0

pte_alloc() include/asm­i386/pgalloc.h

==================== include/asm­i386/pgalloc.h 120 141 ====================
[do_page_fault()>handle_mm_fault()>pte_alloc()]
120 extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)

121 {

122 address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE ­ 1);

123

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

65

124 if (pmd_none(*pmd))

125 goto getnew;

126 if (pmd_bad(*pmd))

127 goto fix;

128 return (pte_t *)pmd_page(*pmd) + address;

129 getnew:

130 {

131 unsigned long page = (unsigned long) get_pte_fast();

132

133 if (!page)

134 return get_pte_slow(pmd, address);

135 set_pmd(pmd, __pmd(_PAGE_TABLE + __pa(page)));

136 return (pte_t *)page + address;

137 }

138 fix:

139 __handle_bad_pmd(pmd);

140 return NULL;

141 }

pmd
get_new()

get_pte_fast()
get_pte_kernel_slow()

“slow

set_pmd() pmd i386
pgd pte

handle_pte_fault() mm/memory.c

==================== mm/memory.c 1135 1187 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()]
1135 /*

1136 * These routines also need to handle stuff like marking pages dirty

1137 * and/or accessed for architectures that don't do it in hardware (most

1138 * RISC architectures). The early dirtying is also good on the i386.

1139 *

1140 * There is also a hook called "update_mmu_cache()" that architectures

1141 * with external mmu caches can use to update those (ie the Sparc or

1142 * PowerPC hashed page tables that act as extended TLBs).

1143 *

1144 * Note the "page_table_lock". It is to protect against kswapd removing

1145 * pages from under us. Note that kswapd only ever _removes_ pages, never

1146 * adds them. As such, once we have noticed that the page is not present,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

66

1147 * we can drop the lock early.

1148 *

1149 * The adding of pages is protected by the MM semaphore (which we hold),

1150 * so we don't need to worry about a page being suddenly been added into

1151 * our VM.

1152 */

1153 static inline int handle_pte_fault(struct mm_struct *mm,

1154 struct vm_area_struct * vma, unsigned long address,

1155 int write_access, pte_t * pte)

1156 {

1157 pte_t entry;

1158

1159 /*

1160 * We need the page table lock to synchronize with kswapd

1161 * and the SMP­safe atomic PTE updates.

1162 */

1163 spin_lock(&mm­>page_table_lock);

1164 entry = *pte;

1165 if (!pte_present(entry)) {

1166 /*

1167 * If it truly wasn't present, we know that kswapd

1168 * and the PTE updates will not touch it later. So

1169 * drop the lock.

1170 */

1171 spin_unlock(&mm­>page_table_lock);

1172 if (pte_none(entry))

1173 return do_no_page(mm, vma, address, write_access, pte);

1174 return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access);

1175 }

1176

1177 if (write_access) {

1178 if (!pte_write(entry))

1179 return do_wp_page(mm, vma, address, pte, entry);

1180

1181 entry = pte_mkdirty(entry);

1182 }

1183 entry = pte_mkyoung(entry);

1184 establish_pte(vma, address, pte, entry);

1185 spin_unlock(&mm­>page_table_lock);

1186 return 1;

1187 }

if pte_present()
pte_none()

do_no_page() do_swap_page()
pte_present()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

67

do_no_page() mm/memory.c
vm_area_struct vm_ops

vm_operations_struct

“copy on write COW COW
fork() mmap()

vma
vma­>vm_ops­>nopage() vma­>vm_ops

vma­>vm_ops­>nopage nopage()
vm_operations_struct nopage()

do_anonymous_page()
do_no_page()

==================== mm/memory.c 1080 1098 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()]
1080 /*

1081 * do_no_page() tries to create a new page mapping. It aggressively

1082 * tries to share with existing pages, but makes a separate copy if

1083 * the "write_access" parameter is true in order to avoid the next

1084 * page fault.

1085 *

1086 * As this is called only for pages that do not currently exist, we

1087 * do not need to flush old virtual caches or the TLB.

1088 *

1089 * This is called with the MM semaphore held.

1090 */

1091 static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,

1092 unsigned long address, int write_access, pte_t *page_table)

1093 {

1094 struct page * new_page;

1095 pte_t entry;

1096

1097 if (!vma­>vm_ops || !vma­>vm_ops­>nopage)

1098 return do_anonymous_page(mm, vma, page_table, write_access, address);

==================== mm/memory.c 1133 1133 ====================
1133 }

nopage() do_anonymous_page()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

68

==================== mm/memory.c 1058 1078 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()>do_anonymous_page()]
1058 /*

1059 * This only needs the MM semaphore

1060 */

1061 static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table,

int write_access, unsigned long addr)

1062 {

1063 struct page *page = NULL;

1064 pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma­>vm_page_prot));

1065 if (write_access) {

1066 page = alloc_page(GFP_HIGHUSER);

1067 if (!page)

1068 return ­1;

1069 clear_user_highpage(page, addr);

1070 entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma­>vm_page_prot)));

1071 mm­>rss++;

1072 flush_page_to_ram(page);

1073 }

1074 set_pte(page_table, entry);

1075 /* No need to invalidate ­ it was non­present before */

1076 update_mmu_cache(vma, addr, entry);

1077 return 1; /* Minor fault */

1078 }

mk_pte()
pte_wrprotect() write_access 0 pte_mkwrite()

include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 277 277 ====================
277 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }

==================== include/asm­i386/pgtable.h 271 271 ====================
271 static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }

pte_wrprotect() _PAGE_RW 0
pte_write() 1 ZERO_PAGE

include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 91 96 ====================
91 /*

92 * ZERO_PAGE is a global shared page that is always zero: used

93 * for zero­mapped memory areas etc..

94 */

95 extern unsigned long empty_zero_page[1024];

96 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))

empty_zero_page 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

69

0 alloc_page()
alloc_page()

1115 set_pte()
page_table

update_mmu_cache() i386 CPU include/asm­i386/pgtable.h i386 MMU
CPU MMU

1
do_page_fault() do_page_fault() VM86 VGA

==================== arch/i386/mm/fault.c 209 218 ====================
[do_page_fault()]
209 /*

210 * Did it hit the DOS screen memory VA from vm86 mode?

211 */

212 if (regs­>eflags & VM_MASK) {

213 unsigned long bit = (address ­ 0xA0000) >> PAGE_SHIFT;

214 if (bit < 32)

215 tsk­>thread.screen_bitmap |= 1 << bit;

216 }

217 up(&mm­>mmap_sem);

218 return;

CPU

trap CPU
CPU

0
CPU

%esp

2.6

CPU Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

70

4KB

3GB
MB Linux Unix

KB KB

Linux

page
page task_struct

page
page

page mem_map
zone

swap_info_struct
include/linux/swap.h

==================== include/linux/swap.h 49 64 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

71

49 struct swap_info_struct {

50 unsigned int flags;

51 kdev_t swap_device;

52 spinlock_t sdev_lock;

53 struct dentry * swap_file;

54 struct vfsmount *swap_vfsmnt;

55 unsigned short * swap_map;

56 unsigned int lowest_bit;

57 unsigned int highest_bit;

58 unsigned int cluster_next;

59 unsigned int cluster_nr;

60 int prio; /* swap priority */

61 int pages;

62 unsigned long max;

63 int next; /* next entry on swap list */

64 };

swap_map
pages

swap_map[0]

swap_info_struct lowest_bit highest_bit
max

cluster cluster_next cluster_nr

Linux swap_info_struct
swap_info mm/swapfile.c

==================== mm/swapfile.c 25 25 ====================
25 struct swap_info_struct swap_info[MAX_SWAPFILES];

swap_list swap_info_struct

==================== mm/swapfile.c 23 23 ====================
23 struct swap_list_t swap_list = {­1, ­1};

swap_list_t include/linux/swap.h

==================== include/linux/swap.h 153 156 ====================
153 struct swap_list_t {

154 int head; /* head of priority­ordered swapfile list */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

72

155 int next; /* swapfile to be used next */

156 };

head next ­1 swap_on()
swap_info_struct
pte_t

swp_entry_t include/linux/shmem_fs.h

==================== include/linux/shmem_fs.h 8 18 ====================
8 /*

9 * A swap entry has to fit into a "unsigned long", as

10 * the entry is hidden in the "index" field of the

11 * swapper address space.

12 *

13 * We have to move it here, since not every user of fs.h is including

14 * mm.h, but m.h is including fs.h via sched .h :­/

15 */

16 typedef struct {

17 unsigned long val;

18 } swp_entry_t;

swp_entry_t 32 32
2.7

2.7

include/asm­i386/pgtable.h type offset pte_t

==================== include/asm­i386/pgtable.h 336 341 ====================
336 /* Encode and de­code a swap entry */

337 #define SWP_TYPE(x) (((x).val >> 1) & 0x3f)

338 #define SWP_OFFSET(x) ((x).val >> 8)

339 #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })

340 #define pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_low })

341 #define swp_entry_to_pte(x) ((pte_t) { (x).val })

offset type

127 127
type pte_t pte_t 32

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

73

20 20 12 0
4KB 7 R/W

U/S type swp_entry_t pte_t
pte_t P 1

swp_entry_t 0
CPU MMU

Linux

SWP_TYPE(entry)
SWP_FILE(entry)

__swap_free()
mm/swapfile.c __get_swap_page()

__swap_free()

==================== mm/swapfile.c 141 158 ====================
141 /*

142 * Caller has made sure that the swapdevice corresponding to entry

143 * is still around or has not been recycled.

144 */

145 void __swap_free(swp_entry_t entry, unsigned short count)

146 {

147 struct swap_info_struct * p;

148 unsigned long offset, type;

149

150 if (!entry.val)

151 goto out;

152

153 type = SWP_TYPE(entry);

154 if (type >= nr_swapfiles)

155 goto bad_nofile;

156 p = & swap_info[type];

157 if (!(p­>flags & SWP_USED))

158 goto bad_device;

entry.val 0 0
SWAP_TYPE swap_info_struct

swap_info[] 156 swap_info[]
swap_info_struct

==================== mm/swapfile.c 159 182 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

74

159 offset = SWP_OFFSET(entry);

160 if (offset >= p­>max)

161 goto bad_offset;

162 if (!p­>swap_map[offset])

163 goto bad_free;

164 swap_list_lock();

165 if (p­>prio > swap_info[swap_list.next].prio)

166 swap_list.next = type;

167 swap_device_lock(p);

168 if (p­>swap_map[offset] < SWAP_MAP_MAX) {

169 if (p­>swap_map[offset] < count)

170 goto bad_count;

171 if (!(p­>swap_map[offset] ­= count)) {

172 if (offset < p­>lowest_bit)

173 p­>lowest_bit = offset;

174 if (offset > p­>highest_bit)

175 p­>highest_bit = offset;

176 nr_swap_pages++;

177 }

178 }

179 swap_device_unlock(p);

180 swap_list_unlock();

181 out:

182 return;

offset
p­>swap_map[offset] 0

SWAP_MAP_MAX count
count 0

lowest_bit highest_bit
nr_swap_pages

page count 0
1 rmqueue() set_page_count()

•

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

75

• mmap()
•

• kmalloc() vmalloc()
vma_area_struct

• alloc_page()

”

LRU

• dentry
• inode
•

LRU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

76

P 0
page cache

”

(1) page list zone
free_area count 0

(2) __alloc_pages() __get_free_page()
count 1 page list

(3) page lru active_list

count 1
(4) page lru

inactive_dirty_list
count 1

(5) page
inactive_dirty_list

(6) page lru
inactive_clean_list

(7)
(8)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

77

page
active_list inactive_dirty_list LRU inactive_clean_list

page LRU
address_space swapper_space

page list
page_hash_table

add_to_swap_cache() page
mm/swap_state.c

==================== mm/swap_state.c 54 70 ====================
54 void add_to_swap_cache(struct page *page, swp_entry_t entry)

55 {

56 unsigned long flags;

57

58 #ifdef SWAP_CACHE_INFO

59 swap_cache_add_total++;

60 #endif

61 if (!PageLocked(page))

62 BUG();

63 if (PageTestandSetSwapCache(page))

64 BUG();

65 if (page­>mapping)

66 BUG();

67 flags = page­>flags & ~((1 << PG_error) | (1 << PG_arch_1));

68 page­>flags = flags | (1 << PG_uptodate);

69 add_to_page_cache_locked(page, &swapper_space, entry.val);

70 }

PG_swap_cache
0 mapping 0

PG_uptodate 1 __add_to_page_cache() mm/filemap.c

==================== mm/filemap.c 476 494 ====================
476 /*

477 * Add a page to the inode page cache.

478 *

479 * The caller must have locked the page and

480 * set all the page flags correctly..

481 */

482 void add_to_page_cache_locked(struct page * page, struct address_space *mapping, unsigned long index)

483 {

484 if (!PageLocked(page))

485 BUG();

486

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

78

487 page_cache_get(page);

488 spin_lock(&pagecache_lock);

489 page­>index = index;

490 add_page_to_inode_queue(mapping, page);

491 add_page_to_hash_queue(page, page_hash(mapping, index));

492 lru_cache_add(page);

493 spin_unlock(&pagecache_lock);

494 }

mapping address_space &swapper_space
include/linux/fs.h

==================== include/linux/fs.h 365 375 ====================
365 struct address_space {

366 struct list_head clean_pages; /* list of clean pages */

367 struct list_head dirty_pages; /* list of dirty pages */

368 struct list_head locked_pages; /* list of locked pages */

369 unsigned long nrpages; /* number of total pages */

370 struct address_space_operations *a_ops; /* methods */

371 struct inode *host; /* owner: inode, block_device */

372 struct vm_area_struct *i_mmap; /* list of private mappings */

373 struct vm_area_struct *i_mmap_shared; /* list of shared mappings */

374 spinlock_t i_shared_lock; /* and spinlock protecting it */

375 };

locked_pages swapper_space
mm/swap_state.c

==================== mm/swap_state.c 31 37 ====================
31 struct address_space swapper_space = {

32 LIST_HEAD_INIT(swapper_space.clean_pages),

33 LIST_HEAD_INIT(swapper_space.dirty_pages),

34 LIST_HEAD_INIT(swapper_space.locked_pages),

35 0, /* nrpages */

36 &swap_aops,

37 };

swap_aops swap
add_to_page_cache_locked() page

page list swapper_space next_hash pprev_hash
lru LRU active_list

page_cache_get() include/linux/pagemap.h get_page(page)
page­>count 1 include/linux/mm.h

==================== include/linux/mm.h 150 150 ====================
150 #define get_page(p) atomic_inc(&(p)­>count)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

79

==================== include/linux/pagemap.h 31 31 ====================
31 #define page_cache_get(x) get_page(x)

page add_page_to_inode_queue() swapper_space clean_pages
mm/filemap.c

==================== mm/filemap.c 72 79 ====================
72 static inline void add_page_to_inode_queue(struct address_space *mapping, struct page * page)

73 {

74 struct list_head *head = &mapping­>clean_pages;

75

76 mapping­>nrpages++;

77 list_add(&page­>list, head);

78 page­>mapping = mapping;

79 }

swapper_space clean_pages ”

add_page_to_inode_queue
address_space

inode i_data address_space
address_space swapper_space

__add_page_to_hash_queue() mm/filemap.c

==================== mm/filemap.c 58 70 ====================
58 static void add_page_to_hash_queue(struct page * page, struct page **p)

59 {

60 struct page *next = *p;

61

62 *p = page;

63 page­>next_hash = next;

64 page­>pprev_hash = p;

65 if (next)

66 next­>pprev_hash = &page­>next_hash;

67 if (page­>buffers)

68 PAGE_BUG(page);

69 atomic_inc(&page_cache_size);

70 }

==================== include/linux/pagemap.h 68 68 ====================
68 #define page_hash(mapping,index) (page_hash_table+_page_hashfn(mapping,index))

page lru_cache_add() LRU active_list
mm/swap.c

==================== mm/swap.c 226 241 ====================
226 /**

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

80

227 * lru_cache_add: add a page to the page lists

228 * @page: the page to add

229 */

230 void lru_cache_add(struct page * page)

231 {

232 spin_lock(&pagemap_lru_lock);

233 if (!PageLocked(page))

234 BUG();

235 DEBUG_ADD_PAGE

236 add_page_to_active_list(page);

237 /* This should be relatively rare */

238 if (!page­>age)

239 deactivate_page_nolock(page);

240 spin_unlock(&pagemap_lru_lock);

241 }

add_page_active_list() include/linux/swap.h

==================== include/linux/swap.h 209 215 ====================
209 #define add_page_to_active_list(page) { \

210 DEBUG_ADD_PAGE \

211 ZERO_PAGE_BUG \

212 SetPageActive(page); \

213 list_add(&(page)­>lru, &active_list); \

214 nr_active_pages++; \

215 }

page lru LRU PG_active
PG_inactive_dirty PG_inactive_clean

mmap()
swapon()

swapoff()

swapon const char *path int swapflags

swapoff const char*path

Flash Memory
Flash Memory

Flash Memory
Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

81

/etc/rc.d/rc.S swapon()
swapon

2.7

DMA
DMA

alloc_pages() Linux 2.4.0
alloc_pages() mm/numa.c mm/page_alloc.c

CONFIG_DISCONTIGMEM

NUMA alloc_pages() mm/numa.c

==================== mm/numa.c 43 43 ====================
43 #ifdef CONFIG_DISCONTIGMEM

==================== mm/numa.c 91 128 ====================
91 /*

92 * This can be refined. Currently, tries to do round robin, instead

93 * should do concentratic circle search, starting from current node.

94 */

95 struct page * alloc_pages(int gfp_mask, unsigned long order)

96 {

97 struct page *ret = 0;

98 pg_data_t *start, *temp;

99 #ifndef CONFIG_NUMA

100 unsigned long flags;

101 static pg_data_t *next = 0;

102 #endif

103

104 if (order >= MAX_ORDER)

105 return NULL;

106 #ifdef CONFIG_NUMA

107 temp = NODE_DATA(numa_node_id());

108 #else

109 spin_lock_irqsave(&node_lock, flags);

110 if (!next) next = pgdat_list;

111 temp = next;

112 next = next­>node_next;

113 spin_unlock_irqrestore(&node_lock, flags);

114 #endif

115 start = temp;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

82

116 while (temp) {

117 if ((ret = alloc_pages_pgdat(temp, gfp_mask, order)))

118 return(ret);

119 temp = temp­>node_next;

120 }

121 temp = pgdat_list;

122 while (temp != start) {

123 if ((ret = alloc_pages_pgdat(temp, gfp_mask, order)))

124 return(ret);

125 temp = temp­>node_next;

126 }

127 return(0);

128 }

NUMA
CONFIG_DISCONTIGMEM

CONFIG_NUMA NUMA

pg_data_t
gfp_mask order

1 2 4 2MAX_ORDER

NUMA NUMA_DATA numa_node_id() CPU
pg_data_t pg_data_t pgdat_list

while temp

0 alloc_pages_pgdat() mm/numa.c

==================== mm/numa.c 85 89 ====================
85 static struct page * alloc_pages_pgdat(pg_data_t *pgdat, int gfp_mask,

86 unsigned long order)

87 {

88 return __alloc_pages(pgdat­>node_zonelists + gfp_mask, order);

89 }

gfp_mask node_zonelists[]
UMA alloc_pages()

UMA contig_pape_data NUMA UMA
UMA alloc_pages() include/linux/mm.h

==================== include/linux/mm.h 343 352 ====================
343 #ifndef CONFIG_DISCONTIGMEM

344 static inline struct page * alloc_pages(int gfp_mask, unsigned long order)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

83

345 {

346 /*

347 * Gets optimized away by the compiler.

348 */

349 if (order >= MAX_ORDER)

350 return NULL;

351 return __alloc_pages(contig_page_data.node_zonelists+(gfp_mask), order);

352 }

NUMA alloc_papes() CONFIG_DISCONTIGMEM

__alloc_pages() mm/page_alloc.c

==================== mm/page_alloc.c 270 315 ====================
[alloc_pages()>__alloc_pages()]
270 /*

271 * This is the 'heart' of the zoned buddy allocator:

272 */

273 struct page * __alloc_pages(zonelist_t *zonelist, unsigned long order)

274 {

275 zone_t **zone;

276 int direct_reclaim = 0;

277 unsigned int gfp_mask = zonelist­>gfp_mask;

278 struct page * page;

279

280 /*

281 * Allocations put pressure on the VM subsystem.

282 */

283 memory_pressure++;

284

285 /*

286 * (If anyone calls gfp from interrupts nonatomically then it

287 * will sooner or later tripped up by a schedule().)

288 *

289 * We are falling back to lower­level zones if allocation

290 * in a higher zone fails.

291 */

292

293 /*

294 * Can we take pages directly from the inactive_clean

295 * list?

296 */

297 if (order == 0 && (gfp_mask & __GFP_WAIT) &&

298 !(current­>flags & PF_MEMALLOC))

299 direct_reclaim = 1;

300

301 /*

302 * If we are about to get low on free pages and we also have

303 * an inactive page shortage, wake up kswapd.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

84

304 */

305 if (inactive_shortage() > inactive_target / 2 && free_shortage())

306 wakeup_kswapd(0);

307 /*

308 * If we are about to get low on free pages and cleaning

309 * the inactive_dirty pages would fix the situation,

310 * wake up bdflush.

311 */

312 else if (free_shortage() && nr_inactive_dirty_pages > free_shortage()

313 && nr_inactive_dirty_pages >= freepages.high)

314 wakeup_bdflush(0);

315

zonelist zonelist_t
order alloc_pages() memory_pressure

gfp_mask

direct_reclaim 1 ”

kswapd bdflush

==================== mm/page_alloc.c 316 340 ====================
[alloc_pages()>__alloc_pages()]
316 try_again:

317 /*

318 * First, see if we have any zones with lots of free memory.

319 *

320 * We allocate free memory first because it doesn't contain

321 * any data ... DUH!

322 */

323 zone = zonelist­>zones;

324 for (;;) {

325 zone_t *z = *(zone++);

326 if (!z)

327 break;

328 if (!z­>size)

329 BUG();

330

331 if (z­>free_pages >= z­>pages_low) {

332 page = rmqueue(z, order);

333 if (page)

334 return page;

335 } else if (z­>free_pages < z­>pages_min &&

336 waitqueue_active(&kreclaimd_wait)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

85

337 wake_up_interruptible(&kreclaimd_wait);

338 }

339 }

340

rmqueue()
kreclaimd

kreclaimd_wait rmqueue()
mm/page_alloc.c

==================== mm/page_alloc.c 172 211 ====================
[alloc_pages()>__alloc_pages()>rmqueue()]
172 static struct page * rmqueue(zone_t *zone, unsigned long order)

173 {

174 free_area_t * area = zone­>free_area + order;

175 unsigned long curr_order = order;

176 struct list_head *head, *curr;

177 unsigned long flags;

178 struct page *page;

179

180 spin_lock_irqsave(&zone­>lock, flags);

181 do {

182 head = &area­>free_list;

183 curr = memlist_next(head);

184

185 if (curr != head) {

186 unsigned int index;

187

188 page = memlist_entry(curr, struct page, list);

189 if (BAD_RANGE(zone,page))

190 BUG();

191 memlist_del(curr);

192 index = (page ­ mem_map) ­ zone­>offset;

193 MARK_USED(index, curr_order, area);

194 zone­>free_pages ­= 1 << order;

195

196 page = expand(zone, page, index, order, curr_order, area);

197 spin_unlock_irqrestore(&zone­>lock, flags);

198

199 set_page_count(page, 1);

200 if (BAD_RANGE(zone,page))

201 BUG();

202 DEBUG_ADD_PAGE

203 return page;

204 }

205 curr_order++;

206 area++;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

86

207 } while (curr_order < MAX_ORDER);

208 spin_unlock_irqrestore(&zone­>lock, flags);

209

210 return NULL;

211 }

page

spin_lock_irqsave()
zone­>free_area zone­>free_area + oder

do­while

196 expand()
188 memlist_entry() page memlist_del()

1
expand() mm/page_alloc.c

==================== mm/page_alloc.c 150 169 ====================
[alloc_pages()>__alloc_pages()>rmqueue()>expand()]
150 static inline struct page * expand (zone_t *zone, struct page *page,

151 unsigned long index, int low, int high, free_area_t * area)

152 {

153 unsigned long size = 1 << high;

154

155 while (high > low) {

156 if (BAD_RANGE(zone,page))

157 BUG();

158 area­­;

159 high­­;

160 size >>= 1;

161 memlist_add_head(&(page)­>list, &(area)­>free_list);

162 MARK_USED(index, high, area);

163 index += size;

164 page += size;

165 }

166 if (BAD_RANGE(zone,page))

167 BUG();

168 return page;

169 }

low order high
curr_order 155 while

158
162 163 164

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

87

high low

rmqueue() rmqueue() __alloc_pages()
for

327 __alloc_pages() page
page page count 1 order

0 1

__alloc_pages() mm/page_alloc.c

==================== mm/page_alloc.c 341 364 ====================
[alloc_pages()>__alloc_pages()]
341 /*

342 * Try to allocate a page from a zone with a HIGH

343 * amount of free + inactive_clean pages.

344 *

345 * If there is a lot of activity, inactive_target

346 * will be high and we'll have a good chance of

347 * finding a page using the HIGH limit.

348 */

349 page = __alloc_pages_limit(zonelist, order, PAGES_HIGH, direct_reclaim);

350 if (page)

351 return page;

352

353 /*

354 * Then try to allocate a page from a zone with more

355 * than zone­>pages_low free + inactive_clean pages.

356 *

357 * When the working set is very large and VM activity

358 * is low, we're most likely to have our allocation

359 * succeed here.

360 */

361 page = __alloc_pages_limit(zonelist, order, PAGES_LOW, direct_reclaim);

362 if (page)

363 return page;

364

PAGES_HIGH __alloc_pages_limit()
PAGES_LOW __alloc_pages_limit() mm/page_alloc.c

==================== mm/page_alloc.c 213 267 ====================
[alloc_pages()>__alloc_pages()>__alloc_pages_limit()]
213 #define PAGES_MIN 0

214 #define PAGES_LOW 1

215 #define PAGES_HIGH 2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

88

216

217 /*

218 * This function does the dirty work for __alloc_pages

219 * and is separated out to keep the code size smaller.

220 * (suggested by Davem at 1:30 AM, typed by Rik at 6 AM)

221 */

222 static struct page * __alloc_pages_limit(zonelist_t *zonelist,

223 unsigned long order, int limit, int direct_reclaim)

224 {

225 zone_t **zone = zonelist­>zones;

226

227 for (;;) {

228 zone_t *z = *(zone++);

229 unsigned long water_mark;

230

231 if (!z)

232 break;

233 if (!z­>size)

234 BUG();

235

236 /*

237 * We allocate if the number of free + inactive_clean

238 * pages is above the watermark.

239 */

240 switch (limit) {

241 default:

242 case PAGES_MIN:

243 water_mark = z­>pages_min;

244 break;

245 case PAGES_LOW:

246 water_mark = z­>pages_low;

247 break;

248 case PAGES_HIGH:

249 water_mark = z­>pages_high;

250 }

251

252 if (z­>free_pages + z­>inactive_clean_pages > water_mark) {

253 struct page *page = NULL;

254 /* If possible, reclaim a page directly. */

255 if (direct_reclaim && z­>free_pages < z­>pages_min + 8)

256 page = reclaim_page(z);

257 /* If that fails, fall back to rmqueue. */

258 if (!page)

259 page = rmqueue(z, order);

260 if (page)

261 return page;

262 }

263 }

264

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

89

265 /* Found nothing. */

266 return NULL;

267 }

__alloc_pages() for
reclaim_page() inactive_clean_list mm/vmscan.c

direct_reclaim 0
__alloc_pages()

==================== mm/page_alloc.c 365 399 ====================
[alloc_pages()>__alloc_pages()]
365 /*

366 * OK, none of the zones on our zonelist has lots

367 * of pages free.

368 *

369 * We wake up kswapd, in the hope that kswapd will

370 * resolve this situation before memory gets tight.

371 *

372 * We also yield the CPU, because that:

373 * ­ gives kswapd a chance to do something

374 * ­ slows down allocations, in particular the

375 * allocations from the fast allocator that's

376 * causing the problems ...

377 * ­ ... which minimises the impact the "bad guys"

378 * have on the rest of the system

379 * ­ if we don't have __GFP_IO set, kswapd may be

380 * able to free some memory we can't free ourselves

381 */

382 wakeup_kswapd(0);

383 if (gfp_mask & __GFP_WAIT) {

384 __set_current_state(TASK_RUNNING);

385 current­>policy |= SCHED_YIELD;

386 schedule();

387 }

388

389 /*

390 * After waking up kswapd, we try to allocate a page

391 * from any zone which isn't critical yet.

392 *

393 * Kswapd should, in most situations, bring the situation

394 * back to normal in no time.

395 */

396 page = __alloc_pages_limit(zonelist, order, PAGES_MIN, direct_reclaim);

397 if (page)

398 return page;

399

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

90

kswapd

kswapd

PAGES_MIN __alloc_pages_limit()
kswapd kreclaimd

task_struct flags PF_MEMALLOC 1
PF_MEMALLOC 0

==================== mm/page_alloc.c 400 477 ====================
[alloc_pages()>__alloc_pages()]
400 /*

401 * Damn, we didn't succeed.

402 *

403 * This can be due to 2 reasons:

404 * ­ we're doing a higher­order allocation

405 * ­­> move pages to the free list until we succeed

406 * ­ we're /really/ tight on memory

407 * ­­> wait on the kswapd waitqueue until memory is freed

408 */

409 if (!(current­>flags & PF_MEMALLOC)) {

410 /*

411 * Are we dealing with a higher order allocation?

412 *

413 * Move pages from the inactive_clean to the free list

414 * in the hope of creating a large, physically contiguous

415 * piece of free memory.

416 */

417 if (order > 0 && (gfp_mask & __GFP_WAIT)) {

418 zone = zonelist­>zones;

419 /* First, clean some dirty pages. */

420 current­>flags |= PF_MEMALLOC;

421 page_launder(gfp_mask, 1);

422 current­>flags &= ~PF_MEMALLOC;

423 for (;;) {

424 zone_t *z = *(zone++);

425 if (!z)

426 break;

427 if (!z­>size)

428 continue;

429 while (z­>inactive_clean_pages) {

430 struct page * page;

431 /* Move one page to the free list. */

432 page = reclaim_page(z);

433 if (!page)

434 break;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

91

435 __free_page(page);

436 /* Try if the allocation succeeds. */

437 page = rmqueue(z, order);

438 if (page)

439 return page;

440 }

441 }

442 }

443 /*

444 * When we arrive here, we are really tight on memory.

445 *

446 * We wake up kswapd and sleep until kswapd wakes us

447 * up again. After that we loop back to the start.

448 *

449 * We have to do this because something else might eat

450 * the memory kswapd frees for us and we need to be

451 * reliable. Note that we don't loop back for higher

452 * order allocations since it is possible that kswapd

453 * simply cannot free a large enough contiguous area

454 * of memory *ever*.

455 */

456 if ((gfp_mask & (__GFP_WAIT|__GFP_IO)) == (__GFP_WAIT|__GFP_IO)) {

457 wakeup_kswapd(1);

458 memory_pressure++;

459 if (!order)

460 goto try_again;

461 /*

462 * If __GFP_IO isn't set, we can't wait on kswapd because

463 * kswapd just might need some IO locks /we/ are holding ...

464 *

465 * SUBTLE: The scheduling point above makes sure that

466 * kswapd does get the chance to free memory we can't

467 * free ourselves...

468 */

469 } else if (gfp_mask & __GFP_WAIT) {

470 try_to_free_pages(gfp_mask);

471 memory_pressure++;

472 if (!order)

473 goto try_again;

474 }

475

476 }

477

inactive_clean_pages ”

inactive_dirty_pages

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

92

page_launder()
for

while __free_page()
rmqueue()

page_launder() PF_MEMALLOC 1
page_launder()

PF_MEMALLOC 1 409 476

kswapd kswapd
goto __alloc_pages()

try_again try_to_free_pages() kswapd

try_again
__alloc_pages_limit()

PAGES_MIN
z­>pages_min

__alloc_pages()

==================== mm/page_alloc.c 478 521 ====================
[alloc_pages()>__alloc_pages()]
478 /*

479 * Final phase: allocate anything we can!

480 *

481 * Higher order allocations, GFP_ATOMIC allocations and

482 * recursive allocations (PF_MEMALLOC) end up here.

483 *

484 * Only recursive allocations can use the very last pages

485 * in the system, otherwise it would be just too easy to

486 * deadlock the system...

487 */

488 zone = zonelist­>zones;

489 for (;;) {

490 zone_t *z = *(zone++);

491 struct page * page = NULL;

492 if (!z)

493 break;

494 if (!z­>size)

495 BUG();

496

497 /*

498 * SUBTLE: direct_reclaim is only possible if the task

499 * becomes PF_MEMALLOC while looping above. This will

500 * happen when the OOM killer selects this task for

501 * instant execution...

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

93

502 */

503 if (direct_reclaim) {

504 page = reclaim_page(z);

505 if (page)

506 return page;

507 }

508

509 /* XXX: is pages_min/4 a good amount to reserve for this? */

510 if (z­>free_pages < z­>pages_min / 4 &&

511 !(current­>flags & PF_MEMALLOC))

512 continue;

513 page = rmqueue(z, order);

514 if (page)

515 return page;

516 }

517

518 /* No luck.. */

519 printk(KERN_ERR "__alloc_pages: %lu­order allocation failed.\n", order);

520 return NULL;

521 }

CPU

2.8

CPU
Linux

Linux
”kswapd

kswapd task_struct

kswapd
thread kswapd

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

94

kswapd
kswapd mm/vmscan.c

==================== mm/vmscan.c 1146 1153 ====================
1146 static int __init kswapd_init(void)

1147 {

1148 printk("Starting kswapd v1.8\n");

1149 swap_setup();

1150 kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

1151 kernel_thread(kreclaimd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

1152 return 0;

1153 }

kswapd_init() swap_setup()
page_cluster

==================== mm/swap.c 293 305 ====================
[kswapd_init()>swap_setup()]
293 /*

294 * Perform any setup for the swap system

295 */

296 void __init swap_setup(void)

297 {

298 /* Use a smaller cluster for memory <16MB or <32MB */

299 if (num_physpages < ((16 * 1024 * 1024) >> PAGE_SHIFT))

300 page_cluster = 2;

301 else if (num_physpages < ((32 * 1024 * 1024) >> PAGE_SHIFT))

302 page_cluster = 3;

303 else

304 page_cluster = 4;

305 }

kswapd kernel_thread()
kreclaimd kswapd

kswapd
kswapd() mm/vmscan.c

==================== mm/vmscan.c 947 1046 ====================
947 /*

948 * The background pageout daemon, started as a kernel thread

949 * from the init process.

950 *

951 * This basically trickles out pages so that we have _some_

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

95

952 * free memory available even if there is no other activity

953 * that frees anything up. This is needed for things like routing

954 * etc, where we otherwise might have all activity going on in

955 * asynchronous contexts that cannot page things out.

956 *

957 * If there are applications that are active memory­allocators

958 * (most normal use), this basically shouldn't matter.

959 */

960 int kswapd(void *unused)

961 {

962 struct task_struct *tsk = current;

963

964 tsk­>session = 1;

965 tsk­>pgrp = 1;

966 strcpy(tsk­>comm, "kswapd");

967 sigfillset(&tsk­>blocked);

968 kswapd_task = tsk;

969

970 /*

971 * Tell the memory management that we're a "memory allocator",

972 * and that if we need more memory we should get access to it

973 * regardless (see "__alloc_pages()"). "kswapd" should

974 * never get caught in the normal page freeing logic.

975 *

976 * (Kswapd normally doesn't need memory anyway, but sometimes

977 * you need a small amount of memory in order to be able to

978 * page out something else, and this flag essentially protects

979 * us from recursively trying to free more memory as we're

980 * trying to free the first piece of memory in the first place).

981 */

982 tsk­>flags |= PF_MEMALLOC;

983

984 /*

985 * Kswapd main loop.

986 */

987 for (;;) {

988 static int recalc = 0;

989

990 /* If needed, try to free some memory. */

991 if (inactive_shortage() || free_shortage()) {

992 int wait = 0;

993 /* Do we need to do some synchronous flushing? */

994 if (waitqueue_active(&kswapd_done))

995 wait = 1;

996 do_try_to_free_pages(GFP_KSWAPD, wait);

997 }

998

999 /*

1000 * Do some (very minimal) background scanning. This

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

96

1001 * will scan all pages on the active list once

1002 * every minute. This clears old referenced bits

1003 * and moves unused pages to the inactive list.

1004 */

1005 refill_inactive_scan(6, 0);

1006

1007 /* Once a second, recalculate some VM stats. */

1008 if (time_after(jiffies, recalc + HZ)) {

1009 recalc = jiffies;

1010 recalculate_vm_stats();

1011 }

1012

1013 /*

1014 * Wake up everybody waiting for free memory

1015 * and unplug the disk queue.

1016 */

1017 wake_up_all(&kswapd_done);

1018 run_task_queue(&tq_disk);

1019

1020 /*

1021 * We go to sleep if either the free page shortage

1022 * or the inactive page shortage is gone. We do this

1023 * because:

1024 * 1) we need no more free pages or

1025 * 2) the inactive pages need to be flushed to disk,

1026 * it wouldn't help to eat CPU time now ...

1027 *

1028 * We go to sleep for one second, but if it's needed

1029 * we'll be woken up earlier...

1030 */

1031 if (!free_shortage() || !inactive_shortage()) {

1032 interruptible_sleep_on_timeout(&kswapd_wait, HZ);

1033 /*

1034 * If we couldn't free enough memory, we see if it was

1035 * due to the system just not having enough memory.

1036 * If that is the case, the only solution is to kill

1037 * a process (the alternative is enternal deadlock).

1038 *

1039 * If there still is enough memory around, we just loop

1040 * and try free some more memory...

1041 */

1042 } else if (out_of_memory()) {

1043 oom_kill();

1044 }

1045 }

1046 }

interruptible_sleep_on_timeout()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

97

kswapd kswapd
HZ HZ

interruptible_sleep_on_timeout()
HZ 1 kswapd interruptible_sleep_on_timeout()

1 1
kswapd 1 kswapd

kswapd

==================== mm/vmscan.c 805 822 ====================
[kswapd()>inactive_shortage()]
805 /*

806 * How many inactive pages are we short?

807 */

808 int inactive_shortage(void)

809 {

810 int shortage = 0;

811

812 shortage += freepages.high;

813 shortage += inactive_target;

814 shortage ­= nr_free_pages();

815 shortage ­= nr_inactive_clean_pages();

816 shortage ­= nr_inactive_dirty_pages;

817

818 if (shortage > 0)

819 return shortage;

820

821 return 0;

822 }

freepages.high inactive_target

2 4 8 2N nr_free_pages()

nr_inactive_clean_pages()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

98

nr_inactive_dirty_pages
mm/page_alloc.c

free_shortage()

mm/vmscan.c

do_try_to_free_pages() waitqueue_active() kswapd_done
do_try_to_free_pages() 3

kswapd_done
kswapd inline

waitqueue_active() include/linux/wait.h

==================== include/linux/wait.h 152 161 ====================
[kswapd()>waitqueue_active()]
152 static inline int waitqueue_active(wait_queue_head_t *q)

153 {

154 #if WAITQUEUE_DEBUG

155 if (!q)

156 WQ_BUG();

157 CHECK_MAGIC_WQHEAD(q);

158 #endif

159

160 return !list_empty(&q­>task_list);

161 }

do_try_to_free_pages() mm/vmscan.c

==================== mm/vmscan.c 907 941 ====================
[kswapd()>do_try_to_free_pages()]
907 static int do_try_to_free_pages(unsigned int gfp_mask, int user)

908 {

909 int ret = 0;

910

911 /*

912 * If we're low on free pages, move pages from the

913 * inactive_dirty list to the inactive_clean list.

914 *

915 * Usually bdflush will have pre­cleaned the pages

916 * before we get around to moving them to the other

917 * list, so this is a relatively cheap operation.

918 */

919 if (free_shortage() || nr_inactive_dirty_pages > nr_free_pages() +

920 nr_inactive_clean_pages())

921 ret += page_launder(gfp_mask, user);

922

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

99

923 /*

924 * If needed, we move pages from the active list

925 * to the inactive list. We also "eat" pages from

926 * the inode and dentry cache whenever we do this.

927 */

928 if (free_shortage() || inactive_shortage()) {

929 shrink_dcache_memory(6, gfp_mask);

930 shrink_icache_memory(6, gfp_mask);

931 ret += refill_inactive(gfp_mask, user);

932 } else {

933 /*

934 * Reclaim unused slab cache memory.

935 */

936 kmem_cache_reap(gfp_mask);

937 ret = 1;

938 }

939

940 return ret;

941 }

page_launder()
“launder

kswapd()
mm/vmscan.c

==================== mm/vmscan.c 465 670 ====================
[kswapd()>do_try_to_free_pages()>page_launder()]
465 /**

466 * page_launder ­ clean dirty inactive pages, move to inactive_clean list

467 * @gfp_mask: what operations we are allowed to do

468 * @sync: should we wait synchronously for the cleaning of pages

469 *

470 * When this function is called, we are most likely low on free +

471 * inactive_clean pages. Since we want to refill those pages as

472 * soon as possible, we'll make two loops over the inactive list,

473 * one to move the already cleaned pages to the inactive_clean lists

474 * and one to (often asynchronously) clean the dirty inactive pages.

475 *

476 * In situations where kswapd cannot keep up, user processes will

477 * end up calling this function. Since the user process needs to

478 * have a page before it can continue with its allocation, we'll

479 * do synchronous page flushing in that case.

480 *

481 * This code is heavily inspired by the FreeBSD source code. Thanks

482 * go out to Matthew Dillon.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

100

483 */

484 #define MAX_LAUNDER (4 * (1 << page_cluster))

485 int page_launder(int gfp_mask, int sync)

486 {

487 int launder_loop, maxscan, cleaned_pages, maxlaunder;

488 int can_get_io_locks;

489 struct list_head * page_lru;

490 struct page * page;

491

492 /*

493 * We can only grab the IO locks (eg. for flushing dirty

494 * buffers to disk) if __GFP_IO is set.

495 */

496 can_get_io_locks = gfp_mask & __GFP_IO;

497

498 launder_loop = 0;

499 maxlaunder = 0;

500 cleaned_pages = 0;

501

502 dirty_page_rescan:

503 spin_lock(&pagemap_lru_lock);

504 maxscan = nr_inactive_dirty_pages;

505 while ((page_lru = inactive_dirty_list.prev) != &inactive_dirty_list &&

506 maxscan­­ > 0) {

507 page = list_entry(page_lru, struct page, lru);

508

509 /* Wrong page on list?! (list corruption, should not happen) */

510 if (!PageInactiveDirty(page)) {

511 printk("VM: page_launder, wrong page on list.\n");

512 list_del(page_lru);

513 nr_inactive_dirty_pages­­;

514 page­>zone­>inactive_dirty_pages­­;

515 continue;

516 }

517

518 /* Page is or was in use? Move it to the active list. */

519 if (PageTestandClearReferenced(page) || page­>age > 0 ||

520 (!page­>buffers && page_count(page) > 1) ||

521 page_ramdisk(page)) {

522 del_page_from_inactive_dirty_list(page);

523 add_page_to_active_list(page);

524 continue;

525 }

526

527 /*

528 * The page is locked. IO in progress?

529 * Move it to the back of the list.

530 */

531 if (TryLockPage(page)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

101

532 list_del(page_lru);

533 list_add(page_lru, &inactive_dirty_list);

534 continue;

535 }

536

537 /*

538 * Dirty swap­cache page? Write it out if

539 * last copy..

540 */

541 if (PageDirty(page)) {

542 int (*writepage)(struct page *) = page­>mapping­>a_ops­>writepage;

543 int result;

544

545 if (!writepage)

546 goto page_active;

547

548 /* First time through? Move it to the back of the list */

549 if (!launder_loop) {

550 list_del(page_lru);

551 list_add(page_lru, &inactive_dirty_list);

552 UnlockPage(page);

553 continue;

554 }

555

556 /* OK, do a physical asynchronous write to swap. */

557 ClearPageDirty(page);

558 page_cache_get(page);

559 spin_unlock(&pagemap_lru_lock);

560

561 result = writepage(page);

562 page_cache_release(page);

563

564 /* And re­start the thing.. */

565 spin_lock(&pagemap_lru_lock);

566 if (result != 1)

567 continue;

568 /* writepage refused to do anything */

569 set_page_dirty(page);

570 goto page_active;

571 }

572

573 /*

574 * If the page has buffers, try to free the buffer mappings

575 * associated with this page. If we succeed we either free

576 * the page (in case it was a buffercache only page) or we

577 * move the page to the inactive_clean list.

578 *

579 * On the first round, we should free all previously cleaned

580 * buffer pages

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

102

581 */

582 if (page­>buffers) {

583 int wait, clearedbuf;

584 int freed_page = 0;

585 /*

586 * Since we might be doing disk IO, we have to

587 * drop the spinlock and take an extra reference

588 * on the page so it doesn't go away from under us.

589 */

590 del_page_from_inactive_dirty_list(page);

591 page_cache_get(page);

592 spin_unlock(&pagemap_lru_lock);

593

594 /* Will we do (asynchronous) IO? */

595 if (launder_loop && maxlaunder == 0 && sync)

596 wait = 2; /* Synchrounous IO */

597 else if (launder_loop && maxlaunder­­ > 0)

598 wait = 1; /* Async IO */

599 else

600 wait = 0; /* No IO */

601

602 /* Try to free the page buffers. */

603 clearedbuf = try_to_free_buffers(page, wait);

604

605 /*

606 * Re­take the spinlock. Note that we cannot

607 * unlock the page yet since we're still

608 * accessing the page_struct here...

609 */

610 spin_lock(&pagemap_lru_lock);

611

612 /* The buffers were not freed. */

613 if (!clearedbuf) {

614 add_page_to_inactive_dirty_list(page);

615

616 /* The page was only in the buffer cache. */

617 } else if (!page­>mapping) {

618 atomic_dec(&buffermem_pages);

619 freed_page = 1;

620 cleaned_pages++;

621

622 /* The page has more users besides the cache and us. */

623 } else if (page_count(page) > 2) {

624 add_page_to_active_list(page);

625

626 /* OK, we "created" a freeable page. */

627 } else /* page­>mapping && page_count(page) == 2 */ {

628 add_page_to_inactive_clean_list(page);

629 cleaned_pages++;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

103

630 }

631

632 /*

633 * Unlock the page and drop the extra reference.

634 * We can only do it here because we ar accessing

635 * the page struct above.

636 */

637 UnlockPage(page);

638 page_cache_release(page);

639

640 /*

641 * If we're freeing buffer cache pages, stop when

642 * we've got enough free memory.

643 */

644 if (freed_page && !free_shortage())

645 break;

646 continue;

647 } else if (page­>mapping && !PageDirty(page)) {

648 /*

649 * If a page had an extra reference in

650 * deactivate_page(), we will find it here.

651 * Now the page is really freeable, so we

652 * move it to the inactive_clean list.

653 */

654 del_page_from_inactive_dirty_list(page);

655 add_page_to_inactive_clean_list(page);

656 UnlockPage(page);

657 cleaned_pages++;

658 } else {

659 page_active:

660 /*

661 * OK, we don't know what to do with the page.

662 * It's no use keeping it here, so we move it to

663 * the active list.

664 */

665 del_page_from_inactive_dirty_list(page);

666 add_page_to_active_list(page);

667 UnlockPage(page);

668 }

669 }

670 spin_unlock(&pagemap_lru_lock);

cleaned_papes launder_loop
launder_loop 0

1 dirty_page_rescan 502
while 505

maxscan

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

104

PG_inactive_dirty 1
512

(1)
519 525

page age

1
1

1
1

ramdisk

(2) 531 TryLockPage() 1

(3) 541 page PG_dirty 1
541 571 address_space

page_active
address_space swapper_space

address_space_operations swap_aops swap_writepage()

531 535
ClearPageDirty() PG_dirty 0 address_space

mmap()

page_launder()
PG_dirty 0 541

1
page_launder() PG_dirty 569 570

writepage page_cache_get()
page_cache_release()

PG_dirty 0 CPU 582
PG_dirty 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

105

(4) 582 647
try_to_free_buffers()

try_to_free_buffers() 1 638
page_cache_release() 1 0

644 645 try_to_free_buffers() fs/buffer.c

(5) address_space ”

(6) 658

gfp_mask
__GFP_IO 1

==================== mm/vmscan.c 671 697 ====================
[kswapd()>do_try_to_free_pages()>page_launder()]
671

672 /*

673 * If we don't have enough free pages, we loop back once

674 * to queue the dirty pages for writeout. When we were called

675 * by a user process (that /needs/ a free page) and we didn't

676 * free anything yet, we wait synchronously on the writeout of

677 * MAX_SYNC_LAUNDER pages.

678 *

679 * We also wake up bdflush, since bdflush should, under most

680 * loads, flush out the dirty pages before we have to wait on

681 * IO.

682 */

683 if (can_get_io_locks && !launder_loop && free_shortage()) {

684 launder_loop = 1;

685 /* If we cleaned pages, never do synchronous IO. */

686 if (cleaned_pages)

687 sync = 0;

688 /* We only do a few "out of order" flushes. */

689 maxlaunder = MAX_LAUNDER;

690 /* Kflushd takes care of the rest. */

691 wakeup_bdflush(0);

692 goto dirty_page_rescan;

693 }

694

695 /* Return the number of pages moved to the inactive_clean list. */

696 return cleaned_pages;

697 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

106

502 dirty_page_rescan launder_loop
1 page_launder()

do_try_to_free_pages() page_launder()

shrink_dcache_memory()
shrink_icache_memory() refill_inactive() kmem_cache_reap()

dentry
inode

LRU
dentry inode

shrink_dcache_memory() shrink_icache_memory()

“slab
slab

kmem_cache_reap()
refill_inactive() mm/vmscan.c

==================== mm/vmscan.c 824 905 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()]
824 /*

825 * We need to make the locks finer granularity, but right

826 * now we need this so that we can do page allocations

827 * without holding the kernel lock etc.

828 *

829 * We want to try to free "count" pages, and we want to

830 * cluster them so that we get good swap­out behaviour.

831 *

832 * OTOH, if we're a user process (and not kswapd), we

833 * really care about latency. In that case we don't try

834 * to free too many pages.

835 */

836 static int refill_inactive(unsigned int gfp_mask, int user)

837 {

838 int priority, count, start_count, made_progress;

839

840 count = inactive_shortage() + free_shortage();

841 if (user)

842 count = (1 << page_cluster);

843 start_count = count;

844

845 /* Always trim SLAB caches when memory gets low. */

846 kmem_cache_reap(gfp_mask);

847

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

107

848 priority = 6;

849 do {

850 made_progress = 0;

851

852 if (current­>need_resched) {

853 __set_current_state(TASK_RUNNING);

854 schedule();

855 }

856

857 while (refill_inactive_scan(priority, 1)) {

858 made_progress = 1;

859 if (­­count <= 0)

860 goto done;

861 }

862

863 /*

864 * don't be too light against the d/i cache since

865 * refill_inactive() almost never fail when there's

866 * really plenty of memory free.

867 */

868 shrink_dcache_memory(priority, gfp_mask);

869 shrink_icache_memory(priority, gfp_mask);

870

871 /*

872 * Then, try to page stuff out..

873 */

874 while (swap_out(priority, gfp_mask)) {

875 made_progress = 1;

876 if (­­count <= 0)

877 goto done;

878 }

879

880 /*

881 * If we either have enough free memory, or if

882 * page_launder() will be able to make enough

883 * free memory, then stop.

884 */

885 if (!inactive_shortage() || !free_shortage())

886 goto done;

887

888 /*

889 * Only switch to a lower "priority" if we

890 * didn't make any useful progress in the

891 * last loop.

892 */

893 if (!made_progress)

894 priority­­;

895 } while (priority >= 0);

896

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

108

897 /* Always end on a refill_inactive.., may sleep... */

898 while (refill_inactive_scan(0, 1)) {

899 if (­­count <= 0)

900 goto done;

901 }

902

903 done:

904 return (count < start_count);

905 }

user kswapd kswapd_done

kmem_cache_reap() slab

do­while 6 0

task_struct need_resched 1
schedule()

TASK_RUNNING 4 task_struct
need_resched CPU

kswapd
CPU

schedule()
refill_inactive_scan()

swap_out()
dentry inode

refill_inactive_scan() mm/vmscan.c

==================== mm/vmscan.c 699 769 ====================
699 /**

700 * refill_inactive_scan ­ scan the active list and find pages to deactivate

701 * @priority: the priority at which to scan

702 * @oneshot: exit after deactivating one page

703 *

704 * This function will scan a portion of the active list to find

705 * unused pages, those pages will then be moved to the inactive list.

706 */

707 int refill_inactive_scan(unsigned int priority, int oneshot)

708 {

709 struct list_head * page_lru;

710 struct page * page;

711 int maxscan, page_active = 0;

712 int ret = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

109

713

714 /* Take the lock while messing with the list... */

715 spin_lock(&pagemap_lru_lock);

716 maxscan = nr_active_pages >> priority;

717 while (maxscan­­ > 0 && (page_lru = active_list.prev) != &active_list) {

718 page = list_entry(page_lru, struct page, lru);

719

720 /* Wrong page on list?! (list corruption, should not happen) */

721 if (!PageActive(page)) {

722 printk("VM: refill_inactive, wrong page on list.\n");

723 list_del(page_lru);

724 nr_active_pages­­;

725 continue;

726 }

727

728 /* Do aging on the pages. */

729 if (PageTestandClearReferenced(page)) {

730 age_page_up_nolock(page);

731 page_active = 1;

732 } else {

733 age_page_down_ageonly(page);

734 /*

735 * Since we don't hold a reference on the page

736 * ourselves, we have to do our test a bit more

737 * strict then deactivate_page(). This is needed

738 * since otherwise the system could hang shuffling

739 * unfreeable pages from the active list to the

740 * inactive_dirty list and back again...

741 *

742 * SUBTLE: we can have buffer pages with count 1.

743 */

744 if (page­>age == 0 && page_count(page) <=

745 (page­>buffers ? 2 : 1)) {

746 deactivate_page_nolock(page);

747 page_active = 0;

748 } else {

749 page_active = 1;

750 }

751 }

752 /*

753 * If the page is still on the active list, move it

754 * to the other end of the list. Otherwise it was

755 * deactivated by age_page_down and we exit successfully.

756 */

757 if (page_active || PageActive(page)) {

758 list_del(page_lru);

759 list_add(page_lru, &active_list);

760 } else {

761 ret = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

110

762 if (oneshot)

763 break;

764 }

765 }

766 spin_unlock(&pagemap_lru_lock);

767

768 return ret;

769 }

maxscan
priority

priority 0 716
721 729

0

1
744 swap_out()

oneshot
1 swap_out()

swap_out() mm/vmscan.c

==================== mm/vmscan.c 297 378 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()]
297 /*

298 * Select the task with maximal swap_cnt and try to swap out a page.

299 * N.B. This function returns only 0 or 1. Return values != 1 from

300 * the lower level routines result in continued processing.

301 */

302 #define SWAP_SHIFT 5

303 #define SWAP_MIN 8

304

305 static int swap_out(unsigned int priority, int gfp_mask)

306 {

307 int counter;

308 int __ret = 0;

309

310 /*

311 * We make one or two passes through the task list, indexed by

312 * assign = {0, 1}:

313 * Pass 1: select the swappable task with maximal RSS that has

314 * not yet been swapped out.

315 * Pass 2: re­assign rss swap_cnt values, then select as above.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

111

316 *

317 * With this approach, there's no need to remember the last task

318 * swapped out. If the swap­out fails, we clear swap_cnt so the

319 * task won't be selected again until all others have been tried.

320 *

321 * Think of swap_cnt as a "shadow rss" ­ it tells us which process

322 * we want to page out (always try largest first).

323 */

324 counter = (nr_threads << SWAP_SHIFT) >> priority;

325 if (counter < 1)

326 counter = 1;

327

328 for (; counter >= 0; counter­­) {

329 struct list_head *p;

330 unsigned long max_cnt = 0;

331 struct mm_struct *best = NULL;

332 int assign = 0;

333 int found_task = 0;

334 select:

335 spin_lock(&mmlist_lock);

336 p = init_mm.mmlist.next;

337 for (; p != &init_mm.mmlist; p = p­>next) {

338 struct mm_struct *mm = list_entry(p, struct mm_struct, mmlist);

339 if (mm­>rss <= 0)

340 continue;

341 found_task++;

342 /* Refresh swap_cnt? */

343 if (assign == 1) {

344 mm­>swap_cnt = (mm­>rss >> SWAP_SHIFT);

345 if (mm­>swap_cnt < SWAP_MIN)

346 mm­>swap_cnt = SWAP_MIN;

347 }

348 if (mm­>swap_cnt > max_cnt) {

349 max_cnt = mm­>swap_cnt;

350 best = mm;

351 }

352 }

353

354 /* Make sure it doesn't disappear */

355 if (best)

356 atomic_inc(&best­>mm_users);

357 spin_unlock(&mmlist_lock);

358

359 /*

360 * We have dropped the tasklist_lock, but we

361 * know that "mm" still exists: we are running

362 * with the big kernel lock, and exit_mm()

363 * cannot race with us.

364 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

112

365 if (!best) {

366 if (!assign && found_task > 0) {

367 assign = 1;

368 goto select;

369 }

370 break;

371 } else {

372 __ret = swap_out_mm(best, gfp_mask);

373 mmput(best);

374 break;

375 }

376 }

377 return __ret;

378 }

for counter counter
swap_out() 6 0

0 counter nr_threads << SWAP_SHIFT 32 × nr_threads nr_threads
gfp_mask

best

“swap_out

resident set rss mm_struct
rss rss

for task_struct
init_task

init_task.next_task init_task
mm­>swap_cnt mm_struct

mm_struct
0 mm­>rss

mm­>swap_cnt 1 0
mm­>rss mm­>wap_cnt

mm­>swap_cnt 0 “best”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

113

439 444 assign 1 mm­>rss
mm­>swap_cnt

swap_out()

”best
swap_out_mm() swap_out_mm() 1

0 356 atomic_inc() mm_struct
mm_users 373 mmput()

swap_out_mm() mm/vmscan.c

==================== mm/vmscan.c 257 295 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()]
257 static int swap_out_mm(struct mm_struct * mm, int gfp_mask)

258 {

259 int result = 0;

260 unsigned long address;

261 struct vm_area_struct* vma;

262

263 /*

264 * Go through process' page directory.

265 */

266

267 /*

268 * Find the proper vm­area after freezing the vma chain

269 * and ptes.

270 */

271 spin_lock(&mm­>page_table_lock);

272 address = mm­>swap_address;

273 vma = find_vma(mm, address);

274 if (vma) {

275 if (address < vma­>vm_start)

276 address = vma­>vm_start;

277

278 for (;;) {

279 result = swap_out_vma(mm, vma, address, gfp_mask);

280 if (result)

281 goto out_unlock;

282 vma = vma­>vm_next;

283 if (!vma)

284 break;

285 address = vma­>vm_start;

286 }

287 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

114

288 /* Reset to 0 when we reach the end of address space */

289 mm­>swap_address = 0;

290 mm­>swap_cnt = 0;

291

292 out_unlock:

293 spin_unlock(&mm­>page_table_lock);

294 return result;

295 }

mm­>swap_address 0
0 289 for

vma swap_out_vma() 1
swap_out_vma()

swap_out_pgd() swap_out_pmd() try_to_swap_out() pte
try_to_swap_out()

==================== mm/vmscan.c 27 56 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()]
27 /*

28 * The swap­out functions return 1 if they successfully

29 * threw something out, and we got a free page. It returns

30 * zero if it couldn't do anything, and any other value

31 * indicates it decreased rss, but the page was shared.

32 *

33 * NOTE! If it sleeps, it *must* return 1 to make sure we

34 * don't continue with the swap­out. Otherwise we may be

35 * using a process that no longer actually exists (it might

36 * have died while we slept).

37 */

38 static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address,

pte_t * page_table, int gfp_mask)

39 {

40 pte_t pte;

41 swp_entry_t entry;

42 struct page * page;

43 int onlist;

44

45 pte = *page_table;

46 if (!pte_present(pte))

47 goto out_failed;

48 page = pte_page(pte);

49 if ((!VALID_PAGE(page)) || PageReserved(page))

50 goto out_failed;

51

52 if (!mm­>swap_cnt)

53 return 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

115

54

55 mm­>swap_cnt­­;

56

page_table page_table
pte pte_present()

out_failed

==================== mm/vmscan.c 106 107 ====================
106 out_failed:

107 return 0;

try_to_swap_out() 0

pte_pages()
pagp page mem_map (page ­ mem_map)

max_mapnr

==================== include/asm­i386/page.h 118 118 ====================
118 #define VALID_PAGE(page) ((page ­ mem_map) < max_mapnr)

mm­>swap_cnt 1
try_to_swap_out()

==================== mm/vmscan.c 57 74 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()]
57 onlist = PageActive(page);

58 /* Don't look at this pte if it's been accessed recently. */

59 if (ptep_test_and_clear_young(page_table)) {

60 age_page_up(page);

61 goto out_failed;

62 }

63 if (!onlist)

64 /* The page is still mapped, so it can't be freeable... */

65 age_page_down_ageonly(page);

66

67 /*

68 * If the page is in active use by us, or if the page

69 * is in active use by others, don't unmap it or

70 * (worse) start unneeded IO.

71 */

72 if (page­>age > 0)

73 goto out_failed;

74

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

116

page flags PG_active
active_list

==================== include/linux/mm.h 230 230 ====================
230 #define PageActive(page) test_bit(PG_active, &(page)­>flags)

LRU active_list
inactive_dirty_list inactive_clean_list

inline
ptep_test_and_clear_young() 0 include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 285 285 ====================
285 static inline int ptep_test_and_clear_young(pte_t *ptep) { return

test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }

_PAGE_ACCESSED i386 CPU

_PAGE_ACCESSED 1 pte_young() 1
try_to_swap_out()

_PAGE_ACCESSED 0

out_failed
out_failed SetPageReferenced() page
PG_referenced 1

age_page_up()

==================== mm/swap.c 125 138 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>age_page_up()]
125 void age_page_up(struct page * page)

126 {

127 /*

128 * We're dealing with an inactive page, move the page

129 * to the active list.

130 */

131 if (!page­>age)

132 activate_page(page);

133

134 /* The actual page aging bit */

135 page­>age += PAGE_AGE_ADV;

136 if (page­>age > PAGE_AGE_MAX)

137 page­>age = PAGE_AGE_MAX;

138 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

117

out_failed 0
pte _PAGE_ACCESSED 0

do_swap_page()

page_launder()

pape­>age
age_page_down_ageonly()

mm/swap.c

==================== mm/swap.c 103 110 ====================
103 /*

104 * We use this (minimal) function in the case where we

105 * know we can't deactivate the page (yet).

106 */

107 void age_page_down_ageonly(struct page * page)

108 {

109 page­>age /= 2;

110 }

page­>age 0 out_failed

==================== mm/vmscan.c 75 108 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()>swap_o
ut_pmd()>try_to_swap_out()]
75 if (TryLockPage(page))

76 goto out_failed;

77

78 /* From this point on, the odds are that we're going to

79 * nuke this pte, so read and clear the pte. This hook

80 * is needed on CPUs which update the accessed and dirty

81 * bits in hardware.

82 */

83 pte = ptep_get_and_clear(page_table);

84 flush_tlb_page(vma, address);

85

86 /*

87 * Is the page already in the swap cache? If so, then

88 * we can just drop our reference to it without doing

89 * any IO ­ it's already up­to­date on disk.

90 *

91 * Return 0, as we didn't actually free any real

92 * memory, and we should just continue our scan.

93 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

118

94 if (PageSwapCache(page)) {

95 entry.val = page­>index;

96 if (pte_dirty(pte))

97 set_page_dirty(page);

98 set_swap_pte:

99 swap_duplicate(entry);

100 set_pte(page_table, swp_entry_to_pte(entry));

101 drop_pte:

102 UnlockPage(page);

103 mm­>rss­­;

104 deactivate_page(page);

105 page_cache_release(page);

106 out_failed:

107 return 0;

108 }

page
TryLockPage() page include/linux/mm.h

==================== include/linux/mm.h 183 183 ====================
183 #define TryLockPage(page) test_and_set_bit(PG_locked, &(page)­>flags)

1 PG_locked 1
page

ptep_get_and_clear() 0
45

0 CPU

page swapper_space

set_page_dirty() PageSwapCache()
include/linux/mm.h

==================== include/linux/mm.h 217 217 ====================
217 #define PageSwapCache(page) test_bit(PG_swap_cache, &(page)­>flags)

PG_swap_cache 1 page swapper_space
page index 32 swp_entry_t

swap_duplicate()
mm/swapfile.c

==================== mm/swapfile.c 820 871 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>swap_duplicate()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

119

820 /*

821 * Verify that a swap entry is valid and increment its swap map count.

822 * Kernel_lock is held, which guarantees existance of swap device.

823 *

824 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as

825 * "permanent", but will be reclaimed by the next swapoff.

826 */

827 int swap_duplicate(swp_entry_t entry)

828 {

829 struct swap_info_struct * p;

830 unsigned long offset, type;

831 int result = 0;

832

833 /* Swap entry 0 is illegal */

834 if (!entry.val)

835 goto out;

836 type = SWP_TYPE(entry);

837 if (type >= nr_swapfiles)

838 goto bad_file;

839 p = type + swap_info;

840 offset = SWP_OFFSET(entry);

841 if (offset >= p­>max)

842 goto bad_offset;

843 if (!p­>swap_map[offset])

844 goto bad_unused;

845 /*

846 * Entry is valid, so increment the map count.

847 */

848 swap_device_lock(p);

849 if (p­>swap_map[offset] < SWAP_MAP_MAX)

850 p­>swap_map[offset]++;

851 else {

852 static int overflow = 0;

853 if (overflow++ < 5)

854 printk("VM: swap entry overflow\n");

855 p­>swap_map[offset] = SWAP_MAP_MAX;

856 }

857 swap_device_unlock(p);

858 result = 1;

859 out:

860 return result;

861

862 bad_file:

863 printk("Bad swap file entry %08lx\n", entry.val);

864 goto out;

865 bad_offset:

866 printk("Bad swap offset entry %08lx\n", entry.val);

867 goto out;

868 bad_unused:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

120

869 printk("Unused swap offset entry in swap_dup %08lx\n", entry.val);

870 goto out;

871 }

swp_entry_t 32 0
0 24 offset 7 type

type
swap_info swap_info_struct

swap_map[]
0

SWAP_MAP_MAX
try_to_swap_out() 100 set_pte()

drop_pte
rss

deactivate_page()
page mm/swap.c

==================== mm/swap.c 189 194 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>deactivate_page()]
189 void deactivate_page(struct page * page)

190 {

191 spin_lock(&pagemap_lru_lock);

192 deactivate_page_nolock(page);

193 spin_unlock(&pagemap_lru_lock);

194 }

[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>deactivate_page()>deactivate_page_nolock()]
154 /**

155 * (de)activate_page ­ move pages from/to active and inactive lists

156 * @page: the page we want to move

157 * @nolock ­ are we already holding the pagemap_lru_lock?

158 *

159 * Deactivate_page will move an active page to the right

160 * inactive list, while activate_page will move a page back

161 * from one of the inactive lists to the active list. If

162 * called on a page which is not on any of the lists, the

163 * page is left alone.

164 */

165 void deactivate_page_nolock(struct page * page)

166 {

167 /*

168 * One for the cache, one for the extra reference the

169 * caller has and (maybe) one for the buffers.

170 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

121

171 * This isn't perfect, but works for just about everything.

172 * Besides, as long as we don't move unfreeable pages to the

173 * inactive_clean list it doesn't need to be perfect...

174 */

175 int maxcount = (page­>buffers ? 3 : 2);

176 page­>age = 0;

177 ClearPageReferenced(page);

178

179 /*

180 * Don't touch it if it's not on the active list.

181 * (some pages aren't on any list at all)

182 */

183 if (PageActive(page) && page_count(page) <= maxcount && !page_ramdisk(page)) {

184 del_page_from_active_list(page);

185 add_page_to_inactive_dirty_list(page);

186 }

187 }

page count 0 1
__alloc_pages() rmqueue()
count 1 2

2
maxcount mmap()

page buffers buffer_head
page­>buffers 0 maxcount 3

ramdisk

deactivate_page_nolock()
page LRU active_list

“dirty

“clean

inactive_dirty_list
inactive_clean_list

page
del_page_from_active_list() include/linux/swap.h

==================== include/linux/swap.h 234 240 ====================
234 #define del_page_from_active_list(page) { \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

122

235 list_del(&(page)­>lru); \

236 ClearPageActive(page); \

237 nr_active_pages­­; \

238 DEBUG_ADD_PAGE \

239 ZERO_PAGE_BUG \

240 }

page add_page_to_inactive_dirty_list()

==================== include/linux/swap.h 217 224 ====================
217 #define add_page_to_inactive_dirty_list(page) { \

218 DEBUG_ADD_PAGE \

219 ZERO_PAGE_BUG \

220 SetPageInactiveDirty(page); \

221 list_add(&(page)­>lru, &inactive_dirty_list); \

222 nr_inactive_dirty_pages++; \

223 page­>zone­>inactive_dirty_pages++; \

224 }

ClearPageActive() SetPageInactiveDirty() page PG_active 0
PG_inactive_dirty 1 page

try_to_swap_out()
page_cache_release() _free_pages()

==================== include/linux/pagemap.h 34 34 ====================
34 #define page_cache_release(x) __free_page(x)

==================== include/linux/mm.h 379 379 ====================
379 #define __free_page(page) __free_pages((page), 0)

==================== mm/page_alloc.c 549 553 ====================
549 void __free_pages(struct page *page, unsigned long order)

550 {

551 if (!PageReserved(page) && put_page_testzero(page))

552 __free_pages_ok(page, order);

553 }

==================== include/linux/mm.h 152 152 ====================
152 #define put_page_testzero(p) atomic_dec_and_test(&(p)­>count)

put_page_testzero() page count 1 0
0 __free_pages_ok()

0
out_failed 0

out_failed try_to_swap_out() 1 mm­>swap_cnt 0
52 swap_out_mm()

page swapper_space

vm_operations_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

123

nopage nopage

0
try_to_swap_out()

==================== mm/vmscan.c 110 157 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()]
110 /*

111 * Is it a clean page? Then it must be recoverable

112 * by just paging it in again, and we can just drop

113 * it..

114 *

115 * However, this won't actually free any real

116 * memory, as the page will just be in the page cache

117 * somewhere, and as such we should just continue

118 * our scan.

119 *

120 * Basically, this just makes it possible for us to do

121 * some real work in the future in "refill_inactive()".

122 */

123 flush_cache_page(vma, address);

124 if (!pte_dirty(pte))

125 goto drop_pte;

126

127 /*

128 * Ok, it's really dirty. That means that

129 * we should either create a new swap cache

130 * entry for it, or we should write it back

131 * to its own backing store.

132 */

133 if (page­>mapping) {

134 set_page_dirty(page);

135 goto drop_pte;

136 }

137

138 /*

139 * This is a dirty, swappable page. First of all,

140 * get a suitable swap entry for it, and make sure

141 * we have the swap cache set up to associate the

142 * page with that swap entry.

143 */

144 entry = get_swap_page();

145 if (!entry.val)

146 goto out_unlock_restore; /* No swap space left */

147

148 /* Add it to the swap cache and mark it dirty */

149 add_to_swap_cache(page, entry);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

124

150 set_page_dirty(page);

151 goto set_swap_pte;

152

153 out_unlock_restore:

154 set_pte(page_table, pte);

155 UnlockPage(page);

156 return 0;

157 }

pte_dirty() inline include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 269 269 ====================
269 static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }

“D _PAGE_DIRTY CPU
1 0

mmap()

drop_pte deactivate_pape()
83 0 page_cache_release()

mmap() pape mapping
address_space _PAGE_DIRTY

1 drop_pte page PG_dirty 1
set_page_dirty() include/linux/mm.h

mm/filemap.c

==================== include/linux/mm.h 187 191 ====================
[kswapd()>_do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>set_page_dirty()]
187 static inline void set_page_dirty(struct page * page)

188 {

189 if (!test_and_set_bit(PG_dirty, &page­>flags))

190 __set_page_dirty(page);

191 }

==================== mm/filemap.c 134 147 ====================
134 /*

135 * Add a page to the dirty page list.

136 */

137 void __set_page_dirty(struct page *page)

138 {

139 struct address_space *mapping = page­>mapping;

140

141 spin_lock(&pagecache_lock);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

125

142 list_del(&page­>list);

143 list_add(&page­>list, &mapping­>dirty_pages);

144 spin_unlock(&pagecache_lock);

145

146 mark_inode_dirty_pages(mapping­>host);

147 }

try_to_swap_out()
swapper_space ”

get_swap_page()

==================== include/linux/swap.h 150 150 ====================
150 #define get_swap_page() __get_swap_page(1)

__get_swap_page() mm/swapfile.c
1

swap_duplicate() 99
swap_free() out_unlock_restore

add_to_swap_cache() swapper_space
set_page_dirty() ”

page_launder()
swap_out() for

swap_out_mm() swap_out() refill_inactive()
while swap_out()

do_try_to_free_pages() kswapd()
refill_inactive_scan() kswapd()

kswapd()
wake_up_all()

swap_out_mm()
refill_inactive()

refill_inactive()

oom_kill()

kreclaimd mm/vmscan.c

==================== mm/vmscan.c 1095 1143 ====================
1095 DECLARE_WAIT_QUEUE_HEAD(kreclaimd_wait);

1096 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

126

1097 * Kreclaimd will move pages from the inactive_clean list to the

1098 * free list, in order to keep atomic allocations possible under

1099 * all circumstances. Even when kswapd is blocked on IO.

1100 */

1101 int kreclaimd(void *unused)

1102 {

1103 struct task_struct *tsk = current;

1104 pg_data_t *pgdat;

1105

1106 tsk­>session = 1;

1107 tsk­>pgrp = 1;

1108 strcpy(tsk­>comm, "kreclaimd");

1109 sigfillset(&tsk­>blocked);

1110 current­>flags |= PF_MEMALLOC;

1111

1112 while (1) {

1113

1114 /*

1115 * We sleep until someone wakes us up from

1116 * page_alloc.c::__alloc_pages().

1117 */

1118 interruptible_sleep_on(&kreclaimd_wait);

1119

1120 /*

1121 * Move some pages from the inactive_clean lists to

1122 * the free lists, if it is needed.

1123 */

1124 pgdat = pgdat_list;

1125 do {

1126 int i;

1127 for(i = 0; i < MAX_NR_ZONES; i++) {

1128 zone_t *zone = pgdat­>node_zones + i;

1129 if (!zone­>size)

1130 continue;

1131

1132 while (zone­>free_pages < zone­>pages_low) {

1133 struct page * page;

1134 page = reclaim_page(zone);

1135 if (!page)

1136 break;

1137 __free_page(page);

1138 }

1139 }

1140 pgdat = pgdat­>node_next;

1141 } while (pgdat);

1142 }

1143 }

kswapd()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

127

task_struct flags PF_MEMALLOC 1
kswapd 2.4

reclaim_page() ”

mm/vmscan.c

==================== mm/vmscan.c 381 463 ====================
[kreclaimd()>reclaim_page()]
381 /**

382 * reclaim_page ­ reclaims one page from the inactive_clean list

383 * @zone: reclaim a page from this zone

384 *

385 * The pages on the inactive_clean can be instantly reclaimed.

386 * The tests look impressive, but most of the time we'll grab

387 * the first page of the list and exit successfully.

388 */

389 struct page * reclaim_page(zone_t * zone)

390 {

391 struct page * page = NULL;

392 struct list_head * page_lru;

393 int maxscan;

394

395 /*

396 * We only need the pagemap_lru_lock if we don't reclaim the page,

397 * but we have to grab the pagecache_lock before the pagemap_lru_lock

398 * to avoid deadlocks and most of the time we'll succeed anyway.

399 */

400 spin_lock(&pagecache_lock);

401 spin_lock(&pagemap_lru_lock);

402 maxscan = zone­>inactive_clean_pages;

403 while ((page_lru = zone­>inactive_clean_list.prev) !=

404 &zone­>inactive_clean_list && maxscan­­) {

405 page = list_entry(page_lru, struct page, lru);

406

407 /* Wrong page on list?! (list corruption, should not happen) */

408 if (!PageInactiveClean(page)) {

409 printk("VM: reclaim_page, wrong page on list.\n");

410 list_del(page_lru);

411 page­>zone­>inactive_clean_pages­­;

412 continue;

413 }

414

415 /* Page is or was in use? Move it to the active list. */

416 if (PageTestandClearReferenced(page) || page­>age > 0 ||

417 (!page­>buffers && page_count(page) > 1)) {

418 del_page_from_inactive_clean_list(page);

419 add_page_to_active_list(page);

420 continue;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

128

421 }

422

423 /* The page is dirty, or locked, move to inactive_dirty list. */

424 if (page­>buffers || PageDirty(page) || TryLockPage(page)) {

425 del_page_from_inactive_clean_list(page);

426 add_page_to_inactive_dirty_list(page);

427 continue;

428 }

429

430 /* OK, remove the page from the caches. */

431 if (PageSwapCache(page)) {

432 __delete_from_swap_cache(page);

433 goto found_page;

434 }

435

436 if (page­>mapping) {

437 __remove_inode_page(page);

438 goto found_page;

439 }

440

441 /* We should never ever get here. */

442 printk(KERN_ERR "VM: reclaim_page, found unknown page\n");

443 list_del(page_lru);

444 zone­>inactive_clean_pages­­;

445 UnlockPage(page);

446 }

447 /* Reset page pointer, maybe we encountered an unfreeable page. */

448 page = NULL;

449 goto out;

450

451 found_page:

452 del_page_from_inactive_clean_list(page);

453 UnlockPage(page);

454 page­>age = PAGE_AGE_START;

455 if (page_count(page) != 1)

456 printk("VM: reclaim_page, found page with count %d!\n",

457 page_count(page));

458 out:

459 spin_unlock(&pagemap_lru_lock);

460 spin_unlock(&pagecache_lock);

461 memory_pressure++;

462 return page;

463 }

2.9

i386 CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

129

P Present 0

CPU MMU
P 0 CPU

Page Fault CPU P P
0

handle_pte_fault()

==================== mm/memory.c 1153 1175 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()]
1153 static inline int handle_pte_fault(struct mm_struct *mm,

1154 struct vm_area_struct * vma, unsigned long address,

1155 int write_access, pte_t * pte)

1156 {

1157 pte_t entry;

1158

1159 /*

1160 * We need the page table lock to synchronize with kswapd

1161 * and the SMP­safe atomic PTE updates.

1162 */

1163 spin_lock(&mm­>page_table_lock);

1164 entry = *pte;

1165 if (!pte_present(entry)) {

1166 /*

1167 * If it truly wasn't present, we know that kswapd

1168 * and the PTE updates will not touch it later. So

1169 * drop the lock.

1170 */

1171 spin_unlock(&mm­>page_table_lock);

1172 if (pte_none(entry))

1173 return do_no_page(mm, vma, address, write_access, pte);

1174 return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access);

1175 }

pte_present() P
pte_none() 0

do_no_page()
do_swap_page()

handle_pte_fault()
do_swap_page() mm/memory.c

==================== mm/memory.c 1018 1056 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_swap_page()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

130

1018 static int do_swap_page(struct mm_struct * mm,

1019 struct vm_area_struct * vma, unsigned long address,

1020 pte_t * page_table, swp_entry_t entry, int write_access)

1021 {

1022 struct page *page = lookup_swap_cache(entry);

1023 pte_t pte;

1024

1025 if (!page) {

1026 lock_kernel();

1027 swapin_readahead(entry);

1028 page = read_swap_cache(entry);

1029 unlock_kernel();

1030 if (!page)

1031 return ­1;

1032

1033 flush_page_to_ram(page);

1034 flush_icache_page(vma, page);

1035 }

1036

1037 mm­>rss++;

1038

1039 pte = mk_pte(page, vma­>vm_page_prot);

1040

1041 /*

1042 * Freeze the "shared"ness of the page, ie page_count + swap_count.

1043 * Must lock page before transferring our swap count to already

1044 * obtained page count.

1045 */

1046 lock_page(page);

1047 swap_free(entry);

1048 if (write_access && !is_page_shared(page))

1049 pte = pte_mkwrite(pte_mkdirty(pte));

1050 UnlockPage(page);

1051

1052 set_pte(page_table, pte);

1053 /* No need to invalidate ­ it was non­present before */

1054 update_mmu_cache(vma, address, pte);

1055 return 1; /* Minor fault */

1056 }

CPU mm vma address
mm_struct vm_area_struct

page_table entry
pte_t

swap_entry_t 32

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

131

CPU

write_access do_page_fault()
switch arch/i386/fault.c CPU error_code bit1

switch “default: “case 2: break
entry

0 entry 0

swapper_space
lookup_swap_cache()

swap_state.c

read_swap_cache()
swapin_readahead()

cluster read ahead
swapper_space

kswapd kreclaimd read_swap_cache()

kswapd

__alloc_pages()

==================== mm/page_alloc.c 382 387 ====================
382 wakeup_kswapd(0);

383 if (gfp_mask & __GFP_WAIT) {

384 __set_current_state(TASK_RUNNING);

385 current­>policy |= SCHED_YIELD;

386 schedule();

387 }

swapin_readahead() read_swap_cache() gfp_mask
__GFP_WAIT 1

kswapd schedule()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

132

swapin_readahead() read_swap_cache()
do_swap_page()

1031 ­1 swapin_readahead()
read_swap_cache() read_swap_cache_async() wait 1

==================== include/linux/swap.h 125 125 ====================
125 #define read_swap_cache(entry) read_swap_cache_async(entry, 1);

read_swap_cache_async() mm/swap_state.c

==================== mm/swap_state.c 204 255 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_swap_page()read_swap_cache_async()]
204 /*

205 * Locate a page of swap in physical memory, reserving swap cache space

206 * and reading the disk if it is not already cached. If wait==0, we are

207 * only doing readahead, so don't worry if the page is already locked.

208 *

209 * A failure return means that either the page allocation failed or that

210 * the swap entry is no longer in use.

211 */

212

213 struct page * read_swap_cache_async(swp_entry_t entry, int wait)

214 {

215 struct page *found_page = 0, *new_page;

216 unsigned long new_page_addr;

217

218 /*

219 * Make sure the swap entry is still in use.

220 */

221 if (!swap_duplicate(entry)) /* Account for the swap cache */

222 goto out;

223 /*

224 * Look for the page in the swap cache.

225 */

226 found_page = lookup_swap_cache(entry);

227 if (found_page)

228 goto out_free_swap;

229

230 new_page_addr = __get_free_page(GFP_USER);

231 if (!new_page_addr)

232 goto out_free_swap; /* Out of memory */

233 new_page = virt_to_page(new_page_addr);

234

235 /*

236 * Check the swap cache again, in case we stalled above.

237 */

238 found_page = lookup_swap_cache(entry);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

133

239 if (found_page)

240 goto out_free_page;

241 /*

242 * Add it to the swap cache and read its contents.

243 */

244 lock_page(new_page);

245 add_to_swap_cache(new_page, entry);

246 rw_swap_page(READ, new_page, wait);

247 return new_page;

248

249 out_free_page:

250 page_cache_release(new_page);

251 out_free_swap:

252 swap_free(entry);

253 out:

254 return found_page;

255 }

lookup_swap_cache()
swapin_readahead() swapper_space

__get_free_page()
add_to_swap_cache()

page swapper_space active_list
rw_swap_page()

read_swap_cache() swapper_space active_list

221 swap_duplicate()
252

swap_free() swap_free()
1 do_swap_page() 1047 swap_free()

1
1

try_to_swap_out() 99 swap_duplicate()
1

page
1 add_to_swap_cache() LRU active_list

add_to_page_cache_locked() page_cache_get()
2

3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

134

swapin_readahead()

==================== mm/memory.c 990 991 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_swap_page()>swapin_readahead()]
990 void swapin_readahead(swp_entry_t entry)

991 {

==================== mm/memory.c 1001 1001 ====================
1001 for (i = 0; i < num; offset++, i++) {

==================== mm/memory.c 1009 1016 ====================
1009 /* Ok, do the async read­ahead now */

1010 new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset), 0);

1011 if (new_page != NULL)

1012 page_cache_release(new_page);

1013 swap_free(SWP_ENTRY(SWP_TYPE(entry), offset));

1014 }

1015 return;

1016 }

swapin_readahead() read_swap_cache_async()
read_swap_cache_async() 2
page_cache_release()

active_list 1
2 refill_inactive_scan()

mm/vmscan.c 744 1
do_swap_page() flush_page_to_ram() flush_icache_page() i386

pte_mkdirty() D 1
pte_mkwrite() _PAGE_RW 1

do_page_fault() switch case 2
VM_WRITE 0 bad_area

VM_WRITE _PAGE_RW VM_WRITE
_PAGE_RW VM_WRITE

1 _PAGE_RW 1 1 1039
vma­>vm_page_prot _PAGE_RW 0 VM_WRITE
vma­>vm_flags vma­>vm_page_prot

handle_pte_fault() do_wp_page()
cow copy_on_write do_wp_page()

update_mmu_cache() i386 CPU i386 MMU CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

135

2.10

task_struct task

page page

malloc()
heap

•
2n

•

0

•

first fit

•
90 Solaris

2.4 Unix “slab slab
Linux

slab
zone

slab
constructor destructor

object

page struct list_head

kswapd do_try_to_free_pages() kmem_cache_reap()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

136

kswapd
slab

slab

inode 300 8 inode inode

slab slab 2.8

2.8 slab

• slab 1 2 4 32 slab

• slab slab slab_t slab
slab slab

slab
slab

• slab

• slab

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

137

• slab slab

• slab
slab 1

• slab
slab slab slab

slab
• slab coloring area

slab cache line 80386
16 Pentium 32 slab

slab
slab

• slab
slab

slab
•

slab

slab slab_t mm/slab.c

==================== mm/slab.c 138 152 ====================
138 /*

139 * slab_t

140 *

141 * Manages the objs in a slab. Placed either at the beginning of mem allocated

142 * for a slab, or allocated from an general cache.

143 * Slabs are chained into one ordered list: fully used, partial, then fully

144 * free slabs.

145 */

146 typedef struct slab_s {

147 struct list_head list;

148 unsigned long colouroff;

149 void *s_mem; /* including colour offset */

150 unsigned int inuse; /* num of objs active in slab */

151 kmem_bufctl_t free;

152 } slab_t;

list slab colouroff slab
s_mem inuse free

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

138

==================== mm/slab.c 110 131 ====================
110 /*

111 * kmem_bufctl_t:

112 *

113 * Bufctl's are used for linking objs within a slab

114 * linked offsets.

115 *

116 * This implementaion relies on "struct page" for locating the cache &

117 * slab an object belongs to.

118 * This allows the bufctl structure to be small (one int), but limits

119 * the number of objects a slab (not a cache) can contain when off­slab

120 * bufctls are used. The limit is the size of the largest general cache

121 * that does not use off­slab slabs.

122 * For 32bit archs with 4 kB pages, is this 56.

123 * This is not serious, as it is only for large objects, when it is unwise

124 * to have too many per slab.

125 * Note: This limit can be raised by introducing a general cache whose size

126 * is less than 512 (PAGE_SIZE<<3), but greater than 256.

127 */

128

129 #define BUFCTL_END 0xffffFFFF

130 #define SLAB_LIMIT 0xffffFFFE

131 typedef unsigned int kmem_bufctl_t;

BUFCTL_END
slab kmem_cache_t

slab slab
constructor destructor

slab slab slab slab
kmem_cache_t cache_cache

• cache_cache kmem_cache_t slab slab
kmem_cache_t

• slab kmem_cache_t
slab

• slab
• slab

2.9
2.9 slab cache_cache slab

kmem_cache_t inode vm_area_struct
mm_struct IP slab

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

139

void *kmem_cache_alloc(kmem_cache_t *cachep, int flags);

void *kmem_cache_free(kmem cache_t *cachep, void *objp);

slab kmem_cache_alloc()
mm_struct vm_area_struct file dentry inode

slab kmem_cache_alloc()

2.9

slab slab
slab slab slab

kmem_slab_t slab
slab

slab
1/2 1/4 1/8

slab slab
slab

Linux
slab “slab_cache slab_cache

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

140

cache_cache slab_cache
slab slab

32 64 128 128K 32

void *kmalloc(size_t size, int flags);

void kfree(const void *objp);

slab
kmalloc() 5

vfsmount alloc_pages()

vmalloc() vfree()

void *vmalloc(unsigned long size);

void vfree(void* addr);

vmalloc() 3G
brk() brk() vmalloc()

vmalloc() kswapd kswapd
vmalloc() kmalloc()

kswapd slab slab
slab vmalloc() ioremap()

2.10.1

vm_area_struct
Linux NULL

constructor slab slab

net/core/skbuff.c

==================== net/core/skbuff.c 473 487 ====================
473 void __init skb_init(void)

474 {

475 int i;

476

477 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",

478 sizeof(struct sk_buff),

479 0,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

141

480 SLAB_HWCACHE_ALIGN,

481 skb_headerinit, NULL);

482 if (!skbuff_head_cache)

483 panic("cannot create skbuff cache");

484

485 for (i=0; i<NR_CPUS; i++)

486 skb_queue_head_init(&skb_head_pool[i].list);

487 }

skb_init sk_buff
“skbuff_head_cache “cat /proc/slabinfo

sizeof(struct sk_buff) offset 0
slab flags SLAB_HWCACHE_ALIGN

16 32 skb_headerinit()
destructor NULL slab

kmem_cache_create()

cache_cache kmem_cache_t sk_buff slab
kmem_cache_t mm/slab.c

==================== mm/slab.c 181 237 ====================
181 struct kmem_cache_s {

182 /* 1) each alloc & free */

183 /* full, partial first, then free */

184 struct list_head slabs;

185 struct list_head *firstnotfull;

186 unsigned int objsize;

187 unsigned int flags; /* constant flags */

188 unsigned int num; /* # of objs per slab */

189 spinlock_t spinlock;

190 #ifdef CONFIG_SMP

191 unsigned int batchcount;

192 #endif

193

194 /* 2) slab additions /removals */

195 /* order of pgs per slab (2^n) */

196 unsigned int gfporder;

197

198 /* force GFP flags, e.g. GFP_DMA */

199 unsigned int gfpflags;

200

201 size_t colour; /* cache colouring range */

202 unsigned int colour_off; /* colour offset */

203 unsigned int colour_next; /* cache colouring */

204 kmem_cache_t *slabp_cache;

205 unsigned int growing;

206 unsigned int dflags; /* dynamic flags */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

142

207

208 /* constructor func */

209 void (*ctor)(void *, kmem_cache_t *, unsigned long);

210

211 /* de­constructor func */

212 void (*dtor)(void *, kmem_cache_t *, unsigned long);

213

214 unsigned long failures;

215

216 /* 3) cache creation/removal */

217 char name[CACHE_NAMELEN];

218 struct list_head next;

219 #ifdef CONFIG_SMP

220 /* 4) per­cpu data */

221 cpucache_t *cpudata[NR_CPUS];

222 #endif

223 #if STATS

224 unsigned long num_active;

225 unsigned long num_allocations;

226 unsigned long high_mark;

227 unsigned long grown;

228 unsigned long reaped;

229 unsigned long errors;

230 #ifdef CONFIG_SMP

231 atomic_t allochit;

232 atomic_t allocmiss;

233 atomic_t freehit;

234 atomic_t freemiss;

235 #endif

236 #endif

237 };

kmem_cache_s include/linux/slab.h kmem_cache_t

==================== include/linux/slab.h 12 12 ====================
12 typedef struct kmem_cache_s kmem_cache_t;

slabs slab firstnotfull
slsb 2 slabs
slab

next cache_cache slab
slab slab slab slab

slabp_cache
objsize

sizeof(struct sk_buff) num slab gfporder slab
slab 2n gfporder n

slab coloring area

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

143

slab slab
slab 1 slab 2 slab

slab
cache line slab

colour slab
colour_next colour_next colour 0

(colour_off×colour)
kmem_cache_t kmem_cache_create() slab
slab slab kmem_slab_t

slab slab slab
slab

kmem_cache_t ctor dtor
kmem_cache_t cache_cache next slab

kmem_cache_create() slab
slab

kmem_cache_grow()

2.10.2

kmem_cache_alloc()
skbuff_head_cache net/core/skbuff.c

==================== net/core/skbuff.c 165 166 ====================
165 struct sk_buff *alloc_skb(unsigned int size,int gfp_mask)

166 {

==================== net/core/skbuff.c 181 186 ====================
181 skb = skb_head_from_pool();

182 if (skb == NULL) {

183 skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask);

184 if (skb == NULL)

185 goto nohead;

186 }

==================== net/core/skbuff.c 215 215 ====================
215 }

alloc_skb() kmem_cache_alloc()
sk_buff

kmem_cache_alloc()
sk_buff skb_head_from_pool()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

144

kmem_cache_alloc() mm/slab.c

==================== mm/slab.c 1506 1509 ====================
[alloc_skb()>kmem_cache_alloc()]
1506 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)

1507 {

1508 return __kmem_cache_alloc(cachep, flags);

1509 }

==================== mm/slab.c 1291 1299 ====================
[alloc_skb()>kmem_cache_alloc()>__kmem_cache_alloc()]
1291 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)

1292 {

1293 unsigned long save_flags;

1294 void* objp;

1295

1296 kmem_cache_alloc_head(cachep, flags);

1297 try_again:

1298 local_irq_save(save_flags);

1299 #ifdef CONFIG_SMP

==================== mm/slab.c 1319 1325 ====================
1319 #else

1320 objp = kmem_cache_alloc_one(cachep);

1321 #endif

1322 local_irq_restore(save_flags);

1323 return objp;

1324 alloc_new_slab:

1325 #ifdef CONFIG_SMP

==================== mm/slab.c 1328 1336 ====================
1328 #endif

1329 local_irq_restore(save_flags);

1330 if (kmem_cache_grow(cachep, flags))

1331 /* Someone may have stolen our objs. Doesn't matter, we'll

1332 * just come back here again.

1333 */

1334 goto try_again;

1335 return NULL;

1336 }

alloc_skb() skbuff_head_cache slab sk_buff
slab cachep

kmem_cache_alloc_head()
SMP kmem_cache_alloc_one()

==================== mm/slab.c 1246 1263 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

145

1246 /*

1247 * Returns a ptr to an obj in the given cache.

1248 * caller must guarantee synchronization

1249 * #define for the goto optimization 8­)

1250 */

1251 #define kmem_cache_alloc_one(cachep) \

1252 ({ \

1253 slab_t *slabp; \

1254 \

1255 /* Get slab alloc is to come from. */ \

1256 { \

1257 struct list_head* p = cachep­>firstnotfull; \

1258 if (p == &cachep­>slabs) \

1259 goto alloc_new_slab; \

1260 slabp = list_entry(p,slab_t, list); \

1261 } \

1262 kmem_cache_alloc_one_tail(cachep, slabp); \

1263 })

__kmem_cache_alloc()
slab firstnotfull slab

slab slab slab
__kmem_cache_alloc() alloc_new_slab 1324 slab

slab kmem_cache_alloc_tail()

==================== mm/slab.c 1211 1228 ====================
[alloc_skb()>kmem_cache_alloc()>__kmem_cache_alloc()>kmem_cache_alloc_one_tail()]
1211 static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,

1212 slab_t *slabp)

1213 {

1214 void *objp;

1215

1216 STATS_INC_ALLOCED(cachep);

1217 STATS_INC_ACTIVE(cachep);

1218 STATS_SET_HIGH(cachep);

1219

1220 /* get obj pointer */

1221 slabp­>inuse++;

1222 objp = slabp­>s_mem + slabp­>free*cachep­>objsize;

1223 slabp­>free=slab_bufctl(slabp)[slabp­>free];

1224

1225 if (slabp­>free == BUFCTL_END)

1226 /* slab now full: move to next slab for next alloc */

1227 cachep­>firstnotfull = slabp­>list.next;

1228 #if DEBUG

==================== mm/slab.c 1242 1244 ==================
1242 #endif

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

146

1243 return objp;

1244 }

slab_t free s_mem
slab

slab_bufctl() free

==================== mm/slab.c 154 155 ====================
154 #define slab_bufctl(slabp) \

155 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

kmem_bufctl_t slab slab_t
slab_t

slab_t free
slab BUFCTL_END slab firstnotfull

slab
slab slab

alloc_new_slab kmem_cache_grow() slab
kmem_cache_grow() mm/slab.c

==================== mm/slab.c 1066 1168 ====================
[alloc_skb()>kmem_cache_alloc()>__kmem_cache_alloc()>kmem_cache_grow()]
1066 /*

1067 * Grow (by 1) the number of slabs within a cache. This is called by

1068 * kmem_cache_alloc() when there are no active objs left in a cache.

1069 */

1070 static int kmem_cache_grow (kmem_cache_t * cachep, int flags)

1071 {

1072 slab_t *slabp;

1073 struct page *page;

1074 void *objp;

1075 size_t offset;

1076 unsigned int i, local_flags;

1077 unsigned long ctor_flags;

1078 unsigned long save_flags;

1079

1080 /* Be lazy and only check for valid flags here,

1081 * keeping it out of the critical path in kmem_cache_alloc().

1082 */

1083 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))

1084 BUG();

1085 if (flags & SLAB_NO_GROW)

1086 return 0;

1087

1088 /*

1089 * The test for missing atomic flag is performed here, rather than

1090 * the more obvious place, simply to reduce the critical path length

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

147

1091 * in kmem_cache_alloc(). If a caller is seriously mis­behaving they

1092 * will eventually be caught here (where it matters).

1093 */

1094 if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)

1095 BUG();

1096

1097 ctor_flags = SLAB_CTOR_CONSTRUCTOR;

1098 local_flags = (flags & SLAB_LEVEL_MASK);

1099 if (local_flags == SLAB_ATOMIC)

1100 /*

1101 * Not allowed to sleep. Need to tell a constructor about

1102 * this ­ it might need to know...

1103 */

1104 ctor_flags |= SLAB_CTOR_ATOMIC;

1105

1106 /* About to mess with non­constant members ­ lock. */

1107 spin_lock_irqsave(&cachep­>spinlock, save_flags);

1108

1109 /* Get colour for the slab, and cal the next value. */

1110 offset = cachep­>colour_next;

1111 cachep­>colour_next++;

1112 if (cachep­>colour_next >= cachep­>colour)

1113 cachep­>colour_next = 0;

1114 offset *= cachep­>colour_off;

1115 cachep­>dflags |= DFLGS_GROWN;

1116

1117 cachep­>growing++;

1118 spin_unlock_irqrestore(&cachep­>spinlock, save_flags);

1119

1120 /* A series of memory allocations for a new slab.

1121 * Neither the cache­chain semaphore, or cache­lock, are

1122 * held, but the incrementing c_growing prevents this

1123 * cache from being reaped or shrunk.

1124 * Note: The cache could be selected in for reaping in

1125 * kmem_cache_reap(), but when the final test is made the

1126 * growing value will be seen.

1127 */

1128

1129 /* Get mem for the objs. */

1130 if (!(objp = kmem_getpages(cachep, flags)))

1131 goto failed;

1132

1133 /* Get slab management. */

1134 if (!(slabp = kmem_cache_slabmgmt(cachep, objp, offset, local_flags)))

1135 goto opps1;

1136

1137 /* Nasty!!!!!! I hope this is OK. */

1138 i = 1 << cachep­>gfporder;

1139 page = virt_to_page(objp);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

148

1140 do {

1141 SET_PAGE_CACHE(page, cachep);

1142 SET_PAGE_SLAB(page, slabp);

1143 PageSetSlab(page);

1144 page++;

1145 } while (­­i);

1146

1147 kmem_cache_init_objs(cachep, slabp, ctor_flags);

1148

1149 spin_lock_irqsave(&cachep­>spinlock, save_flags);

1150 cachep­>growing­­;

1151

1152 /* Make slab active. */

1153 list_add_tail(&slabp­>list,&cachep­>slabs);

1154 if (cachep­>firstnotfull == &cachep­>slabs)

1155 cachep­>firstnotfull = &slabp­>list;

1156 STATS_INC_GROWN(cachep);

1157 cachep­>failures = 0;

1158

1159 spin_unlock_irqrestore(&cachep­>spinlock, save_flags);

1160 return 1;

1161 opps1:

1162 kmem_freepages(cachep, objp);

1163 failed:

1164 spin_lock_irqsave(&cachep­>spinlock, save_flags);

1165 cachep­>growing­­;

1166 spin_unlock_irqrestore(&cachep­>spinlock, save_flags);

1167 return 0;

1168 }

kmem_cache_grow() gfporder
slab slab slab

kmem_getpages() alloc_pages()
kmem_cache_slabmgmt() slab

mm/slab.c

==================== mm/slab.c 996 1021 ====================
[alloc_skb()>kmem_cache_alloc()>__kmem_cache_alloc()>kmem_cache_grow()>kmem_cache_slabmgmt()]
996 /* Get the memory for a slab management obj. */

997 static inline slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,

998 void *objp, int colour_off, int local_flags)

999 {

1000 slab_t *slabp;

1001

1002 if (OFF_SLAB(cachep)) {

1003 /* Slab management obj is off­slab. */

1004 slabp = kmem_cache_alloc(cachep­>slabp_cache, local_flags);

1005 if (!slabp)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

149

1006 return NULL;

1007 } else {

1008 /* FIXME: change to

1009 slabp = objp

1010 * if you enable OPTIMIZE

1011 */

1012 slabp = objp+colour_off;

1013 colour_off += L1_CACHE_ALIGN(cachep­>num *

1014 sizeof(kmem_bufctl_t) + sizeof(slab_t));

1015 }

1016 slabp­>inuse = 0;

1017 slabp­>colouroff = colour_off;

1018 slabp­>s_mem = objp+colour_off;

1019

1020 return slabp;

1021 }

slab slab_t slab
slab slab_t slab

slab kmem_cache_alloc() slab_t
slab 1012 1017

colour_off 1013
slab_t slabp­>s_mem slab_t

slab page SET_PAGE_CACHE
SET_PAGE_SLAB prev next slab slab

page PG_slab 1
kmem_cache_init_objs() slab

==================== mm/slab.c 1023 1030 ====================
[alloc_skb()>kmem_cache_alloc()>__kmem_cache_alloc()>kmem_cache_grow()>kmem_cache_init_objs()]
1023 static inline void kmem_cache_init_objs (kmem_cache_t * cachep,

1024 slab_t * slabp, unsigned long ctor_flags)

1025 {

1026 int i;

1027

1028 for (i = 0; i < cachep­>num; i++) {

1029 void* objp = slabp­>s_mem+cachep­>objsize*i;

1030 #if DEBUG

==================== mm/slab.c 1037 1046 ====================
1037 #endif

1038

1039 /*

1040 * Constructors are not allowed to allocate memory from

1041 * the same cache which they are a constructor for.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

150

1042 * Otherwise, deadlock. They must also be threaded.

1043 */

1044 if (cachep­>ctor)

1045 cachep­>ctor(objp, cachep, ctor_flags);

1046 #if DEBUG

==================== mm/slab.c 1059 1064 ====================
1059 #endif

1060 slab_bufctl(slabp)[i] = i+1;

1061 }

1062 slab_bufctl(slabp)[i­1] = BUFCTL_END;

1063 slabp­>free = 0;

1064 }

sk_buff
skb_headerinit() 1060

try_again
__kmem_cache_alloc() 1334

alloc_skb() skb_head_from_pool() slab
slab kmem_cache_alloc() slab

slab kmem_cache_grow() slab

kswapd
kmem_cache_reap() slab
slab slab

kmem_cache_free() mm/slab.c

==================== mm/slab.c 1554 1557 ====================
1554 void kmem_cache_free (kmem_cache_t *cachep, void *objp)

1555 {

1556 unsigned long flags;

1557 #if DEBUG

==================== mm/slab.c 1561 1566 ====================
1561 #endif

1562

1563 local_irq_save(flags);

1564 __kmem_cache_free(cachep, objp);

1565 local_irq_restore(flags);

1566 }

__kmem_cache_free()

==================== mm/slab.c 1466 1472 ================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

151

[kmem_cache_free()>__kmem_cache_free()]
1466 /*

1467 * __kmem_cache_free

1468 * called with disabled ints

1469 */

1470 static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)

1471 {

1472 #ifdef CONFIG_SMP

==================== mm/slab.c 1493 1496 ====================
1493 #else

1494 kmem_cache_free_one(cachep, objp);

1495 #endif

1496 }

SMP kmem_cache_free_one()

=================== mm/slab.c 1367 1380 ====================
[kmem_cache_free()>__kmem_cache_free()>kmem_cache_free_one()]
1367 static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)

1368 {

1369 slab_t* slabp;

1370

1371 CHECK_PAGE(virt_to_page(objp));

1372 /* reduces memory footprint

1373 *

1374 if (OPTIMIZE(cachep))

1375 slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE­1)));

1376 else

1377 */

1378 slabp = GET_PAGE_SLAB(virt_to_page(objp));

1379

1380 #if DEBUG

==================== mm/slab.c 1402 1448 ====================
1402 #endif

1403 {

1404 unsigned int objnr = (objp­slabp­>s_mem)/cachep­>objsize;

1405

1406 slab_bufctl(slabp)[objnr] = slabp­>free;

1407 slabp­>free = objnr;

1408 }

1409 STATS_DEC_ACTIVE(cachep);

1410

1411 /* fixup slab chain */

1412 if (slabp­>inuse­­ == cachep­>num)

1413 goto moveslab_partial;

1414 if (!slabp­>inuse)

1415 goto moveslab_free;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

152

1416 return;

1417

1418 moveslab_partial:

1419 /* was full.

1420 * Even if the page is now empty, we can set c_firstnotfull to

1421 * slabp: there are no partial slabs in this case

1422 */

1423 {

1424 struct list_head *t = cachep­>firstnotfull;

1425

1426 cachep­>firstnotfull = &slabp­>list;

1427 if (slabp­>list.next == t)

1428 return;

1429 list_del(&slabp­>list);

1430 list_add_tail(&slabp­>list, t);

1431 return;

1432 }

1433 moveslab_free:

1434 /*

1435 * was partial, now empty.

1436 * c_firstnotfull might point to slabp

1437 * FIXME: optimize

1438 */

1439 {

1440 struct list_head *t = cachep­>firstnotfull­>prev;

1441

1442 list_del(&slabp­>list);

1443 list_add_tail(&slabp­>list, &cachep­>slabs);

1444 if (cachep­>firstnotfull == &slabp­>list)

1445 cachep­>firstnotfull = t­>next;

1446 return;

1447 }

1448 }

CHECK_PAGE
kmem_cache_grow() 1142 page

list prev slab GET_PAGE_SLAB
slab slab 1404

1407 slab
• slab moveslab_partial slab

firstnotfull
• slab moveslab_free slab

• slab

slab

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

153

slab kswapd kmem_cache_reap()

cache_sizes
kmalloc() mm/slab.c

==================== mm/slab.c 1511 1544 ====================
1511 /**

1512 * kmalloc ­ allocate memory

1513 * @size: how many bytes of memory are required.

1514 * @flags: the type of memory to allocate.

1515 *

1516 * kmalloc is the normal method of allocating memory

1517 * in the kernel. The @flags argument may be one of:

1518 *

1519 * %GFP_BUFFER ­ XXX

1520 *

1521 * %GFP_ATOMIC ­ allocation will not sleep. Use inside interrupt handlers.

1522 *

1523 * %GFP_USER ­ allocate memory on behalf of user. May sleep.

1524 *

1525 * %GFP_KERNEL ­ allocate normal kernel ram. May sleep.

1526 *

1527 * %GFP_NFS ­ has a slightly lower probability of sleeping than %GFP_KERNEL.

1528 * Don't use unless you're in the NFS code.

1529 *

1530 * %GFP_KSWAPD ­ Don't use unless you're modifying kswapd.

1531 */

1532 void * kmalloc (size_t size, int flags)

1533 {

1534 cache_sizes_t *csizep = cache_sizes;

1535

1536 for (; csizep­>cs_size; csizep++) {

1537 if (size > csizep­>cs_size)

1538 continue;

1539 return __kmem_cache_alloc(flags & GFP_DMA ?

1540 csizep­>cs_dmacachep : csizep­>cs_cachep, flags);

1541 }

1542 BUG(); // too big size

1543 return NULL;

1544 }

for cache_sizes
__kmem_cache_alloc() kmem_cache_alloc()

slab slab
kswapd kmem_cache_reap() mm/slab.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

154

==================== mm/slab.c 1701 1742 ====================
1701 /**

1702 * kmem_cache_reap ­ Reclaim memory from caches.

1703 * @gfp_mask: the type of memory required.

1704 *

1705 * Called from try_to_free_page().

1706 */

1707 void kmem_cache_reap (int gfp_mask)

1708 {

1709 slab_t *slabp;

1710 kmem_cache_t *searchp;

1711 kmem_cache_t *best_cachep;

1712 unsigned int best_pages;

1713 unsigned int best_len;

1714 unsigned int scan;

1715

1716 if (gfp_mask & __GFP_WAIT)

1717 down(&cache_chain_sem);

1718 else

1719 if (down_trylock(&cache_chain_sem))

1720 return;

1721

1722 scan = REAP_SCANLEN;

1723 best_len = 0;

1724 best_pages = 0;

1725 best_cachep = NULL;

1726 searchp = clock_searchp;

1727 do {

1728 unsigned int pages;

1729 struct list_head* p;

1730 unsigned int full_free;

1731

1732 /* It's safe to test this without holding the cache­lock. */

1733 if (searchp­>flags & SLAB_NO_REAP)

1734 goto next;

1735 spin_lock_irq(&searchp­>spinlock);

1736 if (searchp­>growing)

1737 goto next_unlock;

1738 if (searchp­>dflags & DFLGS_GROWN) {

1739 searchp­>dflags &= ~DFLGS_GROWN;

1740 goto next_unlock;

1741 }

1742 #ifdef CONFIG_SMP

==================== mm/slab.c 1750 1825 ====================
1750 #endif

1751

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

155

1752 full_free = 0;

1753 p = searchp­>slabs.prev;

1754 while (p != &searchp­>slabs) {

1755 slabp = list_entry(p, slab_t, list);

1756 if (slabp­>inuse)

1757 break;

1758 full_free++;

1759 p = p­>prev;

1760 }

1761

1762 /*

1763 * Try to avoid slabs with constructors and/or

1764 * more than one page per slab (as it can be difficult

1765 * to get high orders from gfp()).

1766 */

1767 pages = full_free * (1<<searchp­>gfporder);

1768 if (searchp­>ctor)

1769 pages = (pages*4+1)/5;

1770 if (searchp­>gfporder)

1771 pages = (pages*4+1)/5;

1772 if (pages > best_pages) {

1773 best_cachep = searchp;

1774 best_len = full_free;

1775 best_pages = pages;

1776 if (full_free >= REAP_PERFECT) {

1777 clock_searchp = list_entry(searchp­>next.next,

1778 kmem_cache_t,next);

1779 goto perfect;

1780 }

1781 }

1782 next_unlock:

1783 spin_unlock_irq(&searchp­>spinlock);

1784 next:

1785 searchp = list_entry(searchp­>next.next,kmem_cache_t,next);

1786 } while (­­scan && searchp != clock_searchp);

1787

1788 clock_searchp = searchp;

1789

1790 if (!best_cachep)

1791 /* couldn't find anything to reap */

1792 goto out;

1793

1794 spin_lock_irq(&best_cachep­>spinlock);

1795 perfect:

1796 /* free only 80% of the free slabs */

1797 best_len = (best_len*4 + 1)/5;

1798 for (scan = 0; scan < best_len; scan++) {

1799 struct list_head *p;

1800

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

156

1801 if (best_cachep­>growing)

1802 break;

1803 p = best_cachep­>slabs.prev;

1804 if (p == &best_cachep­>slabs)

1805 break;

1806 slabp = list_entry(p,slab_t,list);

1807 if (slabp­>inuse)

1808 break;

1809 list_del(&slabp­>list);

1810 if (best_cachep­>firstnotfull == &slabp­>list)

1811 best_cachep­>firstnotfull = &best_cachep­>slabs;

1812 STATS_INC_REAPED(best_cachep);

1813

1814 /* Safe to drop the lock. The slab is no longer linked to the

1815 * cache.

1816 */

1817 spin_unlock_irq(&best_cachep­>spinlock);

1818 kmem_slab_destroy(best_cachep, slabp);

1819 spin_lock_irq(&best_cachep­>spinlock);

1820 }

1821 spin_unlock_irq(&best_cachep­>spinlock);

1822 out:

1823 up(&cache_chain_sem);

1824 return;

1825 }

slab cache_cache slab
cache_cache slab

clock_searchp

==================== mm/slab.c 360 361 ====================
360 /* Place maintainer for reaping. */

361 static kmem_cache_t *clock_searchp = &cache_cache;

slab slab
80% slab kmem_slab_destroy()

==================== mm/slab.c 540 554 ====================
[kmem_cache_reap()>kmem_slab_destroy()]
540 /* Destroy all the objs in a slab, and release the mem back to the system.

541 * Before calling the slab must have been unlinked from the cache.

542 * The cache­lock is not held/needed.

543 */

544 static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)

545 {

546 if (cachep­>dtor

547 #if DEBUG

548 || cachep­>flags & (SLAB_POISON | SLAB_RED_ZONE)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

157

549 #endif

550) {

551 int i;

552 for (i = 0; i < cachep­>num; i++) {

553 void* objp = slabp­>s_mem+cachep­>objsize*i;

554 #if DEBUG

==================== mm/slab.c 563 566 ====================
563 #endif

564 if (cachep­>dtor)

565 (cachep­>dtor)(objp, cachep, 0);

566 #if DEBUG

==================== mm/slab.c 573 580 ====================
573 #endif

574 }

575 }

576

577 kmem_freepages(cachep, slabp­>s_mem­slabp­>colouroff);

578 if (OFF_SLAB(cachep))

579 kmem_cache_free(cachep­>slabp_cache, slabp);

580 }

2.11

CPU
memory mapped I/O

I/O mapped CPU
CPU

I/O PDP­11 M68K
Power PC CPU I/O

X86 CPU
IN OUT I/O X86

I/O
I/O

PC 2MB
ROM PCI

CPU I/O
Linux ioremap()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

158

ioremap()

CPU
CPU

0
PC PCI PC CPU

0x0000 f000 0000 0000 PC
CPU 0x0000 f000 0000 0000

Linux CPU

3GB
Linux vremap() ioremap()

kswapd
ioremp() inline include/asm­i386/io.h

==================== include/asm­i386/io.h 140 143 ====================
140 extern inline void * ioremap (unsigned long offset, unsigned long size)

141 {

142 return __ioremap(offset, size, 0);

143 }

__ioremap() arch/i386/mm/ioremap.c

==================== arch/i386/mm/ioremap.c 92 152 ====================
[ioremap()>__ioremap()]
92 /*

93 * Remap an arbitrary physical address space into the kernel virtual

94 * address space. Needed when the kernel wants to access high addresses

95 * directly.

96 *

97 * NOTE! We need to allow non­page­aligned mappings too: we will obviously

98 * have to convert them into an offset in a page­aligned mapping, but the

99 * caller shouldn't need to know that small detail.

100 */

101 void * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)

102 {

103 void * addr;

104 struct vm_struct * area;

105 unsigned long offset, last_addr;

106

107 /* Don't allow wraparound or zero size */

108 last_addr = phys_addr + size ­ 1;

109 if (!size || last_addr < phys_addr)

110 return NULL;

111

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

159

112 /*

113 * Don't remap the low PCI/ISA area, it's always mapped..

114 */

115 if (phys_addr >= 0xA0000 && last_addr < 0x100000)

116 return phys_to_virt(phys_addr);

117

118 /*

119 * Don't allow anybody to remap normal RAM that we're using..

120 */

121 if (phys_addr < virt_to_phys(high_memory)) {

122 char *t_addr, *t_end;

123 struct page *page;

124

125 t_addr = __va(phys_addr);

126 t_end = t_addr + (size ­ 1);

127

128 for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)

129 if(!PageReserved(page))

130 return NULL;

131 }

132

133 /*

134 * Mappings have to be page­aligned

135 */

136 offset = phys_addr & ~PAGE_MASK;

137 phys_addr &= PAGE_MASK;

138 size = PAGE_ALIGN(last_addr) ­ phys_addr;

139

140 /*

141 * Ok, go for it..

142 */

143 area = get_vm_area(size, VM_IOREMAP);

144 if (!area)

145 return NULL;

146 addr = area­>addr;

147 if (remap_area_pages(VMALLOC_VMADDR(addr), phys_addr, size, flags)) {

148 vfree(addr);

149 return NULL;

150 }

151 return (void *) (offset + (char *)addr);

152 }

“sanity check 109
0 32 0xa0000

0x100000 VGA BIOS 121
high_memory

phys_addr

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

160

136 138

mm_struct
get_vm_area() mm/vmalloc.c

==================== mm/vmalloc.c 168 201 ====================
[ioremap()>__ioremap()>get_vm_area()]
168 struct vm_struct * get_vm_area(unsigned long size, unsigned long flags)

169 {

170 unsigned long addr;

171 struct vm_struct **p, *tmp, *area;

172

173 area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL);

174 if (!area)

175 return NULL;

176 size += PAGE_SIZE;

177 addr = VMALLOC_START;

178 write_lock(&vmlist_lock);

179 for (p = &vmlist; (tmp = *p) ; p = &tmp­>next) {

180 if ((size + addr) < addr) {

181 write_unlock(&vmlist_lock);

182 kfree(area);

183 return NULL;

184 }

185 if (size + addr < (unsigned long) tmp­>addr)

186 break;

187 addr = tmp­>size + (unsigned long) tmp­>addr;

188 if (addr > VMALLOC_END­size) {

189 write_unlock(&vmlist_lock);

190 kfree(area);

191 return NULL;

192 }

193 }

194 area­>flags = flags;

195 area­>addr = (void *)addr;

196 area­>size = size;

197 area­>next = *p;

198 *p = area;

199 write_unlock(&vmlist_lock);

200 return area;

201 }

vmlist vm_struct
vm_struct vmlist vm_struct

vm_area_struct include/linux/vmalloc.h mm/vmalloc.c

==================== include/linux/vmalloc.h 14 19 ====================
14 struct vm_struct {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

161

15 unsigned long flags;

16 void * addr;

17 unsigned long size;

18 struct vm_struct * next;

19 };

==================== mm/vmalloc.c 18 18 ====================
18 struct vm_struct * vmlist;

3GB high_memory

8MB include/asm­i386/pgtable.h VMALLOC_START

==================== include/asm­i386/pgtable.h 132 143 ====================
132 /* Just any arbitrary offset to the start of the vmalloc VM area: the

133 * current 8MB value just means that there will be a 8MB "hole" after the

134 * physical memory until the kernel virtual memory starts. That means that

135 * any out­of­bounds memory accesses will hopefully be caught.

136 * The vmalloc() routines leaves a hole of 4kB between each vmalloced

137 * area for the same reason. ;)

138 */

139 #define VMALLOC_OFFSET (8*1024*1024)

140 #define VMALLOC_START (((unsigned long) high_memory + 2*VMALLOC_OFFSET­1) & \

141 ~(VMALLOC_OFFSET­1))

142 #define VMALLOC_VMADDR(x) ((unsigned long)(x))

143 #define VMALLOC_END (FIXADDR_START)

8MB
132

185 if
176

185 “< “<=
size addr 185

get_vm_area()

VMALLOC_VMADDR
remap_area_pages() arch/i386/mm/ioremap.c

==================== arch/i386/mm/ioremap.c 62 86 ====================
[ioremap()>__ioremap()>remap_area_pages()]
62 static int remap_area_pages(unsigned long address, unsigned long phys_addr,

63 unsigned long size, unsigned long flags)

64 {

65 pgd_t * dir;

66 unsigned long end = address + size;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

162

67

68 phys_addr ­= address;

69 dir = pgd_offset(&init_mm, address);

70 flush_cache_all();

71 if (address >= end)

72 BUG();

73 do {

74 pmd_t *pmd;

75 pmd = pmd_alloc_kernel(dir, address);

76 if (!pmd)

77 return ­ENOMEM;

78 if (remap_area_pmd(pmd, address, end ­ address,

79 phys_addr + address, flags))

80 return ­ENOMEM;

81 address = (address + PGDIR_SIZE) & PGDIR_MASK;

82 dir++;

83 } while (address && (address < end));

84 flush_tlb_all();

85 return 0;

86 }

task_struct mm_struct
mm_struct

init_mm task_struct 69 init_mm
68

78 79
address 81 75 pmd_alloc_kernel()

i386 CPU pmd_alloc() include/asm­i386/pgalloc.h

==================== include/asm­i386/pgalloc.h 151 151 ====================
151 #define pmd_alloc_kernel pmd_alloc

inline pmd_alloc()
include/asm­i386/pgalloc­2level.h

==================== include/asm­i386/pgalloc­2level.h 16 21 ====================
[ioremap()>__ioremap()>remap_area_pages()>pmd_alloc()]
16 extern inline pmd_t * pmd_alloc(pgd_t *pgd, unsigned long address)

17 {

18 if (!pgd)

19 BUG();

20 return (pmd_t *) pgd;

21 }

i386
PAE Pentium CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

163

remap_area_pages() 73 do­while
remap_area_pmd() remap_area_pmd() i386

1
remap_area_pte() arch/i386/mm/ioremap.c

==================== arch/i386/mm/ioremap.c 15 37 ====================
[ioremap()>__ioremap()>remap_area_pages()>remap_area_pmd()>remap_area_pte()]
15 static inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,

16 unsigned long phys_addr, unsigned long flags)

17 {

18 unsigned long end;

19

20 address &= ~PMD_MASK;

21 end = address + size;

22 if (end > PMD_SIZE)

23 end = PMD_SIZE;

24 if (address >= end)

25 BUG();

26 do {

27 if (!pte_none(*pte)) {

28 printk("remap_area_pte: page already exists\n");

29 BUG();

30 }

31 set_pte(pte, mk_pte_phys(phys_addr, __pgprot(_PAGE_PRESENT | _PAGE_RW |

32 _PAGE_DIRTY | _PAGE_ACCESSED | flags)));

33 address += PAGE_SIZE;

34 phys_addr += PAGE_SIZE;

35 pte++;

36 } while (address && (address < end));

37 }

31
_PAGE_DIRTY _PAGE_ACCESSED _PAGE_PRESENTED

kswapd kswapd task
swap_out_mm() mm_struct

init_mm task init_mm kswapd
init_mm

2.12 brk()

brk()
brk() brk()

malloc() C C++ new brk() malloc()
brk() malloc() malloc

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

164

brk()

3G 3G

3G

3G
data bss

static

X86
end_data

end_data

malloc()
mm_struct mm_struct brk

brk() brk
brk() 0

­1
brk() sys_brk() mm/mmap.c

==================== mm/mmap.c 113 141 ====================
[sys_brk()]
113 /*

114 * sys_brk() for the most part doesn't need the global kernel

115 * lock, except when an application is doing something nasty

116 * like trying to un­brk an area that has already been mapped

117 * to a regular file. in this case, the unmapping will need

118 * to invoke file system routines that need the global lock.

119 */

120 asmlinkage unsigned long sys_brk(unsigned long brk)

121 {

122 unsigned long rlim, retval;

123 unsigned long newbrk, oldbrk;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

165

124 struct mm_struct *mm = current­>mm;

125

126 down(&mm­>mmap_sem);

127

128 if (brk < mm­>end_code)

129 goto out;

130 newbrk = PAGE_ALIGN(brk);

131 oldbrk = PAGE_ALIGN(mm­>brk);

132 if (oldbrk == newbrk)

133 goto set_brk;

134

135 /* Always allow shrinking brk. */

136 if (brk <= mm­>brk) {

137 if (!do_munmap(mm, newbrk, oldbrk­newbrk))

138 goto set_brk;

139 goto out;

140 }

141

brk
do_munmap()

mm/mmap.c

==================== mm/mmap.c 664 696 ====================
[sys_brk()>do_munmap()]
664 /* Munmap is split into 2 main parts ­­ this part which finds

665 * what needs doing, and the areas themselves, which do the

666 * work. This now handles partial unmappings.

667 * Jeremy Fitzhardine <jeremy@sw.oz.au>

668 */

669 int do_munmap(struct mm_struct *mm, unsigned long addr, size_t len)

670 {

671 struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;

672

673 if ((addr & ~PAGE_MASK) || addr > TASK_SIZE || len > TASK_SIZE­addr)

674 return ­EINVAL;

675

676 if ((len = PAGE_ALIGN(len)) == 0)

677 return ­EINVAL;

678

679 /* Check if this memory area is ok ­ put it on the temporary

680 * list if so.. The checks here are pretty simple ­­

681 * every area affected in some way (by any overlap) is put

682 * on the list. If nothing is put on, nothing is affected.

683 */

684 mpnt = find_vma_prev(mm, addr, &prev);

685 if (!mpnt)

686 return 0;

687 /* we have addr < mpnt­>vm_end */

mailto:jeremy@sw.oz.au
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

166

688

689 if (mpnt­>vm_start >= addr+len)

690 return 0;

691

692 /* If we'll make "hole", check the vm areas limit */

693 if ((mpnt­>vm_start < addr && mpnt­>vm_end > addr+len)

694 && mm­>map_count >= MAX_MAP_COUNT)

695 return ­ENOMEM;

696

find_vma_prev() find_vma()
vm_area_struct AVL addr

vm_area_struct
prev 0

addr+len
0

MAX_MAP_COUNT

==================== mm/mmap.c 697 717 ====================
[sys_brk()>do_munmap()]
697 /*

698 * We may need one additional vma to fix up the mappings ...

699 * and this is the last chance for an easy error exit.

700 */

701 extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

702 if (!extra)

703 return ­ENOMEM;

704

705 npp = (prev ? &prev­>vm_next : &mm­>mmap);

706 free = NULL;

707 spin_lock(&mm­>page_table_lock);

708 for (; mpnt && mpnt­>vm_start < addr+len; mpnt = *npp) {

709 *npp = mpnt­>vm_next;

710 mpnt­>vm_next = free;

711 free = mpnt;

712 if (mm­>mmap_avl)

713 avl_remove(mpnt, &mm­>mmap_avl);

714 }

715 mm­>mmap_cache = NULL; /* Kill the cache. */

716 spin_unlock(&mm­>page_table_lock);

717

vm_area_struct extra

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

167

for free AVL
vm_area_struct AVL mm_struct mmap_cache

find_vma() find_vma()
0

==================== mm/mmap.c 718 762 ====================
[sys_brk()>do_munmap()]
718 /* Ok ­ we have the memory areas we should free on the 'free' list,

719 * so release them, and unmap the page range..

720 * If the one of the segments is only being partially unmapped,

721 * it will put new vm_area_struct(s) into the address space.

722 * In that case we have to be careful with VM_DENYWRITE.

723 */

724 while ((mpnt = free) != NULL) {

725 unsigned long st, end, size;

726 struct file *file = NULL;

727

728 free = free­>vm_next;

729

730 st = addr < mpnt­>vm_start ? mpnt­>vm_start : addr;

731 end = addr+len;

732 end = end > mpnt­>vm_end ? mpnt­>vm_end : end;

733 size = end ­ st;

734

735 if (mpnt­>vm_flags & VM_DENYWRITE &&

736 (st != mpnt­>vm_start || end != mpnt­>vm_end) &&

737 (file = mpnt­>vm_file) != NULL) {

738 atomic_dec(&file­>f_dentry­>d_inode­>i_writecount);

739 }

740 remove_shared_vm_struct(mpnt);

741 mm­>map_count­­;

742

743 flush_cache_range(mm, st, end);

744 zap_page_range(mm, st, size);

745 flush_tlb_range(mm, st, end);

746

747 /*

748 * Fix the mapping, and free the old area if it wasn't reused.

749 */

750 extra = unmap_fixup(mm, mpnt, st, size, extra);

751 if (file)

752 atomic_inc(&file­>f_dentry­>d_inode­>i_writecount);

753 }

754

755 /* Release the extra vma struct if it wasn't used */

756 if (extra)

757 kmem_cache_free(vm_area_cachep, extra);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

168

758

759 free_pgtables(mm, prev, addr, addr+len);

760

761 return 0;

762 }

while vm_area_struct
free mmap()

735 737
inode i_writecount 751

752 remove_shared_vm_struct()
vm_area_struct inode i_mapping

zap_page_range()
mm/memory.c

==================== mm/memory.c 348 383 ====================
[sys_brk()>do_munmap()>zap_page_range()]
348 /*

349 * remove user pages in a given range.

350 */

351 void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size)

352 {

353 pgd_t * dir;

354 unsigned long end = address + size;

355 int freed = 0;

356

357 dir = pgd_offset(mm, address);

358

359 /*

360 * This is a long­lived spinlock. That's fine.

361 * There's no contention, because the page table

362 * lock only protects against kswapd anyway, and

363 * even if kswapd happened to be looking at this

364 * process we _want_ it to get stuck.

365 */

366 if (address >= end)

367 BUG();

368 spin_lock(&mm­>page_table_lock);

369 do {

370 freed += zap_pmd_range(mm, dir, address, end ­ address);

371 address = (address + PGDIR_SIZE) & PGDIR_MASK;

372 dir++;

373 } while (address && (address < end));

374 spin_unlock(&mm­>page_table_lock);

375 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

169

376 * Update rss for the mm_struct (not necessarily current­>mm)

377 * Notice that rss is an unsigned long.

378 */

379 if (mm­>rss > freed)

380 mm­>rss ­= freed;

381 else

382 mm­>rss = 0;

383 }

pgd_offset()
do­while

==================== include/asm­i386/pgtable.h 312 312 ====================
312 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD­1))

==================== include/asm­i386/pgtable.h 316 316 ====================
316 #define pgd_offset(mm, address) ((mm)­>pgd+pgd_index(address))

zap_pmd_range()

==================== mm/memory.c 321 346 ====================
[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()]
321 static inline int zap_pmd_range(struct mm_struct *mm, pgd_t * dir, unsigned long address, unsigned long

size)

322 {

323 pmd_t * pmd;

324 unsigned long end;

325 int freed;

326

327 if (pgd_none(*dir))

328 return 0;

329 if (pgd_bad(*dir)) {

330 pgd_ERROR(*dir);

331 pgd_clear(dir);

332 return 0;

333 }

334 pmd = pmd_offset(dir, address);

335 address &= ~PGDIR_MASK;

336 end = address + size;

337 if (end > PGDIR_SIZE)

338 end = PGDIR_SIZE;

339 freed = 0;

340 do {

341 freed += zap_pte_range(mm, pmd, address, end ­ address);

342 address = (address + PMD_SIZE) & PMD_MASK;

343 pmd++;

344 } while (address < end);

345 return freed;

346 }

pmd_offset() i386

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

170

pmd_offset() include/asm­i386/pgtable­2level.h

==================== include/asm­i386/pgtable­2level.h 53 56 ====================
53 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)

54 {

55 return (pmd_t *) dir;

56 }

pmd_offset()
zap_pmd_range()

zap_page_range() zap_pte_range()

==================== mm/memory.c 289 319 ====================
[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()>zap_pte_range()]
289 static inline int zap_pte_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long

size)

290 {

291 pte_t * pte;

292 int freed;

293

294 if (pmd_none(*pmd))

295 return 0;

296 if (pmd_bad(*pmd)) {

297 pmd_ERROR(*pmd);

298 pmd_clear(pmd);

299 return 0;

300 }

301 pte = pte_offset(pmd, address);

302 address &= ~PMD_MASK;

303 if (address + size > PMD_SIZE)

304 size = PMD_SIZE ­ address;

305 size >>= PAGE_SHIFT;

306 freed = 0;

307 for (;;) {

308 pte_t page;

309 if (!size)

310 break;

311 page = ptep_get_and_clear(pte);

312 pte++;

313 size­­;

314 if (pte_none(page))

315 continue;

316 freed += free_pte(page);

317 }

318 return freed;

319 }

pte_offset() include/asm­i386/pgtable.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

171

==================== include/asm­i386/pgtable.h 324 328 ====================
324 /* Find an entry in the third­level page table.. */

325 #define __pte_offset(address) \

326 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE ­ 1))

327 #define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \

328 __pte_offset(address))

for ptep_get_and_clear() 0

==================== include/asm­i386/pgtable­2level.h 57 57 ====================
57 #define ptep_get_and_clear(xp) __pte(xchg(&(xp)­>pte_low, 0))

free_pte() mm/memory.c

==================== mm/memory.c 259 279 ====================
[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()>zap_pte_range()>free_pte()]
259 /*

260 * Return indicates whether a page was freed so caller can adjust rss

261 */

262 static inline int free_pte(pte_t pte)

263 {

264 if (pte_present(pte)) {

265 struct page *page = pte_page(pte);

266 if ((!VALID_PAGE(page)) || PageReserved(page))

267 return 0;

268 /*

269 * free_page() used to be able to clear swap cache

270 * entries. We may now have to do it manually.

271 */

272 if (pte_dirty(pte) && page­>mapping)

273 set_page_dirty(page);

274 free_page_and_swap_cache(page);

275 return 1;

276 }

277 swap_free(pte_to_swp_entry(pte));

278 return 0;

279 }

swap_free() swap_free()
0

0
free_page_and_swap_cache()
try_to_swap_out() set_page_dirty() page PG_dirty

address_space dirty_pages free_page_and_swap_cache()
mm/swap_state.c

==================== mm/swap_state.c 133 150 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

172

[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()>zap_pte_range()>free_pte()>free_page_and_swap_cache()]
133 /*

134 * Perform a free_page(), also freeing any swap cache associated with

135 * this page if it is the last user of the page. Can not do a lock_page,

136 * as we are holding the page_table_lock spinlock.

137 */

138 void free_page_and_swap_cache(struct page *page)

139 {

140 /*

141 * If we are the only user, then try to free up the swap cache.

142 */

143 if (PageSwapCache(page) && !TryLockPage(page)) {

144 if (!is_page_shared(page)) {

145 delete_from_swap_cache_nolock(page);

146 }

147 UnlockPage(page);

148 }

149 page_cache_release(page);

150 }

page
list address_space

clean_pages dirty_pages locked_pages lru LRU
active_list inactive_dirty_list inactive_clean_list next_hash

page PG_swap_cache 1

delete_from_swap_cache_nolock()

==================== mm/swap_state.c 103 120 ====================
[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()>zap_pte_range()>free_pte()>free_page_and_swap_cache()
>delete_from_swap_cache_nolock()]
103 /*

104 * This will never put the page into the free list, the caller has

105 * a reference on the page.

106 */

107 void delete_from_swap_cache_nolock(struct page *page)

108 {

109 if (!PageLocked(page))

110 BUG();

111

112 if (block_flushpage(page, 0))

113 lru_cache_del(page);

114

115 spin_lock(&pagecache_lock);

116 ClearPageDirty(page);

117 __delete_from_swap_cache(page);

118 spin_unlock(&pagecache_lock);

119 page_cache_release(page);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

173

120 }

block_flushpage()

lru_cache_del() LRU
__delete_from_swap_cache()

==================== mm/swap_state.c 86 101 ====================
[sys_brk()>do_munmap()>zap_page_range()>zap_pmd_range()>zap_pte_range()>free_pte()>free_page_and_swap_cache()
>delete_from_swap_cache_nolock()>__delete_from_swap_cache()]
86 /*

87 * This must be called only on pages that have

88 * been verified to be in the swap cache.

89 */

90 void __delete_from_swap_cache(struct page *page)

91 {

92 swp_entry_t entry;

93

94 entry.val = page­>index;

95

96 #ifdef SWAP_CACHE_INFO

97 swap_cache_del_total++;

98 #endif

99 remove_from_swap_cache(page);

100 swap_free(entry);

101 }

remove_from_swap_cache() page
swap_free() delete_from_swap_cache_nolock()

page_cache_release() page
free_pte() 264 2 119

page_cache_release() 1 free_page_and_swap_cache() 149
page_cache_release() 0

do_munmap()
vm_area_struct mm_struct

vm_area_struct
vm_area_struct unmap_fixup()

mm/mmap.c

==================== mm/mmap.c 516 604 ====================
[sys_brk()>do_munmap()>unmap_fixup()]
516 /* Normal function to fix up a mapping

517 * This function is the default for when an area has no specific

518 * function. This may be used as part of a more specific routine.

519 * This function works out what part of an area is affected and

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

174

520 * adjusts the mapping information. Since the actual page

521 * manipulation is done in do_mmap(), none need be done here,

522 * though it would probably be more appropriate.

523 *

524 * By the time this function is called, the area struct has been

525 * removed from the process mapping list, so it needs to be

526 * reinserted if necessary.

527 *

528 * The 4 main cases are:

529 * Unmapping the whole area

530 * Unmapping from the start of the segment to a point in it

531 * Unmapping from an intermediate point to the end

532 * Unmapping between to intermediate points, making a hole.

533 *

534 * Case 4 involves the creation of 2 new areas, for each side of

535 * the hole. If possible, we reuse the existing area rather than

536 * allocate a new one, and the return indicates whether the old

537 * area was reused.

538 */

539 static struct vm_area_struct * unmap_fixup(struct mm_struct *mm,

540 struct vm_area_struct *area, unsigned long addr, size_t len,

541 struct vm_area_struct *extra)

542 {

543 struct vm_area_struct *mpnt;

544 unsigned long end = addr + len;

545

546 area­>vm_mm­>total_vm ­= len >> PAGE_SHIFT;

547 if (area­>vm_flags & VM_LOCKED)

548 area­>vm_mm­>locked_vm ­= len >> PAGE_SHIFT;

549

550 /* Unmapping the whole area. */

551 if (addr == area­>vm_start && end == area­>vm_end) {

552 if (area­>vm_ops && area­>vm_ops­>close)

553 area­>vm_ops­>close(area);

554 if (area­>vm_file)

555 fput(area­>vm_file);

556 kmem_cache_free(vm_area_cachep, area);

557 return extra;

558 }

559

560 /* Work out to one of the ends. */

561 if (end == area­>vm_end) {

562 area­>vm_end = addr;

563 lock_vma_mappings(area);

564 spin_lock(&mm­>page_table_lock);

565 } else if (addr == area­>vm_start) {

566 area­>vm_pgoff += (end ­ area­>vm_start) >> PAGE_SHIFT;

567 area­>vm_start = end;

568 lock_vma_mappings(area);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

175

569 spin_lock(&mm­>page_table_lock);

570 } else {

571 /* Unmapping a hole: area­>vm_start < addr <= end < area­>vm_end */

572 /* Add end mapping ­­ leave beginning for below */

573 mpnt = extra;

574 extra = NULL;

575

576 mpnt­>vm_mm = area­>vm_mm;

577 mpnt­>vm_start = end;

578 mpnt­>vm_end = area­>vm_end;

579 mpnt­>vm_page_prot = area­>vm_page_prot;

580 mpnt­>vm_flags = area­>vm_flags;

581 mpnt­>vm_raend = 0;

582 mpnt­>vm_ops = area­>vm_ops;

583 mpnt­>vm_pgoff = area­>vm_pgoff + ((end ­ area­>vm_start) >> PAGE_SHIFT);

584 mpnt­>vm_file = area­>vm_file;

585 mpnt­>vm_private_data = area­>vm_private_data;

586 if (mpnt­>vm_file)

587 get_file(mpnt­>vm_file);

588 if (mpnt­>vm_ops && mpnt­>vm_ops­>open)

589 mpnt­>vm_ops­>open(mpnt);

590 area­>vm_end = addr; /* Truncate area */

591

592 /* Because mpnt­>vm_file == area­>vm_file this locks

593 * things correctly.

594 */

595 lock_vma_mappings(area);

596 spin_lock(&mm­>page_table_lock);

597 __insert_vm_struct(mm, mpnt);

598 }

599

600 __insert_vm_struct(mm, area);

601 spin_unlock(&mm­>page_table_lock);

602 unlock_vma_mappings(area);

603 return extra;

604 }

free_pgtables()
mm/mmap.c

==================== mm/mmap.c 606 662 ====================
[sys_brk()>do_munmap()>free_pgtables()]
606 /*

607 * Try to free as many page directory entries as we can,

608 * without having to work very hard at actually scanning

609 * the page tables themselves.

610 *

611 * Right now we try to free page tables if we have a nice

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

176

612 * PGDIR­aligned area that got free'd up. We could be more

613 * granular if we want to, but this is fast and simple,

614 * and covers the bad cases.

615 *

616 * "prev", if it exists, points to a vma before the one

617 * we just free'd ­ but there's no telling how much before.

618 */

619 static void free_pgtables(struct mm_struct * mm, struct vm_area_struct *prev,

620 unsigned long start, unsigned long end)

621 {

622 unsigned long first = start & PGDIR_MASK;

623 unsigned long last = end + PGDIR_SIZE ­ 1;

624 unsigned long start_index, end_index;

625

626 if (!prev) {

627 prev = mm­>mmap;

628 if (!prev)

629 goto no_mmaps;

630 if (prev­>vm_end > start) {

631 if (last > prev­>vm_start)

632 last = prev­>vm_start;

633 goto no_mmaps;

634 }

635 }

636 for (;;) {

637 struct vm_area_struct *next = prev­>vm_next;

638

639 if (next) {

640 if (next­>vm_start < start) {

641 prev = next;

642 continue;

643 }

644 if (last > next­>vm_start)

645 last = next­>vm_start;

646 }

647 if (prev­>vm_end > first)

648 first = prev­>vm_end + PGDIR_SIZE ­ 1;

649 break;

650 }

651 no_mmaps:

652 /*

653 * If the PGD bits are not consecutive in the virtual address, the

654 * old method of shifting the VA >> by PGDIR_SHIFT doesn't work.

655 */

656 start_index = pgd_index(first);

657 end_index = pgd_index(last);

658 if (end_index > start_index) {

659 clear_page_tables(mm, start_index, end_index ­ start_index);

660 flush_tlb_pgtables(mm, first & PGDIR_MASK, last & PGDIR_MASK);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

177

661 }

662 }

sys_brk() sys_brk()
sys_brk()

mm/mmap.c

==================== mm/mmap.c 142 164 ====================
[sys_brk()]
142 /* Check against rlimit.. */

143 rlim = current­>rlim[RLIMIT_DATA].rlim_cur;

144 if (rlim < RLIM_INFINITY && brk ­ mm­>start_data > rlim)

145 goto out;

146

147 /* Check against existing mmap mappings. */

148 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

149 goto out;

150

151 /* Check if we have enough memory.. */

152 if (!vm_enough_memory((newbrk­oldbrk) >> PAGE_SHIFT))

153 goto out;

154

155 /* Ok, looks good ­ let it rip. */

156 if (do_brk(oldbrk, newbrk­oldbrk) != oldbrk)

157 goto out;

158 set_brk:

159 mm­>brk = brk;

160 out:

161 retval = mm­>brk;

162 up(&mm­>mmap_sem);

163 return retval;

164 }

find_vma_intersection()
inline include/linux/mm.h

==================== include/linux/mm.h 511 520 ====================
[sys_brk()>find_vma_intersection()]
511 /* Look up the first VMA which intersects the interval start_addr..end_addr­1,

512 NULL if none. Assume start_addr < end_addr. */

513 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long

start_addr, unsigned long end_addr)

514 {

515 struct vm_area_struct * vma = find_vma(mm,start_addr);

516

517 if (vma && end_addr <= vma­>vm_start)

518 vma = NULL;

519 return vma;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

178

520 }

start_addr find_vma() 0
end_addr

start_addr end_addr
vm_enough_memoty()

==================== mm/mmap.c 41 67 ====================
[sys_brk()>vm_enough_memoty()]
41 /* Check that a process has enough memory to allocate a

42 * new virtual mapping.

43 */

44 int vm_enough_memory(long pages)

45 {

46 /* Stupid algorithm to decide if we have enough memory: while

47 * simple, it hopefully works in most obvious cases.. Easy to

48 * fool it, but this should catch most mistakes.

49 */

50 /* 23/11/98 NJC: Somewhat less stupid version of algorithm,

51 * which tries to do "TheRightThing". Instead of using half of

52 * (buffers+cache), use the minimum values. Allow an extra 2%

53 * of num_physpages for safety margin.

54 */

55

56 long free;

57

58 /* Sometimes we want to use more memory than we have. */

59 if (sysctl_overcommit_memory)

60 return 1;

61

62 free = atomic_read(&buffermem_pages);

63 free += atomic_read(&page_cache_size);

64 free += nr_free_pages();

65 free += nr_swap_pages;

66 return free > pages;

67 }

do_brk() mm/mmap.c

==================== mm/mmap.c 775 861 ====================
[sys_brk()>do_brk()]
775 /*

776 * this is really a simplified "do_mmap". it only handles

777 * anonymous maps. eventually we may be able to do some

778 * brk­specific accounting here.

779 */

780 unsigned long do_brk(unsigned long addr, unsigned long len)

781 {

782 struct mm_struct * mm = current­>mm;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

179

783 struct vm_area_struct * vma;

784 unsigned long flags, retval;

785

786 len = PAGE_ALIGN(len);

787 if (!len)

788 return addr;

789

790 /*

791 * mlock MCL_FUTURE?

792 */

793 if (mm­>def_flags & VM_LOCKED) {

794 unsigned long locked = mm­>locked_vm << PAGE_SHIFT;

795 locked += len;

796 if (locked > current­>rlim[RLIMIT_MEMLOCK].rlim_cur)

797 return ­EAGAIN;

798 }

799

800 /*

801 * Clear old maps. this also does some error checking for us

802 */

803 retval = do_munmap(mm, addr, len);

804 if (retval != 0)

805 return retval;

806

807 /* Check against address space limits *after* clearing old maps... */

808 if ((mm­>total_vm << PAGE_SHIFT) + len

809 > current­>rlim[RLIMIT_AS].rlim_cur)

810 return ­ENOMEM;

811

812 if (mm­>map_count > MAX_MAP_COUNT)

813 return ­ENOMEM;

814

815 if (!vm_enough_memory(len >> PAGE_SHIFT))

816 return ­ENOMEM;

817

818 flags = vm_flags(PROT_READ|PROT_WRITE|PROT_EXEC,

819 MAP_FIXED|MAP_PRIVATE) | mm­>def_flags;

820

821 flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

822

823

824 /* Can we just expand an old anonymous mapping? */

825 if (addr) {

826 struct vm_area_struct * vma = find_vma(mm, addr­1);

827 if (vma && vma­>vm_end == addr && !vma­>vm_file &&

828 vma­>vm_flags == flags) {

829 vma­>vm_end = addr + len;

830 goto out;

831 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

180

832 }

833

834

835 /*

836 * create a vma struct for an anonymous mapping

837 */

838 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

839 if (!vma)

840 return ­ENOMEM;

841

842 vma­>vm_mm = mm;

843 vma­>vm_start = addr;

844 vma­>vm_end = addr + len;

845 vma­>vm_flags = flags;

846 vma­>vm_page_prot = protection_map[flags & 0x0f];

847 vma­>vm_ops = NULL;

848 vma­>vm_pgoff = 0;

849 vma­>vm_file = NULL;

850 vma­>vm_private_data = NULL;

851

852 insert_vm_struct(mm, vma);

853

854 out:

855 mm­>total_vm += len >> PAGE_SHIFT;

856 if (flags & VM_LOCKED) {

857 mm­>locked_vm += len >> PAGE_SHIFT;

858 make_pages_present(addr, addr + len);

859 }

860 return addr;

861 }

addr 1en
find_vm_intersection()

do_munmap() 803

find_vma_intersection() find_vma() 0
mmap() ioremap()

826 831 838 852

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

181

make_page_present() mm/memory.c

==================== mm/memory.c 1210 1229 ====================
[sys_brk()>do_brk()>make_page_present()]
1210 /*

1211 * Simplistic page force­in..

1212 */

1213 int make_pages_present(unsigned long addr, unsigned long end)

1214 {

1215 int write;

1216 struct mm_struct *mm = current­>mm;

1217 struct vm_area_struct * vma;

1218

1219 vma = find_vma(mm, addr);

1220 write = (vma­>vm_flags & VM_WRITE) != 0;

1221 if (addr >= end)

1222 BUG();

1223 do {

1224 if (handle_mm_fault(mm, vma, addr, write) < 0)

1225 return ­1;

1226 addr += PAGE_SIZE;

1227 } while (addr < end);

1228 return 0;

1229 }

do_brk() sys_brk()

2.13 mmap()

mmap()

mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

fd offset start
length prot flags

read() write()
lseek()

sys_brk()
sys_brk()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

182

2.4.0 sys_mmap2()
old_mmap() 2.4.0

old_mmap() C
arch/i386/kernel/sys_i386.c

==================== arch/i386/kernel/sys_i386.c 68 73 ====================
68 asmlinkage long sys_mmap2(unsigned long addr, unsigned long len,

69 unsigned long prot, unsigned long flags,

70 unsigned long fd, unsigned long pgoff)

71 {

72 return do_mmap2(addr, len, prot, flags, fd, pgoff);

73 }

==================== arch/i386/kernel/sys_i386.c 91 106 ====================
91 asmlinkage int old_mmap(struct mmap_arg_struct *arg)

92 {

93 struct mmap_arg_struct a;

94 int err = ­EFAULT;

95

96 if (copy_from_user(&a, arg, sizeof(a)))

97 goto out;

98

99 err = ­EINVAL;

100 if (a.offset & ~PAGE_MASK)

101 goto out;

102

103 err = do_mmap2(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT);

104 out:

105 return err;

106 }

do_mmap2()

==================== arch/i386/kernel/sys_i386.c 42 66 ====================
[sys_mmap2()>do_mmap2()]
42 /* common code for old and new mmaps */

43 static inline long do_mmap2(

44 unsigned long addr, unsigned long len,

45 unsigned long prot, unsigned long flags,

46 unsigned long fd, unsigned long pgoff)

47 {

48 int error = ­EBADF;

49 struct file * file = NULL;

50

51 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);

52 if (!(flags & MAP_ANONYMOUS)) {

53 file = fget(fd);

54 if (!file)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

183

55 goto out;

56 }

57

58 down(¤t­>mm­>mmap_sem);

59 error = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);

60 up(¤t­>mm­>mmap_sem);

61

62 if (file)

63 fput(file);

64 out:

65 return error;

66 }

mmap()
flags MAP_ANONYMOUS 1

do_mmap_pgoff()
inline do_mmap()

sys_execve() load_aout_binary()
do_mmap() do_mmap()

inline include/linux/mm.h

==================== include/linux/mm.h 428 439 ====================
428 static inline unsigned long do_mmap(struct file *file, unsigned long addr,

429 unsigned long len, unsigned long prot,

430 unsigned long flag, unsigned long offset)

431 {

432 unsigned long ret = ­EINVAL;

433 if ((offset + PAGE_ALIGN(len)) < offset)

434 goto out;

435 if (!(offset & ~PAGE_MASK))

436 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);

437 out:

438 return ret;

439 }

do_mmap2() do_mmap_pgoff()
do_mmap() MAP_ANONYMOUS do_mmap()

down() up()
do_mmap_pgoff() mm/mmap.c

==================== mm/mmap.c 188 249 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()]
188 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, unsigned long len,

189 unsigned long prot, unsigned long flags, unsigned long pgoff)

190 {

191 struct mm_struct * mm = current­>mm;

192 struct vm_area_struct * vma;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

184

193 int correct_wcount = 0;

194 int error;

195

196 if (file && (!file­>f_op || !file­>f_op­>mmap))

197 return ­ENODEV;

198

199 if ((len = PAGE_ALIGN(len)) == 0)

200 return addr;

201

202 if (len > TASK_SIZE || addr > TASK_SIZE­len)

203 return ­EINVAL;

204

205 /* offset overflow? */

206 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)

207 return ­EINVAL;

208

209 /* Too many mappings? */

210 if (mm­>map_count > MAX_MAP_COUNT)

211 return ­ENOMEM;

212

213 /* mlock MCL_FUTURE? */

214 if (mm­>def_flags & VM_LOCKED) {

215 unsigned long locked = mm­>locked_vm << PAGE_SHIFT;

216 locked += len;

217 if (locked > current­>rlim[RLIMIT_MEMLOCK].rlim_cur)

218 return ­EAGAIN;

219 }

220

221 /* Do simple checking here so the lower­level routines won't have

222 * to. we assume access permissions have been handled by the open

223 * of the memory object, so we don't do any here.

224 */

225 if (file != NULL) {

226 switch (flags & MAP_TYPE) {

227 case MAP_SHARED:

228 if ((prot & PROT_WRITE) && !(file­>f_mode & FMODE_WRITE))

229 return ­EACCES;

230

231 /* Make sure we don't allow writing to an append­only file.. */

232 if (IS_APPEND(file­>f_dentry­>d_inode) && (file­>f_mode & FMODE_WRITE))

233 return ­EACCES;

234

235 /* make sure there are no mandatory locks on the file. */

236 if (locks_verify_locked(file­>f_dentry­>d_inode))

237 return ­EAGAIN;

238

239 /* fall through */

240 case MAP_PRIVATE:

241 if (!(file­>f_mode & FMODE_READ))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

185

242 return ­EACCES;

243 break;

244

245 default:

246 return ­EINVAL;

247 }

248 }

249

file
0 MAP_ANONYMOUS file f_op

file_operations mmap mmap
5 do_mmap() do_mmap2()

5

==================== mm/mmap.c 250 261 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()]
250 /* Obtain the address to map to. we verify (or select) it and ensure

251 * that it represents a valid section of the address space.

252 */

253 if (flags & MAP_FIXED) {

254 if (addr & ~PAGE_MASK)

255 return ­EINVAL;

256 } else {

257 addr = get_unmapped_area(addr, len);

258 if (!addr)

259 return ­ENOMEM;

260 }

261

do_mmap_pgoff() mmap() flags
MAP_FIXED 0

get_unmapped_area() mm/mmap.c

==================== mm/mmap.c 374 398 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()>get_unmapped_area()]
374 /* Get an address range which is currently unmapped.

375 * For mmap() without MAP_FIXED and shmat() with addr=0.

376 * Return value 0 means ENOMEM.

377 */

378 #ifndef HAVE_ARCH_UNMAPPED_AREA

379 unsigned long get_unmapped_area(unsigned long addr, unsigned long len)

380 {

381 struct vm_area_struct * vmm;

382

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

186

383 if (len > TASK_SIZE)

384 return 0;

385 if (!addr)

386 addr = TASK_UNMAPPED_BASE;

387 addr = PAGE_ALIGN(addr);

388

389 for (vmm = find_vma(current­>mm, addr); ; vmm = vmm­>vm_next) {

390 /* At this point: (!vmm || addr < vmm­>vm_end). */

391 if (TASK_SIZE ­ len < addr)

392 return 0;

393 if (!vmm || addr + len <= vmm­>vm_start)

394 return addr;

395 addr = vmm­>vm_end;

396 }

397 }

398 #endif

TASK_UNMAPPED_BASE
include/asm­i386/processor.h

==================== include/asm­i386/processor.h 263 266 ====================
263 /* This decides where the kernel will search for a free chunk of vm

264 * space during mmap's.

265 */

266 #define TASK_UNMAPPED_BASE (TASK_SIZE / 3)

0 TASK_SIZE/3 1GB
0

find_vma() vma­>vm_end

0 addr
do_mmap_pgoff() mm/mmap.c

==================== mm/mmap.c 262 322 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()]
262 /* Determine the object being mapped and call the appropriate

263 * specific mapper. the address has already been validated, but

264 * not unmapped, but the maps are removed from the list.

265 */

266 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

267 if (!vma)

268 return ­ENOMEM;

269

270 vma­>vm_mm = mm;

271 vma­>vm_start = addr;

272 vma­>vm_end = addr + len;

273 vma­>vm_flags = vm_flags(prot,flags) | mm­>def_flags;

274

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

187

275 if (file) {

276 VM_ClearReadHint(vma);

277 vma­>vm_raend = 0;

278

279 if (file­>f_mode & FMODE_READ)

280 vma­>vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

281 if (flags & MAP_SHARED) {

282 vma­>vm_flags |= VM_SHARED | VM_MAYSHARE;

283

284 /* This looks strange, but when we don't have the file open

285 * for writing, we can demote the shared mapping to a simpler

286 * private mapping. That also takes care of a security hole

287 * with ptrace() writing to a shared mapping without write

288 * permissions.

289 *

290 * We leave the VM_MAYSHARE bit on, just to get correct output

291 * from /proc/xxx/maps..

292 */

293 if (!(file­>f_mode & FMODE_WRITE))

294 vma­>vm_flags &= ~(VM_MAYWRITE | VM_SHARED);

295 }

296 } else {

297 vma­>vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

298 if (flags & MAP_SHARED)

299 vma­>vm_flags |= VM_SHARED | VM_MAYSHARE;

300 }

301 vma­>vm_page_prot = protection_map[vma­>vm_flags & 0x0f];

302 vma­>vm_ops = NULL;

303 vma­>vm_pgoff = pgoff;

304 vma­>vm_file = NULL;

305 vma­>vm_private_data = NULL;

306

307 /* Clear old maps */

308 error = ­ENOMEM;

309 if (do_munmap(mm, addr, len))

310 goto free_vma;

311

312 /* Check against address space limit. */

313 if ((mm­>total_vm << PAGE_SHIFT) + len

314 > current­>rlim[RLIMIT_AS].rlim_cur)

315 goto free_vma;

316

317 /* Private writable mapping? Check memory availability.. */

318 if ((vma­>vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&

319 !(flags & MAP_NORESERVE) &&

320 !vm_enough_memory(len >> PAGE_SHIFT))

321 goto free_vma;

322

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

188

vm_area_struct kmem_cache_alloc()
do_brk()

vm_area_struct

do_mmap_pgoff() file 0

275 296
303 pgoff vm_area_struct vm_pgoff

mm_struct
do_munmap()

free_vma
vm_area_struct do_munmap()

ger_unmapped_area()
flags MAP_FIXED 0 1

vm_area_struct

vm_area_struct
kmem_cache_alloc() vm_area_struct

slab

clone() 4

do_mmap_pgoff() mm/mmap.c

==================== mm/mmap.c 323 372 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()]
323 if (file) {

324 if (vma­>vm_flags & VM_DENYWRITE) {

325 error = deny_write_access(file);

326 if (error)

327 goto free_vma;

328 correct_wcount = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

189

329 }

330 vma­>vm_file = file;

331 get_file(file);

332 error = file­>f_op­>mmap(file, vma);

333 if (error)

334 goto unmap_and_free_vma;

335 } else if (flags & MAP_SHARED) {

336 error = shmem_zero_setup(vma);

337 if (error)

338 goto free_vma;

339 }

340

341 /* Can addr have changed??

342 *

343 * Answer: Yes, several device drivers can do it in their

344 * f_op­>mmap method. ­DaveM

345 */

346 flags = vma­>vm_flags;

347 addr = vma­>vm_start;

348

349 insert_vm_struct(mm, vma);

350 if (correct_wcount)

351 atomic_inc(&file­>f_dentry­>d_inode­>i_writecount);

352

353 mm­>total_vm += len >> PAGE_SHIFT;

354 if (flags & VM_LOCKED) {

355 mm­>locked_vm += len >> PAGE_SHIFT;

356 make_pages_present(addr, addr + len);

357 }

358 return addr;

359

360 unmap_and_free_vma:

361 if (correct_wcount)

362 atomic_inc(&file­>f_dentry­>d_inode­>i_writecount);

363 vma­>vm_file = NULL;

364 fput(file);

365 /* Undo any partial mapping done by a device driver. */

366 flush_cache_range(mm, vma­>vm_start, vma­>vm_end);

367 zap_page_range(mm, vma­>vm_start, vma­>vm_end ­ vma­>vm_start);

368 flush_tlb_range(mm, vma­>vm_start, vma­>vm_end);

369 free_vma:

370 kmem_cache_free(vm_area_cachep, vma);

371 return error;

372 }

do_mmap() flags
MAP_DENYWRITE 1 273 vm_flags()
VM_DENYWRITE deny_write_access()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

190

get_file() file

335 339
shmem_zero_setup()

file_operations mmap
Linux Ext2 Ext2

file_operations fs/ext2/file.c

==================== fs/ext2/file.c 100 100 ====================
100 struct file_operations ext2_file_operations = {

==================== fs/ext2/file.c 105 105 ====================
105 mmap: generic_file_mmap,

==================== fs/ext2/file.c 109 109 ====================
109 };

Ext2 file f_op
332 file­>f_op­>mmap generic_file_mmap()

mm/filemap.c

==================== mm/filemap.c 1705 1725 ====================
[sys_mmap2()>do_mmap2()>do_mmap_pgoff()>generic_file_mmap()]
1705 /* This is used for a general mmap of a disk file */

1706

1707 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)

1708 {

1709 struct vm_operations_struct * ops;

1710 struct inode *inode = file­>f_dentry­>d_inode;

1711

1712 ops = &file_private_mmap;

1713 if ((vma­>vm_flags & VM_SHARED) && (vma­>vm_flags & VM_MAYWRITE)) {

1714 if (!inode­>i_mapping­>a_ops­>writepage)

1715 return ­EINVAL;

1716 ops = &file_shared_mmap;

1717 }

1718 if (!inode­>i_sb || !S_ISREG(inode­>i_mode))

1719 return ­EACCES;

1720 if (!inode­>i_mapping­>a_ops­>readpage)

1721 return ­ENOEXEC;

1722 UPDATE_ATIME(inode);

1723 vma­>vm_ops = ops;

1724 return 0;

1725 }

1723 vm_ops ops
ops file_private_mmap file_shared_mmap

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

191

mm/filemap.c

==================== mm/filemap.c 1686 1703 ====================
1686 /*

1687 * Shared mappings need to be able to do the right thing at

1688 * close/unmap/sync. They will also use the private file as

1689 * backing­store for swapping..

1690 */

1691 static struct vm_operations_struct file_shared_mmap = {

1692 nopage: filemap_nopage,

1693 };

1694

1695 /*

1696 * Private mappings just need to be able to load in the map.

1697 *

1698 * (This is actually used for shared mappings as well, if we

1699 * know they can't ever get write permissions..)

1700 */

1701 static struct vm_operations_struct file_private_mmap = {

1702 nopage: filemap_nopage,

1703 };

gcc C vm_operations_struct
nopage 0 NULL nopage filemap_nopage

{NULL, NULL, filemap_nopape

nopage generic_file_mmap()
1714 1720 inode

inode i_mapping address_space
address_space

a_ops address_space_operations
address_space_operations Ext2 ext2_aops

fs/ext2/inode.c

==================== fs/ext2/inode.c 669 676 ====================
669 struct address_space_operations ext2_aops = {

670 readpage: ext2_readpage,

671 writepage: ext2_writepage,

672 sync_page: block_sync_page,

673 prepare_write: ext2_prepare_write,

674 commit_write: generic_commit_write,

675 bmap: ext2_bmap

676 };

ext2 ext2_readpage() ext2_writepage()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

192

vm_area_struct mm_struct
do_mmap_pgoff() make_pages_present()

“ lazy
computation

100 99

filemap_nopage() ext2_readpage() ext2_writepage()

(1)
do_no_page() Ext2 do_no_page() ext2_readpage()

(2)
bdflush() page_launder() ext2_writepage()

try_to_swap_out() page_launder()
ext2_writepage() try_to_swap_out()

0

(3)
do_no_page() do_swap_page()

mmap() Linux mmap()

• munmap(void *start, size_t length)
mmap()

• mremap(void *old_adress, size_t old_size, size_t new_size, unsigned long flags)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

193

Linux
• msync(const void *start, size_t length, int flags)

msync() start
length flags

MS_SYNC MS_ASYNC MS_INVALIDATE MS_SYNC
MS_ASYNC

MS_INVALIDATE

• mlock(cost void *addr, size_t len)
LRU

mlock() addr len

• mprotect(const void *addr, size_t len, int prot)
mprotect()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

194

3

exception

CPU CPU

interrupt
CPU

X86 “INT n
CPU INT

trap
exception

DIV 0
2

CPU

INT n n
CPU

INT

3.1 X86 CPU

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

195

Intel X86 CPU 256 X86 CPU
CPU 0 1K

16
16 32

CPU UNIX PDP­11
PDP­11 CPU X86 FLAGS PSW

PSW CPU
PSW PDP­11

CPU PSW
CPU CPU

PSW

PSW CPU
CPU

X86
PDP­11 PSW

Intel CPU
PSW

gate
CPU 3

0
CALL JMP

CPU

CPU task gate interrupt gate
trap gate call gate

64 3.1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

196

3.1

TSS CS DS GDT LDT
task state segment TSS TSS

CPU CR3
CPU

CPU TSS
TSS CPU

CPU ”TR TSS Linux
task_struct

Linux Intel Linux
CALL

JMP DPL
64 3.2

3.2

3 110 111
100

TSS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

197

D
0

CPU
CPU CPU EFLAGS IF

0 IF

2 GDTR
LDTR GDTR
LDTR TI Linux

GDT LDT WINE

TSS TSS TSS 2
bit44 S 0

DPL CPU
CPU DPL

CPU CPL PDP­11
PSW DPL

i386
Intel i386 CPU Linux

Linux

INT CPU
DPL

CPU CPL CPL DPL DPL
CPU

DPL CPL DPL CPL
CPU

general protection exception
CPU EFLAGS

CS EIP

DPL CPL TSS
SS ESP SS ESP

CPU 0 1 2 CPU TR
TSS DPL TSS SS ESP

SS ESP CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

198

EFLAGS
3.3

3.3

Linux CPU
3 0

CPU
0 GDT

LDT CPU IDTR
IDT

3.4 i386
i386 Linux

Linux
i386

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

199

Intel i386 Intel
i386

Linux i386
Linux

3.4

3.2 IDT

Linux trap_init() init_IRQ()
trap_init() init_IRQ()

trap_init() arch/i386/kernel/traps.c

==================== arch/i386/kernel/traps.c 949 996 ====================
949 void __init trap_init(void)

950 {

951 #ifdef CONFIG_EISA

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

200

952 if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24))

953 EISA_bus = 1;

954 #endif

955

956 set_trap_gate(0,÷_error);

957 set_trap_gate(1,&debug);

958 set_intr_gate(2,&nmi);

959 set_system_gate(3,&int3); /* int3­5 can be called from all */

960 set_system_gate(4,&overflow);

961 set_system_gate(5,&bounds);

962 set_trap_gate(6,&invalid_op);

963 set_trap_gate(7,&device_not_available);

964 set_trap_gate(8,&double_fault);

965 set_trap_gate(9,&coprocessor_segment_overrun);

966 set_trap_gate(10,&invalid_TSS);

967 set_trap_gate(11,&segment_not_present);

968 set_trap_gate(12,&stack_segment);

969 set_trap_gate(13,&general_protection);

970 set_trap_gate(14,&page_fault);

971 set_trap_gate(15,&spurious_interrupt_bug);

972 set_trap_gate(16,&coprocessor_error);

973 set_trap_gate(17,&alignment_check);

974 set_trap_gate(18,&machine_check);

975 set_trap_gate(19,&simd_coprocessor_error);

976

977 set_system_gate(SYSCALL_VECTOR,&system_call);

978

979 /*

980 * default LDT is a single­entry callgate to lcall7 for iBCS

981 * and a callgate to lcall27 for Solaris/x86 binaries

982 */

983 set_call_gate(&default_ldt[0],lcall7);

984 set_call_gate(&default_ldt[4],lcall27);

985

986 /*

987 * Should be a barrier for any external CPU state.

988 */

989 cpu_init();

990

991 #ifdef CONFIG_X86_VISWS_APIC

992 superio_init();

993 lithium_init();

994 cobalt_init();

995 #endif

996 }

19 CPU
14 CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

201

14 0xe
SYSCALL_VECTOR include/asm­i386/hw_irq.h

24 0x80 “int $0x80
Linux Unix

iBCS Solaris/x86 Linux
983 984 SGI

991
set_trap_gate()

set_system_gate() set_call_gate() set_intr_gate()
958 arch/i386/kernel/traps.c

==================== arch/i386/kernel/traps.c 808 826 ====================
808 void set_intr_gate(unsigned int n, void *addr)

809 {

810 _set_gate(idt_table+n,14,0,addr);

811 }

812

813 static void __init set_trap_gate(unsigned int n, void *addr)

814 {

815 _set_gate(idt_table+n,15,0,addr);

816 }

817

818 static void __init set_system_gate(unsigned int n, void *addr)

819 {

820 _set_gate(idt_table+n,15,3,addr);

821 }

822

823 static void __init set_call_gate(void *a, void *addr)

824 {

825 _set_gate(a,12,3,addr);

826 }

_set_gate() idt_table n
2 3 2 D

14 D 1 110 set_intr_gate() 3 DPL
DPL 0 CPU

DPL “INT 2”
3 DPL 0

CPU set_trap_gate()
DPL 0 _set_gate() 2 15 111

CPU
2 handle_mm_fault()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

202

set_system_gate() DPL 3
“int $0x80 DPL 3

IDT _set_gate() arch/i386/kernel/traps.c

==================== arch/i386/kernel/traps.c 788 799 ====================
788 #define _set_gate(gate_addr,type,dpl,addr) \

789 do { \

790 int __d0, __d1; \

791 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \

792 "movw %4,%%dx\n\t" \

793 "movl %%eax,%0\n\t" \

794 "movl %%edx,%1" \

795 :"=m" (*((long *) (gate_addr))), \

796 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \

797 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \

798 "3" ((char *) (addr)),"2" (__KERNEL_CS << 16)); \

799 } while (0)

do {} while (0) 790 798
1 795 “:

797 2 “: %0 %1 %2 %3
%0 gate_addr %1 (gate_addr+1) %2

__d0 %%eax %3 __d1 %%edx 797
798 %0 %3 %4

%3 %2 %3 %2

3.5

3.5

791 %%dx %%ax %%edx
addr %%eax (__KERNEL_CS << 16) 791 %%edx 16 %%eax 16

%%dx %%edx %%eax
16 __KERNEL_CS 16 addr 16 792 (0x8000+(dpl<<13)+(type<<8))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

203

%%edx 16 %%edx 16 addr 16 16 P 1
0x8000 DPL dpl dpl<<13 D type type<<8

0 2 793 %%eax *gate_addr 794
%%edx *(gate_addr+1)

IDT

trap_init() CPU IDT
init_IRQ() init_IRQ()

arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 438 457 ====================
438 void __init init_IRQ(void)

439 {

440 int i;

441

442 #ifndef CONFIG_X86_VISWS_APIC

443 init_ISA_irqs();

444 #else

445 init_VISWS_APIC_irqs();

446 #endif

447 /*

448 * Cover the whole vector space, no vector can escape

449 * us. (some of these will be overridden and become

450 * 'special' SMP interrupts)

451 */

452 for (i = 0; i < NR_IRQS; i++) {

453 int vector = FIRST_EXTERNAL_VECTOR + i;

454 if (vector != SYSCALL_VECTOR)

455 set_intr_gate(vector, interrupt[i]);

456 }

457

init_ISA_irq() PC 8259A
irq_desc[] i386 256

CPU
Linux

irq_desc[]

FIRST_EXTERNAL_VECTOR NR_IRQS IDT

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

204

FIRST_EXTERNAL_VECTOR include/asm­i386/hw_irq.h 22 0x20 NR_IRQS
224 include/asm­i386/irq.h 24 0x80

interrupt[]
interrupt[] arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 98 119 ====================
98 #define IRQ(x,y) \

99 IRQ##x##y##_interrupt

100

101 #define IRQLIST_16(x) \

102 IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \

103 IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \

104 IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \

105 IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)

106

107 void (*interrupt[NR_IRQS])(void) = {

108 IRQLIST_16(0x0),

109

110 #ifdef CONFIG_X86_IO_APIC

111 IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3),

112 IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),

113 IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),

114 IRQLIST_16(0xc), IRQLIST_16(0xd)

115 #endif

116 };

117

118 #undef IRQ

119 #undef IRQLIST_16

107 IRQLIST_16(x) IRQ(x,y) 98
gcc ## 108

0x0 IRQ_LIST_16() 102 IRQ(x,0)
IRQ0x00_interrupt IRQ0x01_interrupt IRQ0x02_interrupt IRQ0x0f_interrupt

gcc
interrupt[] 16 CPU NULL

SMP IRQ0x10 IRQ0xdf 208
IRQ0x00_interrupt IRQ0x0f_interrupt 16

arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 38 51 ====================
38 #define BI(x,y) \

39 BUILD_IRQ(x##y)

40

41 #define BUILD_16_IRQS(x) \

42 BI(x,0) BI(x,1) BI(x,2) BI(x,3) \

43 BI(x,4) BI(x,5) BI(x,6) BI(x,7) \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

205

44 BI(x,8) BI(x,9) BI(x,a) BI(x,b) \

45 BI(x,c) BI(x,d) BI(x,e) BI(x,f)

46

47 /*

48 * ISA PIC or low IO­APIC triggered (INTA­cycle or APIC) interrupts:

49 * (these are usually mapped to vectors 0x20­0x2f)

50 */

51 BUILD_16_IRQS(0x0)

51 BUILD_16_IRQS(0x0) BUILD_IRQ(0x00)
BUILD_IRQ(0x0f) 16 BUILD_IRQ() include/asm­i386/hw_irq.h

==================== include/asm­i386/hw_irq.h 172 178 ====================
172 #define BUILD_IRQ(nr) \

173 asmlinkage void IRQ_NAME(nr); \

174 __asm__(\

175 "\n"__ALIGN_STR"\n" \

176 SYMBOL_NAME_STR(IRQ) #nr "_interrupt:\n\t" \

177 "pushl $"#nr"­256\n\t" \

178 "jmp common_interrupt");

==================== include/asm­i386/hw_irq.h 110 111 ====================
110 #define IRQ_NAME2(nr) nr##_interrupt(void)

111 #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr)

gcc

asmlinkage void IRQ0x01_interrupt();

__asm__ (\

"\n" \

"IRQ0x01_interrupt: \n\t" \

"pushl $0x01 ­ 256 \n\t" \

"jmp common_interrupt");

common_interrupt
IRQ0x01_interrupt IRQ0x02_interrupt

IRQ0x00_interrupt IRQ0x0f_interrupt 0x0fffff00
0xffffff0f common_interrupt gcc

BUILD_COMMON_IRQ()
init_IRQ() arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 458 458 ====================
458 #ifdef CONFIG_SMP

==================== arch/i386/kernel/i8259.c 485 505 ====================
485 #endif

486

487 /*

488 * Set the clock to HZ Hz, we already have a valid

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

206

489 * vector now:

490 */

491 outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */

492 outb_p(LATCH & 0xff , 0x40); /* LSB */

493 outb(LATCH >> 8 , 0x40); /* MSB */

494

495 #ifndef CONFIG_VISWS

496 setup_irq(2, &irq2);

497 #endif

498

499 /*

500 * External FPU? Set up irq13 if so, for

501 * original braindamaged IBM FERR coupling.

502 */

503 if (boot_cpu_data.hard_math && !cpu_has_fpu)

504 setup_irq(13, &irq13);

505 }

SMP SGI
IRQ0x00_interrupt

IRQ0 irq
common_interrupt

3.3

IDT
CPU CPU 0

INT
debug INT 3 0x80 0x20 0x20 2

224

IDT
irq_desc[]

include/linux/irq.h

==================== include/linux/irq.h 23 55 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

207

23 /*

24 * Interrupt controller descriptor. This is all we need

25 * to describe about the low­level hardware.

26 */

27 struct hw_interrupt_type {

28 const char * typename;

29 unsigned int (*startup)(unsigned int irq);

30 void (*shutdown)(unsigned int irq);

31 void (*enable)(unsigned int irq);

32 void (*disable)(unsigned int irq);

33 void (*ack)(unsigned int irq);

34 void (*end)(unsigned int irq);

35 void (*set_affinity)(unsigned int irq, unsigned long mask);

36 };

37

38 typedef struct hw_interrupt_type hw_irq_controller;

39

40 /*

41 * This is the "IRQ descriptor", which contains various information

42 * about the irq, including what kind of hardware handling it has,

43 * whether it is disabled etc etc.

44 *

45 * Pad this out to 32 bytes for cache and indexing reasons.

46 */

47 typedef struct {

48 unsigned int status; /* IRQ status */

49 hw_irq_controller *handler;

50 struct irqaction *action; /* IRQ action list */

51 unsigned int depth; /* nested irq disables */

52 spinlock_t lock;

53 } ____cacheline_aligned irq_desc_t;

54

55 extern irq_desc_t irq_desc [NR_IRQS];

action
handler hw_interrupt_type

i8259A enable disable ack
end init_IRQ()

init_ISA_irqs() arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 413 436 ====================
413 void __init init_ISA_irqs (void)

414 {

415 int i;

416

417 init_8259A(0);

418

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

208

419 for (i = 0; i < NR_IRQS; i++) {

420 irq_desc[i].status = IRQ_DISABLED;

421 irq_desc[i].action = 0;

422 irq_desc[i].depth = 1;

423

424 if (i < 16) {

425 /*

426 * 16 old­style INTA­cycle interrupts:

427 */

428 irq_desc[i].handler = &i8259A_irq_type;

429 } else {

430 /*

431 * 'high' PCI IRQs filled in on demand

432 */

433 irq_desc[i].handler = &no_irq_type;

434 }

435 }

436 }

init_8259A() 8259A arch/i386/kernel/i8259.c
16 handler i8259A_irq_type

arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 148 157 ====================
148 static struct hw_interrupt_type i8259A_irq_type = {

149 "XT­PIC",

150 startup_8259A_irq,

151 shutdown_8259A_irq,

152 enable_8259A_irq,

153 disable_8259A_irq,

154 mask_and_ack_8259A,

155 end_8259A_irq,

156 NULL

157 };

irqaction include/linux/interrupt.h

==================== include/linux/interrupt.h 14 21 ====================
14 struct irqaction {

15 void (*handler)(int, void *, struct pt_regs *);

16 unsigned long flags;

17 unsigned long mask;

18 const char *name;

19 void *dev_id;

20 struct irqaction *next;

21 };

handler
IDT

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

209

CPU IRQ0x01_interrupt()
ack() end() iret

request_irq()

request_irq() arch/i386/kernel/irq.c

==================== arch/i386/kernel/irq.c 630 705 ====================
630 /**

631 * request_irq ­ allocate an interrupt line

632 * @irq: Interrupt line to allocate

633 * @handler: Function to be called when the IRQ occurs

634 * @irqflags: Interrupt type flags

635 * @devname: An ascii name for the claiming device

636 * @dev_id: A cookie passed back to the handler function

637 *

638 * This call allocates interrupt resources and enables the

639 * interrupt line and IRQ handling. From the point this

640 * call is made your handler function may be invoked. Since

641 * your handler function must clear any interrupt the board

642 * raises, you must take care both to initialise your hardware

643 * and to set up the interrupt handler in the right order.

644 *

645 * Dev_id must be globally unique. Normally the address of the

646 * device data structure is used as the cookie. Since the handler

647 * receives this value it makes sense to use it.

648 *

649 * If your interrupt is shared you must pass a non NULL dev_id

650 * as this is required when freeing the interrupt.

651 *

652 * Flags:

653 *

654 * SA_SHIRQ Interrupt is shared

655 *

656 * SA_INTERRUPT Disable local interrupts while processing

657 *

658 * SA_SAMPLE_RANDOM The interrupt can be used for entropy

659 *

660 */

661

662 int request_irq(unsigned int irq,

663 void (*handler)(int, void *, struct pt_regs *),

664 unsigned long irqflags,

665 const char * devname,

666 void *dev_id)

667 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

210

668 int retval;

669 struct irqaction * action;

670

671 #if 1

672 /*

673 * Sanity­check: shared interrupts should REALLY pass in

674 * a real dev­ID, otherwise we'll have trouble later trying

675 * to figure out which interrupt is which (messes up the

676 * interrupt freeing logic etc).

677 */

678 if (irqflags & SA_SHIRQ) {

679 if (!dev_id)

680 printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[­1]);

681 }

682 #endif

683

684 if (irq >= NR_IRQS)

685 return ­EINVAL;

686 if (!handler)

687 return ­EINVAL;

688

689 action = (struct irqaction *)

690 kmalloc(sizeof(struct irqaction), GFP_KERNEL);

691 if (!action)

692 return ­ENOMEM;

693

694 action­>handler = handler;

695 action­>flags = irqflags;

696 action­>mask = 0;

697 action­>name = devname;

698 action­>next = NULL;

699 action­>dev_id = dev_id;

700

701 retval = setup_irq(irq, action);

702 if (retval)

703 kfree(action);

704 return retval;

705 }

irq
CPU

IRQ0 0x20
16 IRQ0

IRQ15 i8259A irqflags SA_SHIRQ
dev_id

dev_id dev_id request_irq()
dev_id

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

211

void* request_irq() printk()
/var/log/messages ”syslogd klogd

(&irq)[­1] irq &irq irq
&irq printk()

request_irq()
irqaction action setup_irq()

arch/i386/kernel/irq.c

==================== arch/i386/kernel/irq.c 958 1014 ====================
958 /* this was setup_x86_irq but it seems pretty generic */

959 int setup_irq(unsigned int irq, struct irqaction * new)

960 {

961 int shared = 0;

962 unsigned long flags;

963 struct irqaction *old, **p;

964 irq_desc_t *desc = irq_desc + irq;

965

966 /*

967 * Some drivers like serial.c use request_irq() heavily,

968 * so we have to be careful not to interfere with a

969 * running system.

970 */

971 if (new­>flags & SA_SAMPLE_RANDOM) {

972 /*

973 * This function might sleep, we want to call it first,

974 * outside of the atomic block.

975 * Yes, this might clear the entropy pool if the wrong

976 * driver is attempted to be loaded, without actually

977 * installing a new handler, but is this really a problem,

978 * only the sysadmin is able to do this.

979 */

980 rand_initialize_irq(irq);

981 }

982

983 /*

984 * The following block of code has to be executed atomically

985 */

986 spin_lock_irqsave(&desc­>lock,flags);

987 p = &desc­>action;

988 if ((old = *p) != NULL) {

989 /* Can't share interrupts unless both agree to */

990 if (!(old­>flags & new­>flags & SA_SHIRQ)) {

991 spin_unlock_irqrestore(&desc­>lock,flags);

992 return ­EBUSY;

993 }

994

995 /* add new interrupt at end of irq queue */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

212

996 do {

997 p = &old­>next;

998 old = *p;

999 } while (old);

1000 shared = 1;

1001 }

1002

1003 *p = new;

1004

1005 if (!shared) {

1006 desc­>depth = 0;

1007 desc­>status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);

1008 desc­>handler­>startup(irq);

1009 }

1010 spin_unlock_irqrestore(&desc­>lock,flags);

1011

1012 register_irq_proc(irq);

1013 return 0;

1014 }

entropy
Linux

irqflags
SA_SAMPLE_RANDOM 1 rand_initialize_irq()

986 spin_lock_irqsave() CPU
SMP spin_lock_irqsave()

spin_unlock_irqrestore()
irqaction 1003

1006 1008 startup irqaction

request_irq()

3.4

i386 CPU CPU
CPU

Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

213

i8259A CPU INTR
CPU

CPU IDT
CPU

IRQ0x03_interrupt CPU CPL 3
DPL 0 CPU TR

TSS 0
CPU

CPU TSS
CPU IRQ0x03_interrupt

EFLAGS

IRQ0xYY_interrupt

gcc

__asm__ (\

"\n" \

"IRQ0x03_interrupt: \n\t" \

"pushl $0x03 ­ 256 \n\t" \

"jmp common_interrupt");

common_interrupt
0x03 256

0x03

0x1000
0

“orl %%eax, %%eax “testl %%ecx, %%ecx

common_interrupt() include/asm­i386/hw_irq.h

==================== include/asm­i386/hw_irq.h 152 161 ====================
[IRQ0x03interrupt­>common_interrupt]
152 #define BUILD_COMMON_IRQ() \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

214

153 asmlinkage void call_do_IRQ(void); \

154 __asm__(\

155 "\n" __ALIGN_STR"\n" \

156 "common_interrupt:\n\t" \

157 SAVE_ALL \

158 "pushl $ret_from_intr\n\t" \

159 SYMBOL_NAME_STR(call_do_IRQ)":\n\t" \

160 "jmp "SYMBOL_NAME_STR(do_IRQ));

161

SAVE_ALL
SAVE_ALL

arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 86 99 ====================
86 #define SAVE_ALL \

87 cld; \

88 pushl %es; \

89 pushl %ds; \

90 pushl %eax; \

91 pushl %ebp; \

92 pushl %edi; \

93 pushl %esi; \

94 pushl %edx; \

95 pushl %ecx; \

96 pushl %ebx; \

97 movl $(__KERNEL_DS),%edx; \

98 movl %edx,%ds; \

99 movl %edx,%es;

EFLAGS SAVE_ALL
CPU DS ES

__KERNEL_DS 2
__KERNEL_DS __USER_DS 0 DPL 0

3 SS SP
SAVE_ALL

3.6

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

215

3.6

3.6 arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 50 64 ====================
50 EBX = 0x00

51 ECX = 0x04

52 EDX = 0x08

53 ESI = 0x0C

54 EDI = 0x10

55 EBP = 0x14

56 EAX = 0x18

57 DS = 0x1C

58 ES = 0x20

59 ORIG_EAX = 0x24

60 EIP = 0x28

61 CS = 0x2C

62 EFLAGS = 0x30

63 OLDESP = 0x34

64 OLDSS = 0x38

EAX entry.S %%eax
common_interrupt

­256 ORIG_EAX

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

216

common_interrupt SAVE_ALL ret_from_intr
jmp do_IRQ() IRQ0x03_interrrupt

common_interrupt return common_interrupt
IRQ0x03_interrupt IRQ0x03_interrupt do_IRQ()

jmp do_IRQ() ret_from_intr
do_IRQ() CPU ret_from_intr do_IRQ()

ret_from_intr do_IRQ() arch/i386/kernel/irq.c

==================== arch/i386/kernel/irq.c 543 565 ====================
[IRQ0x03_interrupt­>common_interrupt­>do_IRQ()]
543 /*

544 * do_IRQ handles all normal device IRQ's (the special

545 * SMP cross­CPU interrupts have their own specific

546 * handlers).

547 */

548 asmlinkage unsigned int do_IRQ(struct pt_regs regs)

549 {

550 /*

551 * We ack quickly, we don't want the irq controller

552 * thinking we're snobs just because some other CPU has

553 * disabled global interrupts (we have already done the

554 * INT_ACK cycles, it's too late to try to pretend to the

555 * controller that we aren't taking the interrupt).

556 *

557 * 0 return value means that this irq is already being

558 * handled by some other CPU. (or is disabled)

559 */

560 int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code */

561 int cpu = smp_processor_id();

562 irq_desc_t *desc = irq_desc + irq;

563 struct irqaction * action;

564 unsigned int status;

565

pt_regs
pt_regs

include/asm­i386/ptrace.h

==================== include/asm­i386/ptrace.h 23 42 ====================
23 /* this struct defines the way the registers are stored on the

24 stack during a system call. */

25

26 struct pt_regs {

27 long ebx;

28 long ecx;

29 long edx;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

217

30 long esi;

31 long edi;

32 long ebp;

33 long eax;

34 int xds;

35 int xes;

36 long orig_eax;

37 long eip;

38 int xcs;

39 long eflags;

40 long esp;

41 int xss;

42 };

CPU
do_IRQ() do_IRQ()

ret_from_intr
do_IRQ() pt_regs

2
do_page_fault()

asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code);

struct pt_regs

CPU do_IRQ()

IRQ0x03_interrupt (0x03­256)
do_IRQ() IRQ3

0xffffff03 regs.orig_eax 0x03 do_IRQ()

561 smp_processor_id() SMP 0
irq_desc[] 562

do_IRQ()

==================== arch/i386/kernel/irq.c 566 587 ====================
[IRQ0x03_interrupt­>common_interrupt­>do_IRQ()]
566 kstat.irqs[cpu][irq]++;

567 spin_lock(&desc­>lock);

568 desc­>handler­>ack(irq);

569 /*

570 REPLAY is when Linux resends an IRQ that was dropped earlier

571 WAITING is used by probe to mark irqs that are being tested

572 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

218

573 status = desc­>status & ~(IRQ_REPLAY | IRQ_WAITING);

574 status |= IRQ_PENDING; /* we _want_ to handle it */

575

576 /*

577 * If the IRQ is disabled for whatever reason, we cannot

578 * use the action we have.

579 */

580 action = NULL;

581 if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {

582 action = desc­>action;

583 status &= ~IRQ_PENDING; /* we commit to handling */

584 status |= IRQ_INPROGRESS; /* we are handling it */

585 }

586 desc­>status = status;

587

CPU
567 spin_lock() SMP

i8259A CPU CPU ACK
568 desc­>handle­>ack

569 586 desc­>status
IRQ_INPROGRESS 1 IRQ_PENDING 0 IRQ_INPROGRESS

IRQ_PENDING

==================== arch/i386/kernel/irq.c 588 623 ====================
[IRQ0x03_interrupt­>common_interrupt­>do_IRQ()]
588 /*

589 * If there is no IRQ handler or it was disabled, exit early.

590 Since we set PENDING, if another processor is handling

591 a different instance of this same irq, the other processor

592 will take care of it.

593 */

594 if (!action)

595 goto out;

596

597 /*

598 * Edge triggered interrupts need to remember

599 * pending events.

600 * This applies to any hw interrupts that allow a second

601 * instance of the same irq to arrive while we are in do_IRQ

602 * or in the handler. But the code here only handles the _second_

603 * instance of the irq, not the third or fourth. So it is mostly

604 * useful for irq hardware that does not mask cleanly in an

605 * SMP environment.

606 */

607 for (;;) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

219

608 spin_unlock(&desc­>lock);

609 handle_IRQ_event(irq, ®s, action);

610 spin_lock(&desc­>lock);

611

612 if (!(desc­>status & IRQ_PENDING))

613 break;

614 desc­>status &= ~IRQ_PENDING;

615 }

616 desc­>status &= ~IRQ_INPROGRESS;

617 out:

618 /*

619 * The ­>end() handler has to deal with interrupts which got

620 * disabled while the handler was running.

621 */

622 desc­>handler­>end(irq);

623 spin_unlock(&desc­>lock);

IRQ_DISABLED 1
IRQ_INPROGRESS 1 action NULL 580 582

desc­>status IRQ_PENDING 1 574
583 CPU CPU

“IRQ_REPLAY

IRQ_INPROGRESS 1
SMP CPU CPU

do_IRQ() IRQ_INPROGRESS 1 595 desc­>status
IRQ_PENDING 1 2 CPU

IRQ_INPROGRESS 1 595 desc­>status
IN_PENDING 1 desc­>status IRQ_PENDING

1
IRQ_PENDING 612 613 for

609 handle_IRQ_event() 609 desc­>status
IRQ_PENDING 0 CPU 610

0 613 1
609

CPU
CPU

Linux
Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

220

CPU handle_IRQ_event() IRQ_PENDING 1 607 for

desc­>status SMP

622

for handle_IRQ_event()

arch/i386/kernel/irq.c

==================== arch/i386/kernel/irq.c 418 449 ====================
[IRQ0x03_interrupt­>common_interrupt­>do_IRQ()>handle_IRQ_event()]
418 /*

419 * This should really return information about whether

420 * we should do bottom half handling etc. Right now we

421 * end up _always_ checking the bottom half, which is a

422 * waste of time and is not what some drivers would

423 * prefer.

424 */

425 int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)

426 {

427 int status;

428 int cpu = smp_processor_id();

429

430 irq_enter(cpu, irq);

431

432 status = 1; /* Force the "do bottom halves" bit */

433

434 if (!(action­>flags & SA_INTERRUPT))

435 __sti();

436

437 do {

438 status |= action­>flags;

439 action­>handler(irq, action­>dev_id, regs);

440 action = action­>next;

441 } while (action);

442 if (status & SA_SAMPLE_RANDOM)

443 add_interrupt_randomness(irq);

444 __cli();

445

446 irq_exit(cpu, irq);

447

448 return status;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

221

449 }

430 irq_enter() 446 irq_exit()
include/asm­i386/hardirq.h

==================== include/asm­i386/hardirq.h 34 35 ====================
34 #define irq_enter(cpu, irq) (local_irq_count(cpu)++)

35 #define irq_exit(cpu, irq) (local_irq_count(cpu)­­)

0 CPU

”NMI
CPU

do_IRQ
IRQ_PENDING

request_irq()
irqflags SA_INTERRUPT 0

434 435 444 _sti() _cli()
437 441 do­while

irq action­>dev_id void
request_irq()

pt_regs regs

442 443
add_interrupt_randomness()

handle_IRQ_event() status 1 432
418 424 CPU do_IRQ()

==================== arch/i386/kernel/irq.c 624 628 ====================
[IRQ0x03_interrupt­>common_interrupt­>do_IRQ()]
624

625 if (softirq_active(cpu) & softirq_mask(cpu))

626 do_softirq();

627 return 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

222

628 }

624 Linux
softirq “bottom half

Linux

CPU bottom
half bh “cooked mode

bh

do_softirq() bh do_IRQ()
entry.S ret_from_intr

arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 273 280 ====================
[IRQ0x03_interrupt­>common_interrupt­>...­>ret_from_intr]
273 ENTRY(ret_from_intr)

274 GET_CURRENT(%ebx)

275 movl EFLAGS(%esp),%eax # mix EFLAGS and CS

276 movb CS(%esp),%al

277 testl $(VM_MASK | 3),%eax # return to VM86 mode or non­supervisor?

278 jne ret_with_reschedule

279 jmp restore_all

280

GET_CURRENT(%ebx) task_struct EBX 275
276 EAX EFLAGS 16 CS 8

32
• CPU VM86
• CPU
VM86 i386 DOS EFLAGS 16

CPU VM86 VM86 CS
CPU CPL Linux

0 3 CS 0
275 EFLAGS(%esp) %esp EFLAGS

%eflags EFLAGS
0x30 276 CS(%esp)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

223

restore_all VM86
ret_with_reschedule ret_with_reschedule

restore_all arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 217 233 ====================
[IRQ0x03_interrupt­>common_interrupt­>...­>ret_from_intr­>ret_with_reschedule]
217 ret_with_reschedule:

218 cmpl $0,need_resched(%ebx)

219 jne reschedule

220 cmpl $0,sigpending(%ebx)

221 jne signal_return

222 restore_all:

223 RESTORE_ALL

224

225 ALIGN

226 signal_return:

227 sti # we can get here from an interrupt handler

228 testl $(VM_MASK),EFLAGS(%esp)

229 movl %esp,%eax

230 jne v86_signal_return

231 xorl %edx,%edx

232 call SYMBOL_NAME(do_signal)

233 jmp restore_all

EBX
task_struct need_resched(%ebx) task_struct need_resched

220 sigpending(%ebx) need_resched sigpending
arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 71 79 ====================
71 /*

72 * these are offsets into the task­struct.

73 */

74 state = 0

75 flags = 4

76 sigpending = 8

77 addr_limit = 12

78 exec_domain = 16

79 need_resched = 20

task_struct need_resched 0 reschedule
arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 287 289 ====================
[IRQ0x03_interrupt­>common_interrupt­>...­>ret_from_intr­>ret_with_reschedule­>reschedule]
287 reschedule:

288 call SYMBOL_NAME(schedule) # test

289 jmp ret_from_sys_call

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

224

schedule() ret_from_sys_call
schedule()

ret_from_sys_call restore_all
task_struct sigpending 0

226 228
VM86 %edx 0 231 do_signal() signal

222 restere_all ret_from_sys_call ret_from_intr
restore_all RESTORE_ALL

arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 101 112 ====================
101 #define RESTORE_ALL \

102 popl %ebx; \

103 popl %ecx; \

104 popl %edx; \

105 popl %esi; \

106 popl %edi; \

107 popl %ebp; \

108 popl %eax; \

109 1: popl %ds; \

110 2: popl %es; \

111 addl $4,%esp; \

112 3: iret; \

SAVE_ALL
SAVE_ALL arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 86 100 ====================
86 #define SAVE_ALL \

87 cld; \

88 pushl %es; \

89 pushl %ds; \

90 pushl %eax; \

91 pushl %ebp; \

92 pushl %edi; \

93 pushl %esi; \

94 pushl %edx; \

95 pushl %ecx; \

96 pushl %ebx; \

97 movl $(__KERNEL_DS),%edx; \

98 movl %edx,%ds; \

99 movl %edx,%es;

100

RESTORE_ALL 111 4 ORIG_EAX

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

225

do_IRQ()
8 irq_desc[]

popl
popl pop

popl
CPU 112 iret iret

CPU

3.5 Bottom Half

CPU
SA_INTERRUPT 0

“bottom half bh RISC
RISC CPU

RISC

bh i386
CISC bh

Linux
bh 2.4 2.3.43

bh_base[] 32
bh 32 bh_active bh_mask

32 bh_base[] 32
bh

(1) bh_base[] irq_desc[] irq_desc[]
bh_base[]

bh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

226

(2) bh_active bh_mask

(3) bh mark_bh() bh_active 1

(4) bh_mask 1 bh
do_IRQ()

do_bottom_half() bh do_bottom_half() do_IRQ()
bh do_bottom_half() do_IRQ() bh

bh bh
do_IRQ() bh do_bottom_half()

CPU do_bottom_half()
CPU

CPU CPU bh
CPU bh do_bottom_half() CPU bh

do_bottom_half() CPU
bh

CPU CPU SMP
Linux CPU SMP CPU SMP

bh
bh CPU CPU do_IRQ()

do_IRQ bh

bh
bh bh

2.4 softirq
softirq ”

signal
bh bh

CPU softirq

bh 2.4 softirq
softirq_init() kernel/softirq.c

==================== kernel/softirq.c 281 290 ====================
281 void __init softirq_init()

282 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

227

283 int i;

284

285 for (i=0; i<32; i++)

286 tasklet_init(bh_task_vec+i, bh_action, i);

287

288 open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);

289 open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);

290 }

bh

include/linux/interrupt.h

==================== include/linux/interrupt.h 56 62 ====================
56 enum

57 {

58 HI_SOFTIRQ=0,

59 NET_TX_SOFTIRQ,

60 NET_RX_SOFTIRQ,

61 TASKLET_SOFTIRQ

62 };

TASKLET_SOFTIRQ tasklet tasklet
“task

NET_TX_SOFTIRQ NET_RX_SOFTIRQ
softirq_init TASKLET_SOFTIRQ HI_SOFTRQ

bh bh bh_task_vec[] tasklet_struct

==================== kernel/softirq.c 233 233 ====================
233 struct tasklet_struct bh_task_vec[32];

include/linux/interrupt.h

==================== include/linux/interrupt.h 97 124 ====================
97 /* Tasklets ­­­ multithreaded analogue of BHs.

98

99 Main feature differing them of generic softirqs: tasklet

100 is running only on one CPU simultaneously.

101

102 Main feature differing them of BHs: different tasklets

103 may be run simultaneously on different CPUs.

104

105 Properties:

106 * If tasklet_schedule() is called, then tasklet is guaranteed

107 to be executed on some cpu at least once after this.

108 * If the tasklet is already scheduled, but its excecution is still not

109 started, it will be executed only once.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

228

110 * If this tasklet is already running on another CPU (or schedule is called

111 from tasklet itself), it is rescheduled for later.

112 * Tasklet is strictly serialized wrt itself, but not

113 wrt another tasklets. If client needs some intertask synchronization,

114 he makes it with spinlocks.

115 */

116

117 struct tasklet_struct

118 {

119 struct tasklet_struct *next;

120 unsigned long state;

121 atomic_t count;

122 void (*func)(unsigned long);

123 unsigned long data;

124 };

tasklet bh
tasklet bh CPU

tasklet tasklet tasklet_struct tasklet
func bh bh

bh tasklet bh
tasklet_init() kernel/softirq.c

==================== kernel/softirq.c 203 210 ====================
[softirq_init()>tasklet_init()]
203 void tasklet_init(struct tasklet_struct *t,

204 void (*func)(unsigned long), unsigned long data)

205 {

206 t­>func = func;

207 t­>data = data;

208 t­>state = 0;

209 atomic_set(&t­>count, 0);

210 }

softirq_init() bh 32 tasklet_struct tasklet_init() func
bh_action()

open_softirq()

==================== kernel/softirq.c 103 117 ====================
[softirq_init()>open_softirq()]
103 static spinlock_t softirq_mask_lock = SPIN_LOCK_UNLOCKED;

104

105 void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)

106 {

107 unsigned long flags;

108 int i;

109

110 spin_lock_irqsave(&softirq_mask_lock, flags);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

229

111 softirq_vec[nr].data = data;

112 softirq_vec[nr].action = action;

113

114 for (i=0; i<NR_CPUS; i++)

115 softirq_mask(i) |= (1<<nr);

116 spin_unlock_irqrestore(&softirq_mask_lock, flags);

117 }

softirq_vec[]
irq_desc[]

==================== kernel/softirq.c 48 48 ====================
48 static struct softirq_action softirq_vec[32] __cacheline_aligned;

softirq_action

==================== include/linux/interrupt.h 64 72 ====================
64 /* softirq mask and active fields moved to irq_cpustat_t in

65 * asm/hardirq.h to get better cache usage. KAO

66 */

67

68 struct softirq_action

69 {

70 void (*action)(struct softirq_action *);

71 void *data;

72 };

softirq_vec[] CPU CPU
CPU irq_stat[]

CPU

==================== include/asm­i386/hardirq.h 8 16 ====================
8 /* entry.S is sensitive to the offsets of these fields */

9 typedef struct {

10 unsigned int __softirq_active;

11 unsigned int __softirq_mask;

12 unsigned int __local_irq_count;

13 unsigned int __local_bh_count;

14 unsigned int __syscall_count;

15 unsigned int __nmi_count; /* arch dependent */

16 } ____cacheline_aligned irq_cpustat_t;

==================== kernel/softirq.c 45 45 ====================
45 irq_cpustat_t irq_stat[NR_CPUS];

==================== include/linux/irq_cpustat.h 22 30 ====================
22 #ifdef CONFIG_SMP

23 #define __IRQ_STAT(cpu, member) (irq_stat[cpu].member)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

230

24 #else

25 #define __IRQ_STAT(cpu, member) ((void)(cpu), irq_stat[0].member)

26 #endif

27

28 /* arch independent irq_stat fields */

29 #define softirq_active(cpu) __IRQ_STAT((cpu), __softirq_active)

30 #define softirq_mask(cpu) __IRQ_STAT((cpu), __softirq_mask)

__softirq_active __softirq_mask
open_softirq() action softirq_vec[] CPU

1 CPU softirq_init()
open_softirq() TASKLET_SOFTIRQ HI_SOFTIRQ

tasklet_action() tasklet_hi_action()
CPU tasklet_hi_vec[] tasklet_head

tasklet_head tasklet_struct

==================== kernel/softirq.c 167 167 ====================
167 struct tasklet_head tasklet_hi_vec[NR_CPUS] __cacheline_aligned;

==================== include/linux/interrupt.h 139 142 ====================
139 struct tasklet_head

140 {

141 struct tasklet_struct *list;

142 } __attribute__ ((__aligned__(SMP_CACHE_BYTES)));

bh tasklet_init() tasklet_struct func
bh_action() bh bh

bh init_bh() sched_init()

==================== kernel/sched.c 1260 1262 ====================
1260 init_bh(TIMER_BH, timer_bh);

1261 init_bh(TQUEUE_BH, tqueue_bh);

1262 init_bh(IMMEDIATE_BH, immediate_bh);

bh timer_bh() “bh “bh TIMER_BH

==================== include/linux/interrupt.h 24 43 ====================
24 /* Who gets which entry in bh_base. Things which will occur most often

25 should come first */

26

27 enum {

28 TIMER_BH = 0,

29 TQUEUE_BH,

30 DIGI_BH,

31 SERIAL_BH,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

231

32 RISCOM8_BH,

33 SPECIALIX_BH,

34 AURORA_BH,

35 ESP_BH,

36 SCSI_BH,

37 IMMEDIATE_BH,

38 CYCLADES_BH,

39 CM206_BH,

40 JS_BH,

41 MACSERIAL_BH,

42 ISICOM_BH

43 };

init_bh() kernel/softirq.c

==================== kernel/softirq.c 269 273 ====================
269 void init_bh(int nr, void (*routine)(void))

270 {

271 bh_base[nr] = routine;

272 mb();

273 }

bh_base[] mb() CPU

bh inline mark_bh() ”

do_timer() “mark_bh(TIMER_BH); timer_bh()
mark_bh() include/linux/interrupt.h

==================== include/linux/interrupt.h 232 235 ====================
232 static inline void mark_bh(int nr)

233 {

234 tasklet_hi_schedule(bh_task_vec+nr);

235 }

bh tasklet_struct bh_task_vec[] bh
tasklet_hi_schedule()

include/linux/interrupt.h bh_tasm_vec[] tasklet_struct
func bh_action()

==================== include/linux/interrupt.h 171 183 ====================
[mark_bh()>tasklet_hi_schedule()]
171 static inline void tasklet_hi_schedule(struct tasklet_struct *t)

172 {

173 if (!test_and_set_bit(TASKLET_STATE_SCHED, &t­>state)) {

174 int cpu = smp_processor_id();

175 unsigned long flags;

176

177 local_irq_save(flags);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

232

178 t­>next = tasklet_hi_vec[cpu].list;

179 tasklet_hi_vec[cpu].list = t;

180 __cpu_raise_softirq(cpu, HI_SOFTIRQ);

181 local_irq_restore(flags);

182 }

183 }

smp_processor_id() CPU tasklet_hi_vec[]
CPU t tasklet_struct bh

CPU CPU “schedule
tasklet_struct bh

tasklet_struct
tasklet_hi_schedule()

TASKLET_STATE_SCHED
__cpu_raise_softirq()

==================== include/linux/interrupt.h 77 80 ====================
[mark_bh()>tasklet_hi_schedule()>__cpu_raise_softirq()]
77 static inline void __cpu_raise_softirq(int cpu, int nr)

78 {

79 softirq_active(cpu) |= (1<<nr);

80 }

softirq_active() CPU
__soft_irq_active 1

do_IRQ()
do_IRQ()

==================== arch/i386/kernel/irq.c 625 626 ====================
625 if (softirq_active(cpu) & softirq_mask(cpu))

626 do_softirq();

arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 205 215 ====================
205 ENTRY(ret_from_sys_call)

206 #ifdef CONFIG_SMP

207 movl processor(%ebx),%eax

208 shll $CONFIG_X86_L1_CACHE_SHIFT,%eax

209 movl SYMBOL_NAME(irq_stat)(,%eax),%ecx # softirq_active

210 testl SYMBOL_NAME(irq_stat)+4(,%eax),%ecx # softirq_mask

211 #else

212 movl SYMBOL_NAME(irq_stat),%ecx # softirq_active

213 testl SYMBOL_NAME(irq_stat)+4,%ecx # softirq_mask

214 #endif

215 jne handle_softirq

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

233

==================== arch/i386/kernel/entry.S 282 284 ====================
282 handle_softirq:

283 call SYMBOL_NAME(do_softirq)

284 jmp ret_from_intr

processor task_struct 207
task_struct CPU SYMBOL_NAME(irq_stat)(,%eax) irq_stat[cpu]

SYMBOL_NAME(irq_stat)+4(,%eax)
32 irq_cpustat_t

arch/i386/kernel/entry.S
do_IRQ() C

do_softirq() kernel/softirq.c

==================== kernel/softirq.c 50 100 ====================
50 asmlinkage void do_softirq()

51 {

52 int cpu = smp_processor_id();

53 __u32 active, mask;

54

55 if (in_interrupt())

56 return;

57

58 local_bh_disable();

59

60 local_irq_disable();

61 mask = softirq_mask(cpu);

62 active = softirq_active(cpu) & mask;

63

64 if (active) {

65 struct softirq_action *h;

66

67 restart:

68 /* Reset active bitmask before enabling irqs */

69 softirq_active(cpu) &= ~active;

70

71 local_irq_enable();

72

73 h = softirq_vec;

74 mask &= ~active;

75

76 do {

77 if (active & 1)

78 h­>action(h);

79 h++;

80 active >>= 1;

81 } while (active);

82

83 local_irq_disable();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

234

84

85 active = softirq_active(cpu);

86 if ((active &= mask) != 0)

87 goto retry;

88 }

89

90 local_bh_enable();

91

92 /* Leave with locally disabled hard irqs. It is critical to close

93 * window for infinite recursion, while we help local bh count,

94 * it protected us. Now we are defenceless.

95 */

96 return;

97

98 retry:

99 goto restart;

100 }

in_interrupt() include/asm­i386/hardirq.h

==================== include/asm­i386/hardirq.h 20 25 ====================
20 /*

21 * Are we in an interrupt context? Either doing bottom half

22 * or hardware interrupt processing?

23 */

24 #define in_interrupt() ({ int __cpu = smp_processor_id(); \

25 (local_irq_count(__cpu) + local_bh_count(__cpu) != 0); })

local_bh_disable() include/asm­i386/softirq.h

==================== include/asm­i386/softirq.h 7 11 ====================
7 #define cpu_bh_disable(cpu) do { local_bh_count(cpu)++; barrier(); } while (0)

8 #define cpu_bh_enable(cpu) do { barrier(); local_bh_count(cpu)­­; } while (0)

9

10 #define local_bh_disable() cpu_bh_disable(smp_processor_id())

11 #define local_bh_enable() cpu_bh_enable(smp_processor_id())

do_softirq() CPU
in_interrupt()
CPU 78

do_softirq()

bh_action() kernel/softirq.c

==================== kernel/softirq.c 235 267 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

235

[do_softirq()>bh_action()]
235 /* BHs are serialized by spinlock global_bh_lock.

236

237 It is still possible to make synchronize_bh() as

238 spin_unlock_wait(&global_bh_lock). This operation is not used

239 by kernel now, so that this lock is not made private only

240 due to wait_on_irq().

241

242 It can be removed only after auditing all the BHs.

243 */

244 spinlock_t global_bh_lock = SPIN_LOCK_UNLOCKED;

245

246 static void bh_action(unsigned long nr)

247 {

248 int cpu = smp_processor_id();

249

250 if (!spin_trylock(&global_bh_lock))

251 goto resched;

252

253 if (!hardirq_trylock(cpu))

254 goto resched_unlock;

255

256 if (bh_base[nr])

257 bh_base[nr]();

258

259 hardirq_endlock(cpu);

260 spin_unlock(&global_bh_lock);

261 return;

262

263 resched_unlock:

264 spin_unlock(&global_bh_lock);

265 resched:

266 mark_bh(nr);

267 }

bh 257 hardirq_trylock()

==================== include/asm­i386/hardirq.h 31 31 ====================
31 #define hardirq_trylock(cpu) (local_irq_count(cpu) == 0)

in_interrupt()
bh_action() spin_trylock() include/linux/spinlock.h

==================== include/linux/spinlock.h 74 74 ====================
74 #define spin_trylock(lock) (!test_and_set_bit(0,(lock)))

global_bh_lock CPU 253 260 CPU
CPU bh

bh bh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

236

timer_bh()
tasklet_action() bh_action()
kernel/softirq.c

==================== kernel/softirq.c 122 163 ====================
122 struct tasklet_head tasklet_vec[NR_CPUS] __cacheline_aligned;

123

124 static void tasklet_action(struct softirq_action *a)

125 {

126 int cpu = smp_processor_id();

127 struct tasklet_struct *list;

128

129 local_irq_disable();

130 list = tasklet_vec[cpu].list;

131 tasklet_vec[cpu].list = NULL;

132 local_irq_enable();

133

134 while (list != NULL) {

135 struct tasklet_struct *t = list;

136

137 list = list­>next;

138

139 if (tasklet_trylock(t)) {

140 if (atomic_read(&t­>count) == 0) {

141 clear_bit(TASKLET_STATE_SCHED, &t­>state);

142

143 t­>func(t­>data);

144 /*

145 * talklet_trylock() uses test_and_set_bit that imply

146 * an mb when it returns zero, thus we need the explicit

147 * mb only here: while closing the critical section.

148 */

149 #ifdef CONFIG_SMP

150 smp_mb__before_clear_bit();

151 #endif

152 tasklet_unlock(t);

153 continue;

154 }

155 tasklet_unlock(t);

156 }

157 local_irq_disable();

158 t­>next = tasklet_vec[cpu].list;

159 tasklet_vec[cpu].list = t;

160 __cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);

161 local_irq_enable();

162 }

163 }

bh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

237

3.6

2 do_page_fault() CPU
CPU

do_page_fault() do_page_fault() CPU

page_fault IDT trap_init() 970
CPU page_fault() CPU

CPU EFLAGS
CS EIP CPU

SS ESP

Intel

2 do_page_fault()
CPU iret

CPU
CPU iret

page_fault arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 410 412 ====================
410 ENTRY(page_fault)

411 pushl $ SYMBOL_NAME(do_page_fault)

412 jmp error_code

error_code common_interrupt
do_page_fault()

error_code arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 295 321 ====================
295 error_code:

296 pushl %ds

297 pushl %eax

298 xorl %eax,%eax

299 pushl %ebp

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

238

300 pushl %edi

301 pushl %esi

302 pushl %edx

303 decl %eax # eax = ­1

304 pushl %ecx

305 pushl %ebx

306 cld

307 movl %es,%ecx

308 movl ORIG_EAX(%esp), %esi # get the error code

309 movl ES(%esp), %edi # get the function address

310 movl %eax, ORIG_EAX(%esp)

311 movl %ecx, ES(%esp)

312 movl %esp,%edx

313 pushl %esi # push the error code

314 pushl %edx # push the pt_regs pointer

315 movl $(__KERNEL_DS),%edx

316 movl %edx,%ds

317 movl %edx,%es

318 GET_CURRENT(%ebx)

319 call *%edi

320 addl $8,%esp

321 jmp ret_from_exception

SAVE_ALL
3.7 CPU 307 CPU

SAVE_ALL
SAVE_ALL 3.7

ORIG_EAX

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

239

3.7

ORIG_EAX
CPU ES do_page_fault()

ORIG_EAX %esi
%eax %esi ORIG_EAX

­1 298 303 %ecx ES
%edi 307 %es %ecx 311

do_page_fault() %edi %es 311
ORIG_EAX ­1

RESTORE_ALL ORIG_EAX
error_code

arch/i386/kernel/entry.S coprocessor
coprocessor_error

==================== arch/i386/kernel/entry.S 323 326 ====================
323 ENTRY(coprocessor_error)

324 pushl $0

325 pushl $ SYMBOL_NAME(do_coprocessor_error)

326 jmp error_code

“pushl $0 0
error_code 313 314 %esi %edx

%esi 312 %edx

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

240

SAVE_ALL pt_regs
pt_regs do_page_fault()

319

do_page_fault() CPU ret_from_exception
do_page_fault() void ret_from_exception arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 260 279 ====================
[page_fault­>error_code­>...­>ret_from_exception]
260 ret_from_exception:

261 #ifdef CONFIG_SMP

262 GET_CURRENT(%ebx)

263 movl processor(%ebx),%eax

264 shll $CONFIG_X86_L1_CACHE_SHIFT,%eax

265 movl SYMBOL_NAME(irq_stat)(,%eax),%ecx # softirq_active

266 testl SYMBOL_NAME(irq_stat)+4(,%eax),%ecx # softirq_mask

267 #else

268 movl SYMBOL_NAME(irq_stat),%ecx # softirq_active

269 testl SYMBOL_NAME(irq_stat)+4,%ecx # softirq_mask

270 #endif

271 jne handle_softirq

272

273 ENTRY(ret_from_intr)

274 GET_CURRENT(%ebx)

275 movl EFLAGS(%esp),%eax # mix EFLAGS and CS

276 movb CS(%esp),%al

277 testl $(VM_MASK | 3),%eax # return to VM86 mode or non­supervisor?

278 jne ret_with_reschedule

279 jmp restore_all

ret_from_intr

3.7

make
make

CPU
sleep()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

241

”

CPU

CPU
Linux

“heart beat
IRQ

init/main.c start_kernel()

==================== init/main.c 534 537 ====================
534 trap_init();

535 init_IRQ();

536 sched_init();

537 time_init();

time_init()
arch/i386/kernel/time.c

==================== arch/i386/kernel/time.c 626 631 ====================
626 void __init time_init(void)

627 {

628 extern int x86_udelay_tsc;

629

630 xtime.tv_sec = get_cmos_time();

631 xtime.tv_usec = 0;

==================== arch/i386/kernel/time.c 704 704 ====================
704 setup_irq(0, &irq0);

==================== arch/i386/kernel/time.c 706 706 ====================
706 }

xtime
struct timeval include/linux/time.h

==================== include/linux/time.h 88 91 ====================
88 struct timeval {

89 time_t tv_sec; /* seconds */

90 suseconds_t tv_usec; /* microseconds */

91 };

CMOS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

242

CMOS
630 get_cmos_time() CMOS xtime

jiffies jiffy
tick HZ

include/asm­i386/param.h jiffies xtime

i386 CPU Pentium 64
Time Stamp Counter TSC CPU CPU

500MHz TSC 2ns TSC 64
TSC

setup_irq()
0 2 irqaction irq0 irq0

arch/i386/kernel/time.c

==================== arch/i386/kernel/time.c 547 547 ====================
547 static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};

timer_interrupt() 0 irq0.flags
SA_SHIRQ 0 timer_interrupt() SA_INTERRUPT

1 timer_interrupt() arch/i386/kernel/time.c

==================== arch/i386/kernel/time.c 454 505 ====================
454 /*

455 * This is the same as the above, except we _also_ save the current

456 * Time Stamp Counter value at the time of the timer interrupt, so that

457 * we later on can estimate the time of day more exactly.

458 */

459 static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)

460 {

461 int count;

462

463 /*

464 * Here we are in the timer irq handler. We just have irqs locally

465 * disabled but we don't know if the timer_bh is running on the other

466 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need

467 * the irq version of write_lock because as just said we have irq

468 * locally disabled. ­arca

469 */

470 write_lock(&xtime_lock);

471

472 if (use_tsc)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

243

473 {

474 /*

475 * It is important that these two operations happen almost at

476 * the same time. We do the RDTSC stuff first, since it's

477 * faster. To avoid any inconsistencies, we need interrupts

478 * disabled locally.

479 */

480

481 /*

482 * Interrupts are just disabled locally since the timer irq

483 * has the SA_INTERRUPT flag set. ­arca

484 */

485

486 /* read Pentium cycle counter */

487

488 rdtscl(last_tsc_low);

489

490 spin_lock(&i8253_lock);

491 outb_p(0x00, 0x43); /* latch the count ASAP */

492

493 count = inb_p(0x40); /* read the latched count */

494 count |= inb(0x40) << 8;

495 spin_unlock(&i8253_lock);

496

497 count = ((LATCH­1) ­ count) * TICK_SIZE;

498 delay_at_last_interrupt = (count + LATCH/2) / LATCH;

499 }

500

501 do_timer_interrupt(irq, NULL, regs);

502

503 write_unlock(&xtime_lock);

504

505 }

SMP 501
do_timer_interrupt()

==================== arch/i386/kernel/time.c 380 386 ====================
[timer_interrupt()>do_timer_interrupt()]
380 /*

381 * timer_interrupt() needs to keep up the real­time clock,

382 * as well as call the "do_timer()" routine every clocktick

383 */

384 static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)

385 {

386 #ifdef CONFIG_X86_IO_APIC

==================== arch/i386/kernel/time.c 400 435 ====================
400 #endif

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

244

401

402 #ifdef CONFIG_VISWS

403 /* Clear the interrupt */

404 co_cpu_write(CO_CPU_STAT,co_cpu_read(CO_CPU_STAT) & ~CO_STAT_TIMEINTR);

405 #endif

406 do_timer(regs);

407 /*

408 * In the SMP case we use the local APIC timer interrupt to do the

409 * profiling, except when we simulate SMP mode on a uniprocessor

410 * system, in that case we have to call the local interrupt handler.

411 */

412 #ifndef CONFIG_X86_LOCAL_APIC

413 if (!user_mode(regs))

414 x86_do_profile(regs­>eip);

415 #else

416 if (!smp_found_config)

417 smp_local_timer_interrupt(regs);

418 #endif

419

420 /*

421 * If we have an externally synchronized Linux clock, then update

422 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be

423 * called as close as possible to 500 ms before the new second starts.

424 */

425 if ((time_status & STA_UNSYNC) == 0 &&

426 xtime.tv_sec > last_rtc_update + 660 &&

427 xtime.tv_usec >= 500000 ­ ((unsigned) tick) / 2 &&

428 xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {

429 if (set_rtc_mmss(xtime.tv_sec) == 0)

430 last_rtc_update = xtime.tv_sec;

431 else

432 last_rtc_update = xtime.tv_sec ­ 600; /* do it again in 60 s */

433 }

434

435 #ifdef CONFIG_MCA

==================== arch/i386/kernel/time.c 449 450 ====================
449 #endif

450 }

SMP APIC SGI
402 405 PS/2 “Micro channel 435 449

420 433
do_timer() x86_do_profile() x86_do_profile()

do_timer() kernel/timer.c

==================== kernel/timer.c 674 685 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

245

[timer_interrupt()>do_timer_interrupt()>do_timer()]
674 void do_timer(struct pt_regs *regs)

675 {

676 (*(unsigned long *)&jiffies)++;

677 #ifndef CONFIG_SMP

678 /* SMP process accounting uses the local APIC timer */

679

680 update_process_times(user_mode(regs));

681 #endif

682 mark_bh(TIMER_BH);

683 if (TQ_ACTIVE(tq_timer))

684 mark_bh(TQUEUE_BH);

685 }

676 jiffies 1 “jiffies++
jiffies

gcc INC “jiffies++
jiffies MOV EAX MOV CPU

update_process_times()

682 684

bh CPU
bh 682 mark_bh() bh_task_vec[TIMER_BH]

tasklet_hi_vec CPU TIMER_BH timer_bh()
kernel/sched.c sched_init()

==================== kernel/sched.c 1260 1262 ====================
1260 init_bh(TIMER_BH, timer_bh);

1261 init_bh(TQUEUE_BH, tqueue_bh);

1262 init_bh(IMMEDIATE_BH, immediate_bh);

bh

timer_bh() TQUEUE_BH IMMEDIATE_BH
Linux bh 32 32 bh

20ms

Linux HZ

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

246

include/asm­i386/param.h HZ 100 10ms 20ms

TQUEUE_BH tq_timer

683 tq_timer mark_bh() bh_task_vec[TQUEUE_BH]
tasklet_hi_vec bh tqueue_bh()

TQUEUE_BH tq_timer
bh IMMEDIATE_BH

”timer_interrupt() ”timer_bh()
tqueue_bh()

CPU
do_IRQ() do_softirq()

timer_bh() tqueue_bh() tq_timer
timer_bh() do_timer()

timer_interrupt()
SA_INTERRUPT timer_bh() do_IRQ()

do_softirq()
do_softirq()

do_softirq() timer_bh()
TIMER_BH timer_bh() kernel/timer.c

==================== kernel/timer.c 668 672 ====================
668 void timer_bh(void)

669 {

670 update_times();

671 run_timer_list();

672 }

kernel/timer.c update_times()

==================== kernel/timer.c 643 666 ====================
[timer_bh()>update_times()]
643 /*

644 * This spinlock protect us from races in SMP while playing with xtime. ­arca

645 */

646 rwlock_t xtime_lock = RW_LOCK_UNLOCKED;

647

648 static inline void update_times(void)

649 {

650 unsigned long ticks;

651

652 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

247

653 * update_times() is run from the raw timer_bh handler so we

654 * just know that the irqs are locally enabled and so we don't

655 * need to save/restore the flags of the local CPU here. ­arca

656 */

657 write_lock_irq(&xtime_lock);

658

659 ticks = jiffies ­ wall_jiffies;

660 if (ticks) {

661 wall_jiffies += ticks;

662 update_wall_time(ticks);

663 }

664 write_unlock_irq(&xtime_lock);

665 calc_load(ticks);

666 }

update_wall_time() ”

xtime
wall_jiffies jiffies xtime

jiffies
calc_load() CPU 5

15 10 1

update_times() timer_bh() run_timer_list()
timer bh

run_timer_list()

timer_list include/linux/timer.h

==================== include/linux/timer.h 20 25 ====================
20 struct timer_list {

21 struct list_head list;

22 unsigned long expires;

23 unsigned long data;

24 void (*function)(unsigned long);

25 };

expires function bh data
bh

bh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

248

3.8

CPU CPU
CPU

CPU

CPU
CPU

CPU

DOS DOS
INT

Linux “int $0x80
IDT

sethostname() CPU

sethostname()

int sethostname(cost char *name, size_t len);

name len 0 ­1
error Linux

getpid()
sethostname()

C
ret ret iret

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Highlight

249

C
sethostname()

sethostname() /usr/lib/libc.a
GNU C GNU

libc.a

36 sethostname.o: file format elf32­i386

37

38 Disassembly of section .text:

39

40 00000000 <sethostname>:

41 0: 89 da mov %ebx,%edx

42 2: 8b 4c 24 08 mov 0x8(%esp,1),%ecx

43 6: 8b 5c 24 04 mov 0x4(%esp,1),%ebx

44 a: b8 4a 00 00 00 mov $0x4a,%eax

45 f: cd 80 int $0x80

46 11: 89 d3 mov %edx,%ebx

47 13: 3d 01 f0 ff ff cmp $0xfffff001,%eax

48 18: 0f 83 fc ff ff ff jae 1a <sethostname+0x1a>

49 1e: c3 ret

sethostname() %esp 4
name 8 len i386 32

32 “movl 0x8(%esp, 1), %ecx
%esp 0x8 1 len %ecx

name %ebx sethostname() 0x4a
%eax “int $0x80 Linux

CPU
INT

CPU %edx %ebx
%edx %edx

gcc %eax
%eax 0xfffff001 0xffffffff ­1 ­4095
__syscall_error() 1a:R_386_PC32 sethostname+0x1a

__syscall_error() __syscall_error() libc.a

1 sysdep.o: file format elf32­i386

2

3 Disassembly of section .text:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Highlight

250

4

5 00000000 <__syscall_error>:

6 0: f7 d8 neg %eax

7

8 00000002 <__syscall_error_1>:

9 2: 50 push %eax

10 3: e8 fc ff ff ff call 4 <__syscall_error_1+0x2>

11 8: 59 pop %ecx

12 9: 89 08 mov %ecx,(%eax)

13 b: b8 ff ff ff ff mov $0xffffffff,%eax

14 10: c3 ret

15

16

17 errno­loc.o: file format elf32­i386

18

19 Disassembly of section .text:

20

21 00000000 <__errno_location>:

22 0: 55 push %ebp

23 1: 89 e5 mov %esp,%ebp

24 3: 83 ec 08 sub $0x8,%esp

25 6: a1 00 00 00 00 mov 0x0,%eax

26 b: 85 c0 test %eax,%eax

27 d: 75 07 jne 16 <__errno_location+0x16>

28 f: b8 00 00 00 00 mov $0x0,%eax

29 14: c9 leave

30 15: c3 ret

31 16: e8 fc ff ff ff call 17 <__errno_location+0x17>

32 1b: 8b 80 b8 01 00 00 mov 0x1b8(%eax),%eax

33 21: eb f1 jmp 14 <__errno_location+0x14>

__syscall_error %eax 1 4095
__errno_location() errono %eax

%ecx errono %eax ­1
%eax ­1 errono

CPU

INT
CPU DPL 3 IDTR

IDT IDT 0x80 INT $0x80
system_call() CPU system_call()

CPU IRQ0xYY_interrupt

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

251

system_call() arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 195 205 ====================
195 ENTRY(system_call)

196 pushl %eax # save orig_eax

197 SAVE_ALL

198 GET_CURRENT(%ebx)

199 cmpl $(NR_syscalls),%eax

200 jae badsys

201 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

202 jne tracesys

203 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

204 movl %eax,EAX(%esp) # save the return value

205 ENTRY(ret_from_sys_call)

%eax orig_ax
SAVE_ALL

SAVE_ALL
pt_regs do_IRQ()

sethostname()
%ebx %ecx SAVE_ALL %ebx %ecx %ebx

1 %ecx 2 SAVE_ALL
%es %ds %eax %ebp %edi %esi %edx %ecx %ebx %eax

orig_ax %ebp frame
5

5 SAVE_ALL

GET_CURRENT(%ebx) %ebx task_struct
GET_CURRENT %eax

task_struct flags PT_TRACESYS
ptrace() PT_TRACESYS 1 Linux

strace system_call() 201
PT_TRACESYS 1 flags(%ebx)

%ebx task_struct flags flags
arch/i386/kernel/entry.S 75 4

PT_TRACESYS 0x20 1 tracesys arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 244 254 ====================
244 tracesys:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Highlight

sie
Highlight

252

245 movl $­ENOSYS,EAX(%esp)

246 call SYMBOL_NAME(syscall_trace)

247 movl ORIG_EAX(%esp),%eax

248 cmpl $(NR_syscalls),%eax

249 jae tracesys_exit

250 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

251 movl %eax,EAX(%esp) # save the return value

252 tracesys_exit:

253 call SYMBOL_NAME(syscall_trace)

254 jmp ret_from_sys_call

203 PT_TRACESYS
1 syscall_trace()

syscall_trace()
system_call() 203 call call

sys_call_table[] %eax 4
(,%eax,4) %eax 4

%eax sys_call_table 4 sys_call_table[]

sys_ni_syscall()
­ENOSYS libc.a

­1 errno ENOSYS
0x4a 74 500 sys_sethostname

sys_sethostname() kernel/sys.c

==================== kernel/sys.c 971 987 ====================
971 asmlinkage long sys_sethostname(char *name, int len)

972 {

973 int errno;

974

975 if (!capable(CAP_SYS_ADMIN))

976 return ­EPERM;

977 if (len < 0 || len > __NEW_UTS_LEN)

978 return ­EINVAL;

979 down_write(&uts_sem);

980 errno = ­EFAULT;

981 if (!copy_from_user(system_utsname.nodename, name, len)) {

982 system_utsname.nodename[len] = 0;

983 errno = 0;

984 }

985 up_write(&uts_sem);

986 return errno;

987 }

sethostname
capable(CAP_SYS_ADMIN) CAP_SYS_ADMIN

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Highlight

sie
Highlight

253

­EPERM
CPU

sethostname()
(1) A sethostname() “AB
(2) C CPU sethostname() “CD
(3) A sys_setthostname() “ A

system_utsname.nodename “B C

(4) C sethostname()
system_utsname_nodename “CD

(5) A “B system_utsname.nodename
(6) A sethostname() system_utsname.nodename

“CB
“race condition

system_utsname.nodenamer semaphore
sys_sethostname() 979 down_write() 985 up_write()

C 979

name
system_utsname.nodename

copy_from_user()

copy_from_user()
i386 CPU copy_from_user() include/asm­i386/uaccess.h

==================== include/asm­i386/uaccess.h 567 570 ====================
567 #define copy_from_user(to,from,n) \

568 (__builtin_constant_p(n) ? \

569 __constant_copy_from_user((to),(from),(n)) : \

570 __generic_copy_from_user((to),(from),(n)))

4 8 512
__generic_copy_user() arch/i386/lib/usercopy.c

==================== arch/i386/lib/usercopy.c 50 56 ====================
50 unsigned long

51 __generic_copy_from_user(void *to, const void *from, unsigned long n)

52 {

53 if (access_ok(VERIFY_READ, from, n))

54 __copy_user_zeroing(to,from,n);

55 return n;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

254

56 }

access_ok() from n (from + n)
__copy_user_zeroing()

__copy_user_zeroing()
copy_to_user() __copy_user()

__constant_copy_user() __do_strncpy_form_user() get_user()
2 do_page_fault()

__copy_user_zeroing() include/asm­i386/uaccess.h

==================== include/asm­i386/uaccess.h 263 289 ====================
263 #define __copy_user_zeroing(to,from,size) \

264 do { \

265 int __d0, __d1; \

266 __asm__ __volatile__(\

267 "0: rep; movsl\n" \

268 " movl %3,%0\n" \

269 "1: rep; movsb\n" \

270 "2:\n" \

271 ".section .fixup,\"ax\"\n" \

272 "3: lea 0(%3,%0,4),%0\n" \

273 "4: pushl %0\n" \

274 " pushl %%eax\n" \

275 " xorl %%eax,%%eax\n" \

276 " rep; stosb\n" \

277 " popl %%eax\n" \

278 " popl %0\n" \

279 " jmp 2b\n" \

280 ".previous\n" \

281 ".section __ex_table,\"a\"\n" \

282 " .align 4\n" \

283 " .long 0b,3b\n" \

284 " .long 1b,4b\n" \

285 ".previous" \

286 : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \

287 : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \

288 : "memory"); \

289 } while (0)

__copy_user_zeroing()
267 270 286 288 286

%0 %1 %2 %0 size %%ecx %1
__d0 %%edi %2 __d1 %%esi 287

%3 (size&3)
%1 %2 %3 (size/4) to from

267 270 X86 REP MOVS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

255

MOVE %%ecx %%esi %%edi
3 C

__copy_user_zeroing(void *to, void *from, size)

{

int r;

r = size & 3

size = size/4;

while(size­­) *((int *) to)++ = *((int *) from)++;

while(r­­) *((char *) to)++ = *((char *) from)++;

}

271 280
“ Documentation/exception.txt Linux
/usr/src/linux/Documentation

name len

mm_struct
name

len
verify_area() Linux

do_page_fault() do_page_fault()
find_vma() bad_area 2

bad_area CPU
CPU CPU

do_page_fault()

==================== arch/i386/mm/fault.c 299 299 ====================
[do_page_fault()]
299 do_sigbus:

==================== arch/i386/mm/fault.c 315 318 ====================
315 /* Kernel mode? Handle exceptions or die */

316 if (!(error_code & 4))

317 goto no_context;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

256

318 return;

==================== arch/i386/mm/fault.c 255 260 ====================
255 no_context:

256 /* Are we prepared to handle this kernel fault? */

257 if ((fixup = search_exception_table(regs­>eip)) != 0) {

258 regs­>eip = fixup;

259 return;

260 }

fixup CPU
name

search_exception_table()
arch/i386/mm/extable.c

==================== arch/i386/mm/extable.c 33 55 ====================
[do_page_fault()>search_exception_table()]
33 unsigned long

34 search_exception_table(unsigned long addr)

35 {

36 unsigned long ret;

37

38 #ifndef CONFIG_MODULES

39 /* There is only the kernel to search. */

40 ret = search_one_table(__start___ex_table, __stop___ex_table­1, addr);

41 if (ret) return ret;

42 #else

43 /* The kernel is the last "module" ­­ no need to treat it special. */

44 struct module *mp;

45 for (mp = module_list; mp != NULL; mp = mp­>next) {

46 if (mp­>ex_table_start == NULL)

47 continue;

48 ret = search_one_table(mp­>ex_table_start,

49 mp­>ex_table_end ­ 1, addr);

50 if (ret) return ret;

51 }

52 #endif

53

54 return 0;

55 }

38 CONFIG_MODULES
search_one_table() arch/i386/mm/extable.c

==================== arch/i386/mm/extable.c 12 31 ====================
[do_page_fault()>search_exception_table()>search_one_table()]
12 static inline unsigned long

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

257

13 search_one_table(const struct exception_table_entry *first,

14 const struct exception_table_entry *last,

15 unsigned long value)

16 {

17 while (first <= last) {

18 const struct exception_table_entry *mid;

19 long diff;

20

21 mid = (last ­ first) / 2 + first;

22 diff = mid­>insn ­ value;

23 if (diff == 0)

24 return mid­>fixup;

25 else if (diff < 0)

26 first = mid+1;

27 else

28 last = mid­1;

29 }

30 return 0;

31 }

exception_table_entry struct
exception_table_entry include/asm­i386/uaccess.h

==================== include/asm­i386/uaccess.h 67 83 ====================
67 /*

68 * The exception table consists of pairs of addresses: the first is the

69 * address of an instruction that is allowed to fault, and the second is

70 * the address at which the program should continue. No registers are

71 * modified, so it is entirely up to the continuation code to figure out

72 * what to do.

73 *

74 * All the routines below use bits of fixup code that are out of line

75 * with the main instruction path. This means when everything is well,

76 * we don't even have to jump over them. Further, they do not intrude

77 * on our cache or tlb entries.

78 */

79

80 struct exception_table_entry

81 {

82 unsigned long insn, fixup;

83 };

insn fixup

__copy_user_zeroing()

__copy_user_zeroing()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

258

267 0 movsl 269 1 movsb
282 284 283 284 283

0 movsl ”fixup 3
lea CPU stosb

system_utsname.nodename 0 279
JMP 2

—
text data

GNU gcc ld fixup text
__ex_table __copy_user_zeroing() 271 281

gcc fixup __ex_table ld

__copy_user_zeroing()
RESTORE_ALL

__generic_copy_from_user()
__copy_user_zeroing()

n 0
n __copy_user_zeroing() 273 %0

size n %%ecx movsl movsb %%ecx
0 movsl movsb 273 %%ecx

0 276 %%ecx 278
__generic_copy_from_user() n sys_sethostname()

copy_from_user() 0 errno 0
sys_sethostname() 0 copy_from_user() ­EFAULT

sys_sethostname() system_call() CPU
%eax 204

%eax RESTORE_ALL %eax CPU
ret_from_sys_call

==================== arch/i386/kernel/entry.S 205 223 ====================
kystel 11 call rerfrofrotlT syscalu
205 ENTRY(ret_from_sys_call)

206 #ifdef CONFIG_SMP

207 movl processor(%ebx),%eax

208 shll $CONFIG_X86_L1_CACHE_SHIFT,%eax

209 movl SYMBOL_NAME(irq_stat)(,%eax),%ecx # softirq_active

210 testl SYMBOL_NAME(irq_stat)+4(,%eax),%ecx # softirq_mask

211 #else

212 movl SYMBOL_NAME(irq_stat),%ecx # softirq_active

213 testl SYMBOL_NAME(irq_stat)+4,%ecx # softirq_mask

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

259

214 #endif

215 jne handle_softirq

216

217 ret_with_reschedule:

218 cmpl $0,need_resched(%ebx)

219 jne reschedule

220 cmpl $0,sigpending(%ebx)

221 jne signal_return

222 restore_all:

223 RESTORE_ALL

==================== arch/i386/kernel/entry.S 282 284 ====================
282 handle_softirq:

283 call SYMBOL_NAME(do_softirq)

284 jmp ret_from_intr

RESTORE_ALL
popl %ds popl %es iret arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 101 130 ====================
101 #define RESTORE_ALL \

102 popl %ebx; \

103 popl %ecx; \

104 popl %edx; \

105 popl %esi; \

106 popl %edi; \

107 popl %ebp; \

108 popl %eax; \

109 1: popl %ds; \

110 2: popl %es; \

111 addl $4,%esp; \

112 3: iret; \

113 .section .fixup,"ax"; \

114 4: movl $0,(%esp); \

115 jmp 1b; \

116 5: movl $0,(%esp); \

117 jmp 2b; \

118 6: pushl %ss; \

119 popl %ds; \

120 pushl %ss; \

121 popl %es; \

122 pushl $11; \

123 call do_exit; \

124 .previous; \

125 .section __ex_table,"a";\

126 .align 4; \

127 .long 1b,4b; \

128 .long 2b,5b; \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

260

129 .long 3b,6b; \

130 .previous

127 129 109 110
112 %ds

CPU GDTR LDTR
CPU

CPU General Protection
GP “popl %ds”

4 114 “move $0, (%esp)
%ds 0 115 109 “popl %ds

GP 0
CS SS GP

110 “popl %es
“iret i386 CPU

%ds
GP CPU CS SS

CS SS GP
“popl %ds do_exit()

118 123

sethostname() system_call
sys_sethostname() sys_sethostname() RESTORE_ALL iret

sys_sethostname()

3.9

include/asm­i386/unistd.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Highlight

sie
Highlight

sie
Highlight

261

==================== include/asm­i386/unistd.h 8 21 ====================
8 #define __NR_exit 1

9 #define __NR_fork 2

10 #define __NR_read 3

11 #define __NR_write 4

12 #define __NR_open 5

13 #define __NR_close 6

14 #define __NR_waitpid 7

15 #define __NR_creat 8

16 #define __NR_link 9

17 #define __NR_unlink 10

18 #define __NR_execve 11

19 #define __NR_chdir 12

20 #define __NR_time 13

21 #define __NR_mknod 14

arch/i386/kernel/entry.S NR_syscalls
include/linux/sys.h 256 Linux 221 30

sys_ni_syscall()
kernel/sys.c

==================== kernel/sys.c 169 172 ====================
169 asmlinkage long sys_ni_syscall(void)

170 {

171 return ­ENOSYS;

172 }

arch/i386/kernel/entry.S sys_call_table 656 rept NR_syscalls­221
gcc 657 (NR_syscalls­221) 35

==================== arch/i386/kernel/entry.S 425 658 ====================
425 ENTRY(sys_call_table)

426 .long SYMBOL_NAME(sys_ni_syscall) /* 0 ­ old "setup()" system call*/

427 .long SYMBOL_NAME(sys_exit)

428 .long SYMBOL_NAME(sys_fork)

429 .long SYMBOL_NAME(sys_read)

430 .long SYMBOL_NAME(sys_write)

431 .long SYMBOL_NAME(sys_open) /* 5 */

432 .long SYMBOL_NAME(sys_close)

433 .long SYMBOL_NAME(sys_waitpid)

434 .long SYMBOL_NAME(sys_creat)

435 .long SYMBOL_NAME(sys_link)

436 .long SYMBOL_NAME(sys_unlink) /* 10 */

437 .long SYMBOL_NAME(sys_execve)

438 .long SYMBOL_NAME(sys_chdir)

439 .long SYMBOL_NAME(sys_time)

440 .long SYMBOL_NAME(sys_mknod)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

262

441 .long SYMBOL_NAME(sys_chmod) /* 15 */

442 .long SYMBOL_NAME(sys_lchown16)

443 .long SYMBOL_NAME(sys_ni_syscall) /* old break syscall holder */

444 .long SYMBOL_NAME(sys_stat)

445 .long SYMBOL_NAME(sys_lseek)

446 .long SYMBOL_NAME(sys_getpid) /* 20 */

447 .long SYMBOL_NAME(sys_mount)

448 .long SYMBOL_NAME(sys_oldumount)

449 .long SYMBOL_NAME(sys_setuid16)

450 .long SYMBOL_NAME(sys_getuid16)

451 .long SYMBOL_NAME(sys_stime) /* 25 */

452 .long SYMBOL_NAME(sys_ptrace)

453 .long SYMBOL_NAME(sys_alarm)

454 .long SYMBOL_NAME(sys_fstat)

455 .long SYMBOL_NAME(sys_pause)

456 .long SYMBOL_NAME(sys_utime) /* 30 */

457 .long SYMBOL_NAME(sys_ni_syscall) /* old stty syscall holder */

458 .long SYMBOL_NAME(sys_ni_syscall) /* old gtty syscall holder */

459 .long SYMBOL_NAME(sys_access)

460 .long SYMBOL_NAME(sys_nice)

461 .long SYMBOL_NAME(sys_ni_syscall) /* 35 */ /* old ftime syscall holder */

462 .long SYMBOL_NAME(sys_sync)

463 .long SYMBOL_NAME(sys_kill)

464 .long SYMBOL_NAME(sys_rename)

465 .long SYMBOL_NAME(sys_mkdir)

466 .long SYMBOL_NAME(sys_rmdir) /* 40 */

467 .long SYMBOL_NAME(sys_dup)

468 .long SYMBOL_NAME(sys_pipe)

469 .long SYMBOL_NAME(sys_times)

470 .long SYMBOL_NAME(sys_ni_syscall) /* old prof syscall holder */

471 .long SYMBOL_NAME(sys_brk) /* 45 */

472 .long SYMBOL_NAME(sys_setgid16)

473 .long SYMBOL_NAME(sys_getgid16)

474 .long SYMBOL_NAME(sys_signal)

475 .long SYMBOL_NAME(sys_geteuid16)

476 .long SYMBOL_NAME(sys_getegid16) /* 50 */

477 .long SYMBOL_NAME(sys_acct)

478 .long SYMBOL_NAME(sys_umount) /* recycled never used phys() */

479 .long SYMBOL_NAME(sys_ni_syscall) /* old lock syscall holder */

480 .long SYMBOL_NAME(sys_ioctl)

481 .long SYMBOL_NAME(sys_fcntl) /* 55 */

482 .long SYMBOL_NAME(sys_ni_syscall) /* old mpx syscall holder */

483 .long SYMBOL_NAME(sys_setpgid)

484 .long SYMBOL_NAME(sys_ni_syscall) /* old ulimit syscall holder */

485 .long SYMBOL_NAME(sys_olduname)

486 .long SYMBOL_NAME(sys_umask) /* 60 */

487 .long SYMBOL_NAME(sys_chroot)

488 .long SYMBOL_NAME(sys_ustat)

489 .long SYMBOL_NAME(sys_dup2)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

263

490 .long SYMBOL_NAME(sys_getppid)

491 .long SYMBOL_NAME(sys_getpgrp) /* 65 */

492 .long SYMBOL_NAME(sys_setsid)

493 .long SYMBOL_NAME(sys_sigaction)

494 .long SYMBOL_NAME(sys_sgetmask)

495 .long SYMBOL_NAME(sys_ssetmask)

496 .long SYMBOL_NAME(sys_setreuid16) /* 70 */

497 .long SYMBOL_NAME(sys_setregid16)

498 .long SYMBOL_NAME(sys_sigsuspend)

499 .long SYMBOL_NAME(sys_sigpending)

500 .long SYMBOL_NAME(sys_sethostname)

501 .long SYMBOL_NAME(sys_setrlimit) /* 75 */

502 .long SYMBOL_NAME(sys_old_getrlimit)

503 .long SYMBOL_NAME(sys_getrusage)

504 .long SYMBOL_NAME(sys_gettimeofday)

505 .long SYMBOL_NAME(sys_settimeofday)

506 .long SYMBOL_NAME(sys_getgroups16) /* 80 */

507 .long SYMBOL_NAME(sys_setgroups16)

508 .long SYMBOL_NAME(old_select)

509 .long SYMBOL_NAME(sys_symlink)

510 .long SYMBOL_NAME(sys_lstat)

511 .long SYMBOL_NAME(sys_readlink) /* 85 */

512 .long SYMBOL_NAME(sys_uselib)

513 .long SYMBOL_NAME(sys_swapon)

514 .long SYMBOL_NAME(sys_reboot)

515 .long SYMBOL_NAME(old_readdir)

516 .long SYMBOL_NAME(old_mmap) /* 90 */

517 .long SYMBOL_NAME(sys_munmap)

518 .long SYMBOL_NAME(sys_truncate)

519 .long SYMBOL_NAME(sys_ftruncate)

520 .long SYMBOL_NAME(sys_fchmod)

521 .long SYMBOL_NAME(sys_fchown16) /* 95 */

522 .long SYMBOL_NAME(sys_getpriority)

523 .long SYMBOL_NAME(sys_setpriority)

524 .long SYMBOL_NAME(sys_ni_syscall) /* old profil syscall holder */

525 .long SYMBOL_NAME(sys_statfs)

526 .long SYMBOL_NAME(sys_fstatfs) /* 100 */

527 .long SYMBOL_NAME(sys_ioperm)

528 .long SYMBOL_NAME(sys_socketcall)

529 .long SYMBOL_NAME(sys_syslog)

530 .long SYMBOL_NAME(sys_setitimer)

531 .long SYMBOL_NAME(sys_getitimer) /* 105 */

532 .long SYMBOL_NAME(sys_newstat)

533 .long SYMBOL_NAME(sys_newlstat)

534 .long SYMBOL_NAME(sys_newfstat)

535 .long SYMBOL_NAME(sys_uname)

536 .long SYMBOL_NAME(sys_iopl) /* 110 */

537 .long SYMBOL_NAME(sys_vhangup)

538 .long SYMBOL_NAME(sys_ni_syscall) /* old "idle" system call */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

264

539 .long SYMBOL_NAME(sys_vm86old)

540 .long SYMBOL_NAME(sys_wait4)

541 .long SYMBOL_NAME(sys_swapoff) /* 115 */

542 .long SYMBOL_NAME(sys_sysinfo)

543 .long SYMBOL_NAME(sys_ipc)

544 .long SYMBOL_NAME(sys_fsync)

545 .long SYMBOL_NAME(sys_sigreturn)

546 .long SYMBOL_NAME(sys_clone) /* 120 */

547 .long SYMBOL_NAME(sys_setdomainname)

548 .long SYMBOL_NAME(sys_newuname)

549 .long SYMBOL_NAME(sys_modify_ldt)

550 .long SYMBOL_NAME(sys_adjtimex)

551 .long SYMBOL_NAME(sys_mprotect) /* 125 */

552 .long SYMBOL_NAME(sys_sigprocmask)

553 .long SYMBOL_NAME(sys_create_module)

554 .long SYMBOL_NAME(sys_init_module)

555 .long SYMBOL_NAME(sys_delete_module)

556 .long SYMBOL_NAME(sys_get_kernel_syms) /* 130 */

557 .long SYMBOL_NAME(sys_quotactl)

558 .long SYMBOL_NAME(sys_getpgid)

559 .long SYMBOL_NAME(sys_fchdir)

560 .long SYMBOL_NAME(sys_bdflush)

561 .long SYMBOL_NAME(sys_sysfs) /* 135 */

562 .long SYMBOL_NAME(sys_personality)

563 .long SYMBOL_NAME(sys_ni_syscall) /* for afs_syscall */

564 .long SYMBOL_NAME(sys_setfsuid16)

565 .long SYMBOL_NAME(sys_setfsgid16)

566 .long SYMBOL_NAME(sys_llseek) /* 140 */

567 .long SYMBOL_NAME(sys_getdents)

568 .long SYMBOL_NAME(sys_select)

569 .long SYMBOL_NAME(sys_flock)

570 .long SYMBOL_NAME(sys_msync)

571 .long SYMBOL_NAME(sys_readv) /* 145 */

572 .long SYMBOL_NAME(sys_writev)

573 .long SYMBOL_NAME(sys_getsid)

574 .long SYMBOL_NAME(sys_fdatasync)

575 .long SYMBOL_NAME(sys_sysctl)

576 .long SYMBOL_NAME(sys_mlock) /* 150 */

577 .long SYMBOL_NAME(sys_munlock)

578 .long SYMBOL_NAME(sys_mlockall)

579 .long SYMBOL_NAME(sys_munlockall)

580 .long SYMBOL_NAME(sys_sched_setparam)

581 .long SYMBOL_NAME(sys_sched_getparam) /* 155 */

582 .long SYMBOL_NAME(sys_sched_setscheduler)

583 .long SYMBOL_NAME(sys_sched_getscheduler)

584 .long SYMBOL_NAME(sys_sched_yield)

585 .long SYMBOL_NAME(sys_sched_get_priority_max)

586 .long SYMBOL_NAME(sys_sched_get_priority_min) /* 160 */

587 .long SYMBOL_NAME(sys_sched_rr_get_interval)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

265

588 .long SYMBOL_NAME(sys_nanosleep)

589 .long SYMBOL_NAME(sys_mremap)

590 .long SYMBOL_NAME(sys_setresuid16)

591 .long SYMBOL_NAME(sys_getresuid16) /* 165 */

592 .long SYMBOL_NAME(sys_vm86)

593 .long SYMBOL_NAME(sys_query_module)

594 .long SYMBOL_NAME(sys_poll)

595 .long SYMBOL_NAME(sys_nfsservctl)

596 .long SYMBOL_NAME(sys_setresgid16) /* 170 */

597 .long SYMBOL_NAME(sys_getresgid16)

598 .long SYMBOL_NAME(sys_prctl)

599 .long SYMBOL_NAME(sys_rt_sigreturn)

600 .long SYMBOL_NAME(sys_rt_sigaction)

601 .long SYMBOL_NAME(sys_rt_sigprocmask) /* 175 */

602 .long SYMBOL_NAME(sys_rt_sigpending)

603 .long SYMBOL_NAME(sys_rt_sigtimedwait)

604 .long SYMBOL_NAME(sys_rt_sigqueueinfo)

605 .long SYMBOL_NAME(sys_rt_sigsuspend)

606 .long SYMBOL_NAME(sys_pread) /* 180 */

607 .long SYMBOL_NAME(sys_pwrite)

608 .long SYMBOL_NAME(sys_chown16)

609 .long SYMBOL_NAME(sys_getcwd)

610 .long SYMBOL_NAME(sys_capget)

611 .long SYMBOL_NAME(sys_capset) /* 185 */

612 .long SYMBOL_NAME(sys_sigaltstack)

613 .long SYMBOL_NAME(sys_sendfile)

614 .long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

615 .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

616 .long SYMBOL_NAME(sys_vfork) /* 190 */

617 .long SYMBOL_NAME(sys_getrlimit)

618 .long SYMBOL_NAME(sys_mmap2)

619 .long SYMBOL_NAME(sys_truncate64)

620 .long SYMBOL_NAME(sys_ftruncate64)

621 .long SYMBOL_NAME(sys_stat64) /* 195 */

622 .long SYMBOL_NAME(sys_lstat64)

623 .long SYMBOL_NAME(sys_fstat64)

624 .long SYMBOL_NAME(sys_lchown)

625 .long SYMBOL_NAME(sys_getuid)

626 .long SYMBOL_NAME(sys_getgid) /* 200 */

627 .long SYMBOL_NAME(sys_geteuid)

628 .long SYMBOL_NAME(sys_getegid)

629 .long SYMBOL_NAME(sys_setreuid)

630 .long SYMBOL_NAME(sys_setregid)

631 .long SYMBOL_NAME(sys_getgroups) /* 205 */

632 .long SYMBOL_NAME(sys_setgroups)

633 .long SYMBOL_NAME(sys_fchown)

634 .long SYMBOL_NAME(sys_setresuid)

635 .long SYMBOL_NAME(sys_getresuid)

636 .long SYMBOL_NAME(sys_setresgid) /* 210 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

266

637 .long SYMBOL_NAME(sys_getresgid)

638 .long SYMBOL_NAME(sys_chown)

639 .long SYMBOL_NAME(sys_setuid)

640 .long SYMBOL_NAME(sys_setgid)

641 .long SYMBOL_NAME(sys_setfsuid) /* 215 */

642 .long SYMBOL_NAME(sys_setfsgid)

643 .long SYMBOL_NAME(sys_pivot_root)

644 .long SYMBOL_NAME(sys_mincore)

645 .long SYMBOL_NAME(sys_madvise)

646 .long SYMBOL_NAME(sys_getdents64) /* 220 */

647 .long SYMBOL_NAME(sys_fcntl64)

648 .long SYMBOL_NAME(sys_ni_syscall) /* reserved for TUX */

649

650 /*

651 * NOTE!! This doesn't have to be exact ­ we just have

652 * to make sure we have _enough_ of the "sys_ni_syscall"

653 * entries. Don't panic if you notice that this hasn't

654 * been shrunk every time we add a new system call.

655 */

656 .rept NR_syscalls­221

657 .long SYMBOL_NAME(sys_ni_syscall)

658 .endr

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

267

4

4.1

Linux

(1)

(2)
(3) task_struct

(4)

kernel thread
2

kswapd

Linux

Linux Unix

“pid task_struct

Linux process task
task_struct pid

wake_up_process() Linux Unix i386
Unix Intel Linux

Unix
Linux

“fork “clone

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

268

task_struct
mm_struct

vm_area
task_struct task_struct

CPU
i386

Linux 2
Intel i386

Intel i386 ”TSS TSS
104

•
• ES CS SS DS FS GS

• EFLAGS
• EIP
• TSS IRET

TSS
• LDT LDT
• CR3
• 0 l 2 SS0

SS1 SS2 ESP0 ESP1 ESP2 CPU SS ESP
CPU TSS SS ESP

• T T 1 CPU debug
debug

• TSS 104 TSS
I/O i386 I/O 0

0 3
vm86

TSS TSS GDT
LDT IDT TSS TI 1

LDT ”GP TSS
2 B Busy TSS

CPU ”TR TSS
LTR TR CS DS TR

TR CPU TSS TR
TSS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

269

IDT
TSS CPU TR

TR TSS CPU JMP CALL
GDT TSS

Intel
CPU i386

CISC JMP CALL
300 CPU POP

12 CPU CPU
i386

CPU

Unix Linux

i386 Linux i386 CPU
i386 CPU TR TSS

TR TSS CPU JMP CALL
TR TSS TR

CPU CPU
TSS TSS

3
TSS 3 CPU

SS ESP TSS
Linux 0 3 TSS 1 2

Linux TSS 0
SS0 ESP0 Intel TR TSS

Linux TSS

TSS SS0 ESP0 TR TSS
Linux TSS

TSS CPU TSS

TSS include/asm­i386/processor.h INIT_TSS

==================== include/asm­i386/processor.h 392 406 ====================
392 #define INIT_TSS { \

393 0,0, /* back_link, __blh */ \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

270

394 sizeof(init_stack) + (long) &init_stack, /* esp0 */ \

395 __KERNEL_DS, 0, /* ss0 */ \

396 0,0,0,0,0,0, /* stack1, stack2 */ \

397 0, /* cr3 */ \

398 0,0, /* eip,eflags */ \

399 0,0,0,0, /* eax,ecx,edx,ebx */ \

400 0,0,0,0, /* esp,ebp,esi,edi */ \

401 0,0,0,0,0,0, /* es,cs,ss */ \

402 0,0,0,0,0,0, /* ds,fs,gs */ \

403 __LDT(0),0, /* ldt */ \

404 0, INVALID_IO_BITMAP_OFFSET, /* tace, bitmap */ \

405 {~0, } /* ioperm */ \

406 }

SS0 __KERNEL_DS ESP0 &init_stack
init_stack

==================== include/asm­i386/processor.h 452 452 ====================
452 #define init_stack (init_task_union.stack)

==================== arch/i386/kernel/init_task.c 22 24 ====================
22 union task_union init_task_union

23 __attribute__((__section__(".data.init_task"))) =

24 { INIT_TASK(init_task_union.task) };

==================== include/linux/sched.h 484 487 ====================
484 union task_union {

485 struct task_struct task;

486 unsigned long stack[INIT_TASK_SIZE/sizeof(long)];

487 };

==================== include/linux/sched.h 480 482 ====================
480 #ifndef INIT_TASK_SIZE

481 # define INIT_TASK_SIZE 2048*sizeof(long)

482 #endif

INIT_TSS arch/i386/kernel/init_task.c

==================== arch/i386/kernel/init_task.c 26 33 ====================
26 /*

27 * per­CPU TSS segments. Threads are completely 'soft' on Linux,

28 * no more per­task TSS's. The TSS size is kept cacheline­aligned

29 * so they are allowed to end up in the .data.cacheline_aligned

30 * section. Since TSS's are completely CPU­local, we want them

31 * on exact cacheline boundaries, to eliminate cacheline ping­pong.

32 */

33 struct tss_struct init_tss[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS­1] = INIT_TSS };

init_tss NR_CPUS CPU TSS
INIT_TSS TSS

tss_struct include/asm­i386/processor.h TSS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

271

==================== include/asm­i386/processor.h 327 356 ====================
327 struct tss_struct {

328 unsigned short back_link,__blh;

329 unsigned long esp0;

330 unsigned short ss0,__ss0h;

331 unsigned long esp1;

332 unsigned short ss1,__ss1h;

333 unsigned long esp2;

334 unsigned short ss2,__ss2h;

335 unsigned long __cr3;

336 unsigned long eip;

337 unsigned long eflags;

338 unsigned long eax,ecx,edx,ebx;

339 unsigned long esp;

340 unsigned long ebp;

341 unsigned long esi;

342 unsigned long edi;

343 unsigned short es, __esh;

344 unsigned short cs, __csh;

345 unsigned short ss, __ssh;

346 unsigned short ds, __dsh;

347 unsigned short fs, __fsh;

348 unsigned short gs, __gsh;

349 unsigned short ldt, __ldth;

350 unsigned short trace, bitmap;

351 unsigned long io_bitmap[IO_BITMAP_SIZE+1];

352 /*

353 * pads the TSS to be cacheline­aligned (size is 0x100)

354 */

355 unsigned long __cacheline_filler[5];

356 };

task_struct
task_struct

8192 task_struct
4.1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

272

4.1

task_struct 1K 7K
2

int something()

{

char buf[1024];

......

}

buf 1K
task_struct

include/asm­i386/processor.h

==================== include/asm­i386/processor.h 446 448 ====================
446 #define THREAD_SIZE (2*PAGE_SIZE)

447 #define alloc_task_struct() ((struct task_struct *) __get_free_pages(GFP_KERNEL,1))

448 #define free_task_struct(p) free_pages((unsigned long) (p), 1)

THREAD_SIZE
alloc_task_struct()

struct task_struct *t = kmalloc(sizeof(struct task_struct));

task_struct
__get_free_pages() 1 21

task_struct
include/asm­i386/current.h current task_struct

==================== include/asm­i386/current.h 6 13 ====================
6 static inline struct task_struct * get_current(void)

7 {

8 struct task_struct *current;

9 __asm__("andl %%esp,%0; ":"=r" (current) : "0" (~8191UL));

10 return current;

11 }

12

13 #define current get_current()

9 ESP 8191UL 0xfffffe00
task_struct 2 3 4.1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

273

task_struct
AND 4 CPU MOV 2 CPU

GET_CURRENT
include/asm­i386/hw_irq.h

==================== include/asm­i386/hw_irq.h 113 115 ====================
113 #define GET_CURRENT \

114 "movl %esp, %ebx\n\t" \

115 "andl $­8192, %ebx\n\t"

2
task_struct

task_struct include/linux/sched.h

==================== include/linux/sched.h 277 397 ====================
277 struct task_struct {

278 /*

279 * offsets of these are hardcoded elsewhere ­ touch with care

280 */

281 volatile long state; /* ­1 unrunnable, 0 runnable, >0 stopped */

282 unsigned long flags; /* per process flags, defined below */

283 int sigpending;

284 mm_segment_t addr_limit; /* thread address space:

285 0­0xBFFFFFFF for user­thead

286 0­0xFFFFFFFF for kernel­thread

287 */

288 struct exec_domain *exec_domain;

289 volatile long need_resched;

290 unsigned long ptrace;

291

292 int lock_depth; /* Lock depth */

293

294 /*

295 * offset 32 begins here on 32­bit platforms. We keep

296 * all fields in a single cacheline that are needed for

297 * the goodness() loop in schedule().

298 */

299 long counter;

300 long nice;

301 unsigned long policy;

302 struct mm_struct *mm;

303 int has_cpu, processor;

304 unsigned long cpus_allowed;

305 /*

306 * (only the 'next' pointer fits into the cacheline, but

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

274

307 * that's just fine.)

308 */

309 struct list_head run_list;

310 unsigned long sleep_time;

311

312 struct task_struct *next_task, *prev_task;

313 struct mm_struct *active_mm;

314

315 /* task state */

316 struct linux_binfmt *binfmt;

317 int exit_code, exit_signal;

318 int pdeath_signal; /* The signal sent when the parent dies */

319 /* ??? */

320 unsigned long personality;

321 int dumpable:1;

322 int did_exec:1;

323 pid_t pid;

324 pid_t pgrp;

325 pid_t tty_old_pgrp;

326 pid_t session;

327 pid_t tgid;

328 /* boolean value for session group leader */

329 int leader;

330 /*

331 * pointers to (original) parent process, youngest child, younger sibling,

332 * older sibling, respectively. (p­>father can be replaced with

333 * p­>p_pptr­>pid)

334 */

335 struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

336 struct list_head thread_group;

337

338 /* PID hash table linkage. */

339 struct task_struct *pidhash_next;

340 struct task_struct **pidhash_pprev;

341

342 wait_queue_head_t wait_chldexit; /* for wait4() */

343 struct semaphore *vfork_sem; /* for vfork() */

344 unsigned long rt_priority;

345 unsigned long it_real_value, it_prof_value, it_virt_value;

346 unsigned long it_real_incr, it_prof_incr, it_virt_incr;

347 struct timer_list real_timer;

348 struct tms times;

349 unsigned long start_time;

350 long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];

351 /* mm fault and swap info: this can arguably be seen as either mm­specific or thread­specific */

352 unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;

353 int swappable:1;

354 /* process credentials */

355 uid_t uid,euid,suid,fsuid;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

275

356 gid_t gid,egid,sgid,fsgid;

357 int ngroups;

358 gid_t groups[NGROUPS];

359 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;

360 int keep_capabilities:1;

361 struct user_struct *user;

362 /* limits */

363 struct rlimit rlim[RLIM_NLIMITS];

364 unsigned short used_math;

365 char comm[16];

366 /* file system info */

367 int link_count;

368 struct tty_struct *tty; /* NULL if no tty */

369 unsigned int locks; /* How many file locks are being held */

370 /* ipc stuff */

371 struct sem_undo *semundo;

372 struct sem_queue *semsleeping;

373 /* CPU­specific state of this task */

374 struct thread_struct thread;

375 /* filesystem information */

376 struct fs_struct *fs;

377 /* open file information */

378 struct files_struct *files;

379 /* signal handlers */

380 spinlock_t sigmask_lock; /* Protects signal and blocked */

381 struct signal_struct *sig;

382

383 sigset_t blocked;

384 struct sigpending pending;

385

386 unsigned long sas_ss_sp;

387 size_t sas_ss_size;

388 int (*notifier)(void *priv);

389 void *notifier_data;

390 sigset_t *notifier_mask;

391

392 /* Thread group tracking */

393 u32 parent_exec_id;

394 u32 self_exec_id;

395 /* Protection of (de­)allocation: mm, files, fs, tty */

396 spinlock_t alloc_lock;

397 };

281 state include/linux/sched.h

==================== include/linux/sched.h 84 88 ====================
84 #define TASK_RUNNING 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

276

85 #define TASK_INTERRUPTIBLE 1

86 #define TASK_UNINTERRUPTIBLE 2

87 #define TASK_ZOMBIE 4

88 #define TASK_STOPPED 8

TASK_INTERRUPTIBLE TASK_UNINTERRUPTIBLE
TASK_UNINTERRUPTIBLE signal

TASK_INTERRUPTIBLE
sleep_on() wake_up()

interruptible_sleep_on() wake_up_interruptible()
blocking

INTERRUPTIBLE UNINTERRUPTIBLE

INTERRUPTIBLE

TASK_RUNNING

task_struct run_list 309
TASK_ZOMBIE exit
TASK_STOPPED SIGSTOP

TASK_STOPPED SIGCONT
367 4.4

282 flags
include/linux/sched.h

==================== include/linux/sched.h 399 413 ====================
399 /*

400 * Per process flags

401 */

402 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */

403 /* Not implemented yet, only for 486*/

404 #define PF_STARTING 0x00000002 /* being created */

405 #define PF_EXITING 0x00000004 /* getting shut down */

406 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */

407 #define PF_SUPERPRIV 0x00000100 /* used super­user privileges */

408 #define PF_DUMPCORE 0x00000200 /* dumped core */

409 #define PF_SIGNALED 0x00000400 /* killed by a signal */

410 #define PF_MEMALLOC 0x00000800 /* Allocating memory */

411 #define PF_VFORK 0x00001000 /* Wake up parent in mm_release */

412

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

277

413 #define PF_USEDFPU 0x00100000 /* task used FPU this quantum (SMP) */

state flags
sigpending——

sigqueue sigqueue_tail sig sigmask_lock signal blocked ”

counter——

need_resched—— CPU

addr_limit—— 0xbfffffff
0xffffffff

personality—— Unix Unix SVR4
Linux

include/linux/personality.h

==================== include/linux/personality.h 8 32 ====================
8 /* Flags for bug emulation. These occupy the top three bytes. */

9 #define STICKY_TIMEOUTS 0x4000000

10 #define WHOLE_SECONDS 0x2000000

11 #define ADDR_LIMIT_32BIT 0x0800000

12

13 /* Personality types. These go in the low byte. Avoid using the top bit,

14 * it will conflict with error returns.

15 */

16 #define PER_MASK (0x00ff)

17 #define PER_LINUX (0x0000)

18 #define PER_LINUX_32BIT (0x0000 | ADDR_LIMIT_32BIT)

19 #define PER_SVR4 (0x0001 | STICKY_TIMEOUTS)

20 #define PER_SVR3 (0x0002 | STICKY_TIMEOUTS)

21 #define PER_SCOSVR3 (0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS)

22 #define PER_WYSEV386 (0x0004 | STICKY_TIMEOUTS)

23 #define PER_ISCR4 (0x0005 | STICKY_TIMEOUTS)

24 #define PER_BSD (0x0006)

25 #define PER_SUNOS (PER_BSD | STICKY_TIMEOUTS)

26 #define PER_XENIX (0x0007 | STICKY_TIMEOUTS)

27 #define PER_LINUX32 (0x0008)

28 #define PER_IRIX32 (0x0009 | STICKY_TIMEOUTS) /* IRIX5 32­bit */

29 #define PER_IRIXN32 (0x000a | STICKY_TIMEOUTS) /* IRIX6 new 32­bit */

30 #define PER_IRIX64 (0x000b | STICKY_TIMEOUTS) /* IRIX6 64­bit */

31 #define PER_RISCOS (0x000c)

32 #define PER_SOLARIS (0x000d | STICKY_TIMEOUTS)

exec_domain—— personality

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

278

binfmt—— a.out elf exec()
exit_code exit_signal pdeath_signal—— exit() wait4()
pid——

pgrp session leader—— session
session “ls | wc ­l

exec
priority rt_priority——

policy——

parent_exec_id self_exec_id—— session exit() wait4()
uid euid suid fsuid gid egid sgid fsgid——

cap_effective cap_inheritable cap_permitted——

ptrace()
CAP_SYS_PTRACE

CAP_SYS_BOOT
include/linux/capability.h

inline
capable() capable(CAP_SYS_BOOT)

0

user—— user_struct Unix
user Linux user fork()

rlim——

rlimit include/linux/resource.h

==================== include/linux/resource.h 40 43 ====================
40 struct rlimit {

41 unsigned long rlim_cur;

42 unsigned long rlim_max;

43 };

i386 RLIM_NLIMITS 10
include/asm­i386/resource.h

==================== include/asm­i386/resource.h 4 20 ====================
4 /*

5 * Resource limits

6 */

7

8 #define RLIMIT_CPU 0 /* CPU time in ms */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

279

9 #define RLIMIT_FSIZE 1 /* Maximum filesize */

10 #define RLIMIT_DATA 2 /* max data size */

11 #define RLIMIT_STACK 3 /* max stack size */

12 #define RLIMIT_CORE 4 /* max core file size */

13 #define RLIMIT_RSS 5 /* max resident set size */

14 #define RLIMIT_NPROC 6 /* max number of processes */

15 #define RLIMIT_NOFILE 7 /* max number of open files */

16 #define RLIMIT_MEMLOCK 8 /* max locked­in­memory address space */

17 #define RLIMIT_AS 9 /* address space limit */

18 #define RLIMIT_LOCKS 10 /* maximum file locks held */

19

20 #define RLIM_NLIMITS 11

mm active_mm fs files tty real_timer times
it_real_value

per_cpu_utime[] per_cpu_stime[]
SMP

times
min_flt maj_flt nswap do_exit()

min_flt
cmin_flt times tms_utime tms_cutime

p_opptr
p_pptr p_cptr p_ysptr p_osptr p_opptr p_pptr task_struct p_cptr

p_ysptr p_osptr
fork() exit()

4.2

4.2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

280

pid
task_struct

pid pid
pidhash kernel/fork.c

==================== kernel/fork.c 35 35 ====================
35 struct task_struct *pidhash[PIDHASH_SZ];

PIDHASH_SZ include/linux/sched.h

==================== include/linux/sched.h 495 495 ====================
495 #define PIDHASH_SZ (4096 >> 2)

1024 4
task_struct pidhash_next pidhash_pprev

pid
pid

for while task_struct
init_task

init_task
task_struct next_task prev_task

task_struct list_head run_list

nanosleep()

4.2

Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

281

Linux
Linux Unix

int creat_proc(int (*fn)(void*), void *arg, unsigned long options);

Unix
fn fn

task_struct

fn

Linux Unix
Linux

task_struct

Linux fork() clone()
fork()

clone()
clone() fork() clone()
fork() clone()

fork() Unix
vfork()

task_struct vfork()
vfork()

Linux
execve()

Linux Unix

task_struct

copy_on_write

client/server server fork() clone()
fork() client/server fork()

pipe

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

282

shell Unix
Unix Unix

fork()
execve()

Linux
wait4() wait3() wait4() wait3()

Linux
exit()

non_blocking blocking

1 #include <stdio.h>

2

3 int main()

4 {

5 int child;

6 char *args[] = { "/bin/echo", "Hello", "World!", NULL};

7

8 if (!(child = fork()))

9 {

10 /* child */

11 printf("pid %d: %d is my father\n", getpid(), getppid());

12 execve("/bin/echo", args, NULL);

13 printf("pid %d: I am back, something is wrong!\n", getpid());

14 }

15 else

16 {

17 int myself = getpid();

18 printf("pid %d: %d is my son\n", myself, child);

19 wait4(child, NULL, 0, NULL);

20 printf("pid %d: done\n", myself);

21 }

22 return 0;

23 }

main() 8 fork()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

283

pid
task_struct

fork() fork()
0 fork() pid 0

8 if
9 14 16 21

if
wait4() execve() “/bin/echo echo

13 /bin/echo exit()
exit()

return main() gcc

Linux
kernel_thread() clone() execve()

arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 439 463 ====================
439 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)

440 {

441 long retval, d0;

442

443 __asm__ __volatile__(

444 "movl %%esp,%%esi\n\t"

445 "int $0x80\n\t" /* Linux/i386 system call */

446 "cmpl %%esp,%%esi\n\t" /* child or parent? */

447 "je 1f\n\t" /* parent ­ jump */

448 /* Load the argument into eax, and push it. That way, it does

449 * not matter whether the called function is compiled with

450 * ­mregparm or not. */

451 "movl %4,%%eax\n\t"

452 "pushl %%eax\n\t"

453 "call *%5\n\t" /* call fn */

454 "movl %3,%0\n\t" /* exit */

455 "int $0x80\n"

456 "1:\t"

457 :"=&a" (retval), "=&S" (d0)

458 :"0" (__NR_clone), "i" (__NR_exit),

459 "r" (arg), "r" (fn),

460 "b" (flags | CLONE_VM)

461 : "memory");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

284

462 return retval;

463 }

445 455 “int $0x80
457 EAX retval %0 458

%0 __NR_clone 444 EAX __NR_clone clone()
clone()

ESI
fork()

clone() pid pid 0 clone()
pid 0

453 call %5 457
%5 fn kernel_thread()

execve()

455 %3 __NR_exit
fork() clone() execve() wait4() exit()

4.3 fork() vfork() clone()

fork() clone()

pid_t fork(void);

int clone(int (*fn)(void *arg), void *child_stack, int flags, void *arg);

__clone()

__clone() fork()
vfork()

fork
arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 690 720 ====================
690 asmlinkage int sys_fork(struct pt_regs regs)

691 {

692 return do_fork(SIGCHLD, regs.esp, ®s, 0);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

285

693 }

694

695 asmlinkage int sys_clone(struct pt_regs regs)

696 {

697 unsigned long clone_flags;

698 unsigned long newsp;

699

700 clone_flags = regs.ebx;

701 newsp = regs.ecx;

702 if (!newsp)

703 newsp = regs.esp;

704 return do_fork(clone_flags, newsp, ®s, 0);

705 }

706

707 /*

708 * This is trivial, and on the face of it looks like it

709 * could equally well be done in user mode.

710 *

711 * Not so, for quite unobvious reasons ­ register pressure.

712 * In user mode vfork() cannot have a stack frame, and if

713 * done by calling the "clone()" system call directly, you

714 * do not have enough call­clobbered registers to hold all

715 * the information you need.

716 */

717 asmlinkage int sys_vfork(struct pt_regs regs)

718 {

719 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0);

720 }

do_fork() do_fork()
do_fork() sys_clone() regs.ecx

__clone() child_stack 3
__clone()

child_stack 0 do_fork()
kernel/fork.c

==================== kernel/fork.c 546 575 ====================
[sys_fork()>do_fork()]
546 /*

547 * Ok, this is the main fork­routine. It copies the system process

548 * information (task[nr]) and sets up the necessary registers. It also

549 * copies the data segment in its entirety. The "stack_start" and

550 * "stack_top" arguments are simply passed along to the platform

551 * specific copy_thread() routine. Most platforms ignore stack_top.

552 * For an example that's using stack_top, see

553 * arch/ia64/kernel/process.c.

554 */

555 int do_fork(unsigned long clone_flags, unsigned long stack_start,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

286

556 struct pt_regs *regs, unsigned long stack_size)

557 {

558 int retval = ­ENOMEM;

559 struct task_struct *p;

560 DECLARE_MUTEX_LOCKED(sem);

561

562 if (clone_flags & CLONE_PID) {

563 /* This is only allowed from the boot up thread */

564 if (current­>pid)

565 return ­EPERM;

566 }

567

568 current­>vfork_sem = &sem;

569

570 p = alloc_task_struct();

571 if (!p)

572 goto fork_out;

573

574 *p = *current;

575

560 DECLARE_MUTEX_LOCKED()
6

clone_flags
fork() vfork() SIGCHILD __clone()

include/linux/sched.h

==================== include/linux/sched.h 30 44 ====================
30 /*

31 * cloning flags:

32 */

33 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */

34 #define CLONE_VM 0x00000100 /* set if VM shared between processes */

35 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */

36 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */

37 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */

38 #define CLONE_PID 0x00001000 /* set if pid shared */

39 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */

40 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release

*/

41 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */

42 #define CLONE_THREAD 0x00010000 /* Same thread group? */

43

44 #define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)

fork() 0 vfork()
CLONE_VFORK | CLONE_VM

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

287

__clone()
CLONE_PID 1

task_struct pid 0
__clone() 564

alloc_task_struct() task_struct

574 task_struct
memcpy()

kernel/fork.c

==================== kernel/fork.c 576 601 ====================
[sys_fork()>do_fork()]
576 retval = ­EAGAIN;

577 if (atomic_read(&p­>user­>processes) >= p­>rlim[RLIMIT_NPROC].rlim_cur)

578 goto bad_fork_free;

579 atomic_inc(&p­>user­>__count);

580 atomic_inc(&p­>user­>processes);

581

582 /*

583 * Counter increases are protected by

584 * the kernel lock so nr_threads can't

585 * increase under us (but it may decrease).

586 */

587 if (nr_threads >= max_threads)

588 goto bad_fork_cleanup_count;

589

590 get_exec_domain(p­>exec_domain);

591

592 if (p­>binfmt && p­>binfmt­>module)

593 __MOD_INC_USE_COUNT(p­>binfmt­>module);

594

595 p­>did_exec = 0;

596 p­>swappable = 0;

597 p­>state = TASK_UNINTERRUPTIBLE;

598

599 copy_flags(clone_flags, p);

600 p­>pid = get_pid(clone_flags);

601

task_struct user user_struct
user

user_struct __count
task_struct user 0

include/linux/sched.h

==================== include/linux/sched.h 256 267 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

288

256 /*

257 * Some day this will be a full­fledged user tracking system..

258 */

259 struct user_struct {

260 atomic_t __count; /* reference count */

261 atomic_t processes; /* How many processes does this user have? */

262 atomic_t files; /* How many open files does this user have? */

263

264 /* Hash table maintenance information */

265 struct user_struct *next, **pprev;

266 uid_t uid;

267 };

Unix Unix user user_struct
kernel/user.c user_struct

uidhash_table

==================== kernel/user.c 19 20 ====================
19 #define UIDHASH_BITS 8

20 #define UIDHASH_SZ (1 << UIDHASH_BITS)

==================== kernel/user.c 26 26 ====================
26 static struct user_struct *uidhash_table[UIDHASH_SZ];

hash
user_struct

task_struct rlim
rlim[RLIMIT_NPROC]

fork()
587

Linux Unix
POSIX Unix POSIX

AT&T Sys V BSD 4.2 Sun
Solaris Solaris

Solaris PER_SOLARIS Linux Linux
task_struct exec_domain exec_domain

include/linux/personality.h

==================== include/linux/personality.h 38 51 ====================
38 /* Description of an execution domain ­ personality range supported,

39 * lcall7 syscall handler, start up / shut down functions etc.

40 * N.B. The name and lcall7 handler must be where they are since the

41 * offset of the handler is hard coded in kernel/sys_call.S.

42 */

43 struct exec_domain {

44 const char *name;

45 lcall7_func handler;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

289

46 unsigned char pers_low, pers_high;

47 unsigned long * signal_map;

48 unsigned long * signal_invmap;

49 struct module * module;

50 struct exec_domain *next;

51 };

handler pers_low
PER_LINUX PER_SVR4 PER_BSD PER_SOLARIS

module module
Linux ”

module
Solaris Solaris

Solaris
do_fork() 590

get_exec_domain() include/linux/personality.h

==================== include/linux/personality.h 59 60 ====================
59 #define get_exec_domain(it) \

60 if (it && it­>module) __MOD_INC_USE_COUNT(it­>module);

a.out elf java
task_struct

Linux_binfmt binfmt do_fork() 593
__MOD_INC_USE_COUNT()

597 TASK_UNINTERRUPTIBLE get_pid()
pid

UNINTERRUPTIBLE copy_flags() clone_flags
p­>flags kernel/fork.c

600 get_pid() clone_flags CLONE_PID
pid pid task_struct get_pid() kernel/fork.c

==================== kernel/fork.c 82 123 ====================
[sys_fork()>do_fork()>get_pid()]
82 static int get_pid(unsigned long flags)

83 {

84 static int next_safe = PID_MAX;

85 struct task_struct *p;

86

87 if (flags & CLONE_PID)

88 return current­>pid;

89

90 spin_lock(&lastpid_lock);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

290

91 if((++last_pid) & 0xffff8000) {

92 last_pid = 300; /* Skip daemons etc. */

93 goto inside;

94 }

95 if(last_pid >= next_safe) {

96 inside:

97 next_safe = PID_MAX;

98 read_lock(&tasklist_lock);

99 repeat:

100 for_each_task(p) {

101 if(p­>pid == last_pid ||

102 p­>pgrp == last_pid ||

103 p­>session == last_pid) {

104 if(++last_pid >= next_safe) {

105 if(last_pid & 0xffff8000)

106 last_pid = 300;

107 next_safe = PID_MAX;

108 }

109 goto repeat;

110 }

111 if(p­>pid > last_pid && next_safe > p­>pid)

112 next_safe = p­>pid;

113 if(p­>pgrp > last_pid && next_safe > p­>pgrp)

114 next_safe = p­>pgrp;

115 if(p­>session > last_pid && next_safe > p­>session)

116 next_safe = p­>session;

117 }

118 read_unlock(&tasklist_lock);

119 }

120 spin_unlock(&lastpid_lock);

121

122 return last_pid;

123 }

PID_MAX 0x8000 0x7fff 32767 0 299

do_fork() kernel/fork.c

==================== kernel/fork.c 602 640 ====================
[sys_fork()>do_fork()]
602 p­>run_list.next = NULL;

603 p­>run_list.prev = NULL;

604

605 if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) {

606 p­>p_opptr = current;

607 if (!(p­>ptrace & PT_PTRACED))

608 p­>p_pptr = current;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

291

609 }

610 p­>p_cptr = NULL;

611 init_waitqueue_head(&p­>wait_chldexit);

612 p­>vfork_sem = NULL;

613 spin_lock_init(&p­>alloc_lock);

614

615 p­>sigpending = 0;

616 init_sigpending(&p­>pending);

617

618 p­>it_real_value = p­>it_virt_value = p­>it_prof_value = 0;

619 p­>it_real_incr = p­>it_virt_incr = p­>it_prof_incr = 0;

620 init_timer(&p­>real_timer);

621 p­>real_timer.data = (unsigned long) p;

622

623 p­>leader = 0; /* session leadership doesn't inherit */

624 p­>tty_old_pgrp = 0;

625 p­>times.tms_utime = p­>times.tms_stime = 0;

626 p­>times.tms_cutime = p­>times.tms_cstime = 0;

627 #ifdef CONFIG_SMP

628 {

629 int i;

630 p­>has_cpu = 0;

631 p­>processor = current­>processor;

632 /* ?? should we just memset this ?? */

633 for(i = 0; i < smp_num_cpus; i++)

634 p­>per_cpu_utime[i] = p­>per_cpu_stime[i] = 0;

635 spin_lock_init(&p­>sigmask_lock);

636 }

637 #endif

638 p­>lock_depth = ­1; /* ­1 = no lock */

639 p­>start_time = jiffies;

640

wait4() wait3()
task_struct wait_chldexit task_struct

611
615 616

task_struct
SMP 627 637

task_struct start_time jiffies

task_struct

==================== kernel/fork.c 641 655 ====================
[sys_fork()>do_fork()]
641 retval = ­ENOMEM;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

292

642 /* copy all the process information */

643 if (copy_files(clone_flags, p))

644 goto bad_fork_cleanup;

645 if (copy_fs(clone_flags, p))

646 goto bad_fork_cleanup_files;

647 if (copy_sighand(clone_flags, p))

648 goto bad_fork_cleanup_fs;

649 if (copy_mm(clone_flags, p))

650 goto bad_fork_cleanup_sighand;

651 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);

652 if (retval)

653 goto bad_fork_cleanup_sighand;

654 p­>semundo = NULL;

655

copy_files() clone_flags
CLONE_FILES 0

task_struct files files_struct 0 tty
stdin stdout stderr

0 files_struct include/linux/sched.h copy_files()
kernel/fork.c

==================== kernel/fork.c 408 513 ====================
[sys_fork()>do_fork()>copy_files]
408 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)

409 {

410 struct files_struct *oldf, *newf;

411 struct file **old_fds, **new_fds;

412 int open_files, nfds, size, i, error = 0;

413

414 /*

415 * A background process may not have any files ...

416 */

417 oldf = current­>files;

418 if (!oldf)

419 goto out;

420

421 if (clone_flags & CLONE_FILES) {

422 atomic_inc(&oldf­>count);

423 goto out;

424 }

425

426 tsk­>files = NULL;

427 error = ­ENOMEM;

428 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);

429 if (!newf)

430 goto out;

431

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

293

432 atomic_set(&newf­>count, 1);

433

434 newf­>file_lock = RW_LOCK_UNLOCKED;

435 newf­>next_fd = 0;

436 newf­>max_fds = NR_OPEN_DEFAULT;

437 newf­>max_fdset = __FD_SETSIZE;

438 newf­>close_on_exec = &newf­>close_on_exec_init;

439 newf­>open_fds = &newf­>open_fds_init;

440 newf­>fd = &newf­>fd_array[0];

441

442 /* We don't yet have the oldf readlock, but even if the old

443 fdset gets grown now, we'll only copy up to "size" fds */

444 size = oldf­>max_fdset;

445 if (size > __FD_SETSIZE) {

446 newf­>max_fdset = 0;

447 write_lock(&newf­>file_lock);

448 error = expand_fdset(newf, size);

449 write_unlock(&newf­>file_lock);

450 if (error)

451 goto out_release;

452 }

453 read_lock(&oldf­>file_lock);

454

455 open_files = count_open_files(oldf, size);

456

457 /*

458 * Check whether we need to allocate a larger fd array.

459 * Note: we're not a clone task, so the open count won't

460 * change.

461 */

462 nfds = NR_OPEN_DEFAULT;

463 if (open_files > nfds) {

464 read_unlock(&oldf­>file_lock);

465 newf­>max_fds = 0;

466 write_lock(&newf­>file_lock);

467 error = expand_fd_array(newf, open_files);

468 write_unlock(&newf­>file_lock);

469 if (error)

470 goto out_release;

471 nfds = newf­>max_fds;

472 read_lock(&oldf­>file_lock);

473 }

474

475 old_fds = oldf­>fd;

476 new_fds = newf­>fd;

477

478 memcpy(newf­>open_fds­>fds_bits, oldf­>open_fds­>fds_bits, open_files/8);

479 memcpy(newf­>close_on_exec­>fds_bits, oldf­>close_on_exec­>fds_bits, open_files/8);

480

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

294

481 for (i = open_files; i != 0; i­­) {

482 struct file *f = *old_fds++;

483 if (f)

484 get_file(f);

485 *new_fds++ = f;

486 }

487 read_unlock(&oldf­>file_lock);

488

489 /* compute the remainder to be cleared */

490 size = (newf­>max_fds ­ open_files) * sizeof(struct file *);

491

492 /* This is long word aligned thus could use a optimized version */

493 memset(new_fds, 0, size);

494

495 if (newf­>max_fdset > open_files) {

496 int left = (newf­>max_fdset­open_files)/8;

497 int start = open_files / (8 * sizeof(unsigned long));

498

499 memset(&newf­>open_fds­>fds_bits[start], 0, left);

500 memset(&newf­>close_on_exec­>fds_bits[start], 0, left);

501 }

502

503 tsk­>files = newf;

504 error = 0;

505 out:

506 return error;

507

508 out_release:

509 free_fdset (newf­>close_on_exec, newf­>max_fdset);

510 free_fdset (newf­>open_fds, newf­>max_fdset);

511 kmem_cache_free(files_cachep, newf);

512 goto out;

513 }

task_struct files_struct oldf
clone_flags CLONE_FILES 1 atomic_inc()

files_struct
task_struct

files task_struct files_struct
CLONE_FILES 0 kmem_cache_alloc()

files_struct newf oldf newf files_struct
close_on_exec_init open_fds_init

file fd_array[]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

295

expand_fdset() expand_fd_array() files_struct
files_struct close_on_exec open_fds

fd

lseek()

files_struct fs_struct
copy_fs() clone_flags CLONE_FS 0

task_struct fs_struct root
pwd umask include/linux/fs_struct.h

copy_fs() kernel/fork.c

==================== kernel/fork.c 383 393 ====================
[sys_fork()>do_fork()>copy_fs()]
383 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)

384 {

385 if (clone_flags & CLONE_FS) {

386 atomic_inc(¤t­>fs­>count);

387 return 0;

388 }

389 tsk­>fs = __copy_fs_struct(current­>fs);

390 if (!tsk­>fs)

391 return ­1;

392 return 0;

393 }

==================== kernel/fork.c 378 381 ====================
[sys_fork()>do_fork()>copy_fs()>copy_fs_struct()]
378 struct fs_struct *copy_fs_struct(struct fs_struct *old)

379 {

380 return __copy_fs_struct(old);

381 }

==================== kernel/fork.c 353 376 ====================
[sys_fork()>do_fork()>copy_fs()>copy_fs_struct()>__cooy_fs_struct()]
353 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)

354 {

355 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);

356 /* We don't need to lock fs ­ think why ;­) */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

296

357 if (fs) {

358 atomic_set(&fs­>count, 1);

359 fs­>lock = RW_LOCK_UNLOCKED;

360 fs­>umask = old­>umask;

361 read_lock(&old­>lock);

362 fs­>rootmnt = mntget(old­>rootmnt);

363 fs­>root = dget(old­>root);

364 fs­>pwdmnt = mntget(old­>pwdmnt);

365 fs­>pwd = dget(old­>pwd);

366 if (old­>altroot) {

367 fs­>altrootmnt = mntget(old­>altrootmnt);

368 fs­>altroot = dget(old­>altroot);

369 } else {

370 fs­>altrootmnt = NULL;

371 fs­>altroot = NULL;

372 }

373 read_unlock(&old­>lock);

374 }

375 return fs;

376 }

mntget() dget()
fs_struct fs_struct

CLONE_SIGHAND

task_struct sig signal_struct
include/linux/sched.h

==================== include/linux/sched.h 243 247 ====================
243 struct signal_struct {

244 atomic_t count;

245 struct k_sigaction action[_NSIG];

246 spinlock_t siglock;

247 };

action[]
copy_sighand() kernel/fork.c

==================== kernel/fork.c 515 531 ====================
[sys_fork()>do_fork()>copy_sighand()]
515 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)

516 {

517 struct signal_struct *sig;

518

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

297

519 if (clone_flags & CLONE_SIGHAND) {

520 atomic_inc(¤t­>sig­>count);

521 return 0;

522 }

523 sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);

524 tsk­>sig = sig;

525 if (!sig)

526 return ­1;

527 spin_lock_init(&sig­>siglock);

528 atomic_set(&sig­>count, 1);

529 memcpy(tsk­>sig­>action, current­>sig­>action, sizeof(tsk­>sig­>action));

530 return 0;

531 }

copy_files() copy_fs() copy_sighand() CLONE_SIGHAND 0
sig signal_struct 1

task_struct mm
mm_struct

task_struct 0 mm_struct vm_area_struct 2
copy_mm() kernel/fork.c

==================== kernel/fork.c 279 351 ====================
[sys_fork()>do_fork()>copy_mm()]
279 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)

280 {

281 struct mm_struct * mm, *oldmm;

282 int retval;

283

284 tsk­>min_flt = tsk­>maj_flt = 0;

285 tsk­>cmin_flt = tsk­>cmaj_flt = 0;

286 tsk­>nswap = tsk­>cnswap = 0;

287

288 tsk­>mm = NULL;

289 tsk­>active_mm = NULL;

290

291 /*

292 * Are we cloning a kernel thread?

293 *

294 * We need to steal a active VM for that..

295 */

296 oldmm = current­>mm;

297 if (!oldmm)

298 return 0;

299

300 if (clone_flags & CLONE_VM) {

301 atomic_inc(&oldmm­>mm_users);

302 mm = oldmm;

303 goto good_mm;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

298

304 }

305

306 retval = ­ENOMEM;

307 mm = allocate_mm();

308 if (!mm)

309 goto fail_nomem;

310

311 /* Copy the current MM stuff.. */

312 memcpy(mm, oldmm, sizeof(*mm));

313 if (!mm_init(mm))

314 goto fail_nomem;

315

316 down(&oldmm­>mmap_sem);

317 retval = dup_mmap(mm);

318 up(&oldmm­>mmap_sem);

319

320 /*

321 * Add it to the mmlist after the parent.

322 *

323 * Doing it this way means that we can order

324 * the list, and fork() won't mess up the

325 * ordering significantly.

326 */

327 spin_lock(&mmlist_lock);

328 list_add(&mm­>mmlist, &oldmm­>mmlist);

329 spin_unlock(&mmlist_lock);

330

331 if (retval)

332 goto free_pt;

333

334 /*

335 * child gets a private LDT (if there was an LDT in the parent)

336 */

337 copy_segments(tsk, mm);

338

339 if (init_new_context(tsk,mm))

340 goto free_pt;

341

342 good_mm:

343 tsk­>mm = mm;

344 tsk­>active_mm = mm;

345 return 0;

346

347 free_pt:

348 mmput(mm);

349 fail_nomem:

350 return retval;

351 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

299

mm_struct clone_flags CLONE_VM 0
mm_struct

vm_area_struct
dup_mmap() dup_mmap() kernel/fork.c 2

==================== kernel/fork.c 125 193 ====================
[sys_fork()>do_fork()>copy_mm()>dup_mmap()]
125 static inline int dup_mmap(struct mm_struct * mm)

126 {

127 struct vm_area_struct * mpnt, *tmp, **pprev;

128 int retval;

129

130 flush_cache_mm(current­>mm);

131 mm­>locked_vm = 0;

132 mm­>mmap = NULL;

133 mm­>mmap_avl = NULL;

134 mm­>mmap_cache = NULL;

135 mm­>map_count = 0;

136 mm­>cpu_vm_mask = 0;

137 mm­>swap_cnt = 0;

138 mm­>swap_address = 0;

139 pprev = &mm­>mmap;

140 for (mpnt = current­>mm­>mmap ; mpnt ; mpnt = mpnt­>vm_next) {

141 struct file *file;

142

143 retval = ­ENOMEM;

144 if(mpnt­>vm_flags & VM_DONTCOPY)

145 continue;

146 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

147 if (!tmp)

148 goto fail_nomem;

149 *tmp = *mpnt;

150 tmp­>vm_flags &= ~VM_LOCKED;

151 tmp­>vm_mm = mm;

152 mm­>map_count++;

153 tmp­>vm_next = NULL;

154 file = tmp­>vm_file;

155 if (file) {

156 struct inode *inode = file­>f_dentry­>d_inode;

157 get_file(file);

158 if (tmp­>vm_flags & VM_DENYWRITE)

159 atomic_dec(&inode­>i_writecount);

160

161 /* insert tmp into the share list, just after mpnt */

162 spin_lock(&inode­>i_mapping­>i_shared_lock);

163 if((tmp­>vm_next_share = mpnt­>vm_next_share) != NULL)

164 mpnt­>vm_next_share­>vm_pprev_share =

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

300

165 &tmp­>vm_next_share;

166 mpnt­>vm_next_share = tmp;

167 tmp­>vm_pprev_share = &mpnt­>vm_next_share;

168 spin_unlock(&inode­>i_mapping­>i_shared_lock);

169 }

170

171 /* Copy the pages, but defer checking for errors */

172 retval = copy_page_range(mm, current­>mm, tmp);

173 if (!retval && tmp­>vm_ops && tmp­>vm_ops­>open)

174 tmp­>vm_ops­>open(tmp);

175

176 /*

177 * Link in the new vma even if an error occurred,

178 * so that exit_mmap() can clean up the mess.

179 */

180 *pprev = tmp;

181 pprev = &tmp­>vm_next;

182

183 if (retval)

184 goto fail_nomem;

185 }

186 retval = 0;

187 if (mm­>map_count >= AVL_MIN_MAP_COUNT)

188 build_mmap_avl(mm);

189

190 fail_nomem:

191 flush_tlb_mm(current­>mm);

192 return retval;

193 }

140 185 for mmap()
155 169 172 copy_page_range()

mm/memory.c

==================== mm/memory.c 144 257 ====================
[sys_fork()>do_fork()>copy_mm()>dup_mmap()>copy_page_range()]
144 /*

145 * copy one vm_area from one task to the other. Assumes the page tables

146 * already present in the new task to be cleared in the whole range

147 * covered by this vma.

148 *

149 * 08Jan98 Merged into one routine from several inline routines to reduce

150 * variable count and make things faster. ­jj

151 */

152 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,

153 struct vm_area_struct *vma)

154 {

155 pgd_t * src_pgd, * dst_pgd;

156 unsigned long address = vma­>vm_start;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

301

157 unsigned long end = vma­>vm_end;

158 unsigned long cow = (vma­>vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;

159

160 src_pgd = pgd_offset(src, address)­1;

161 dst_pgd = pgd_offset(dst, address)­1;

162

163 for (;;) {

164 pmd_t * src_pmd, * dst_pmd;

165

166 src_pgd++; dst_pgd++;

167

168 /* copy_pmd_range */

169

170 if (pgd_none(*src_pgd))

171 goto skip_copy_pmd_range;

172 if (pgd_bad(*src_pgd)) {

173 pgd_ERROR(*src_pgd);

174 pgd_clear(src_pgd);

175 skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;

176 if (!address || (address >= end))

177 goto out;

178 continue;

179 }

180 if (pgd_none(*dst_pgd)) {

181 if (!pmd_alloc(dst_pgd, 0))

182 goto nomem;

183 }

184

185 src_pmd = pmd_offset(src_pgd, address);

186 dst_pmd = pmd_offset(dst_pgd, address);

187

188 do {

189 pte_t * src_pte, * dst_pte;

190

191 /* copy_pte_range */

192

193 if (pmd_none(*src_pmd))

194 goto skip_copy_pte_range;

195 if (pmd_bad(*src_pmd)) {

196 pmd_ERROR(*src_pmd);

197 pmd_clear(src_pmd);

198 skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK;

199 if (address >= end)

200 goto out;

201 goto cont_copy_pmd_range;

202 }

203 if (pmd_none(*dst_pmd)) {

204 if (!pte_alloc(dst_pmd, 0))

205 goto nomem;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

302

206 }

207

208 src_pte = pte_offset(src_pmd, address);

209 dst_pte = pte_offset(dst_pmd, address);

210

211 do {

212 pte_t pte = *src_pte;

213 struct page *ptepage;

214

215 /* copy_one_pte */

216

217 if (pte_none(pte))

218 goto cont_copy_pte_range_noset;

219 if (!pte_present(pte)) {

220 swap_duplicate(pte_to_swp_entry(pte));

221 goto cont_copy_pte_range;

222 }

223 ptepage = pte_page(pte);

224 if ((!VALID_PAGE(ptepage)) ||

225 PageReserved(ptepage))

226 goto cont_copy_pte_range;

227

228 /* If it's a COW mapping, write protect it both in the parent and the child */

229 if (cow) {

230 ptep_set_wrprotect(src_pte);

231 pte = *src_pte;

232 }

233

234 /* If it's a shared mapping, mark it clean in the child */

235 if (vma­>vm_flags & VM_SHARED)

236 pte = pte_mkclean(pte);

237 pte = pte_mkold(pte);

238 get_page(ptepage);

239

240 cont_copy_pte_range: set_pte(dst_pte, pte);

241 cont_copy_pte_range_noset: address += PAGE_SIZE;

242 if (address >= end)

243 goto out;

244 src_pte++;

245 dst_pte++;

246 } while ((unsigned long)src_pte & PTE_TABLE_MASK);

247

248 cont_copy_pmd_range: src_pmd++;

249 dst_pmd++;

250 } while ((unsigned long)src_pmd & PMD_TABLE_MASK);

251 }

252 out:

253 return 0;

254

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

303

255 nomem:

256 return ­ENOMEM;

257 }

163 for 188 do 211
do 211 246 do­while

(1) 0 pte_none() 1

(2) _PAGE_PRESENT 0 pte_present() 1
”

swap_duplicate()
cont_copy_pte_range

(3) VALID_PAGE() 0

cont_copy_pte_range

(4)

Linux “copy on write

cow 158 cow “copy on write
VM_MAYWRITE 1 VM_SHARED 0

copy_on_write cow 1
230 231

236

Linux
“copy on wrtre fork

copy_on_write CLONE_VM
1 copy_on_write

”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

304

(5)

copy_page_range() Linux
fork() clone()

copy_mm() copy_segments() LDT
2 VM86 LDT VM86

copy_segments() arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 499 521 ====================
[sys_fork()>do_fork()>copy_mm()>copy_segments()]
499 /*

500 * we do not have to muck with descriptors here, that is

501 * done in switch_mm() as needed.

502 */

503 void copy_segments(struct task_struct *p, struct mm_struct *new_mm)

504 {

505 struct mm_struct * old_mm;

506 void *old_ldt, *ldt;

507

508 ldt = NULL;

509 old_mm = current­>mm;

510 if (old_mm && (old_ldt = old_mm­>context.segments) != NULL) {

511 /*

512 * Completely new LDT, we initialize it from the parent:

513 */

514 ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);

515 if (!ldt)

516 printk(KERN_WARNING "ldt allocation failed\n");

517 else

518 memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);

519 }

520 new_mm­>context.segments = ldt;

521 }

copy_mm() i386 CPU copy_mm() 339 init_new_context()

CPU copy_mm() do_fork()
fork() sys_fork() do_fork() clone_flags SIGCHILD

0 copy_files() copy_fs() copy_sighand() copy_mm()
vfork() sys_vfork() do_fork() clone_flags VFORK |

CLONE_VM | SIGCHLD copy_files() copy_fs() copy_sighand() copy_mm()
CLONE_VM 1 mm_struct

vfork()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

305

__clone()
copy_files()

do_fork() alloc_task_struct()
task_struct
copy_thread() arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 523 552 ====================
523 /*

524 * Save a segment.

525 */

526 #define savesegment(seg,value) \

527 asm volatile("movl %%" #seg ",%0":"=m" (*(int *)&(value)))

528

529 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,

530 unsigned long unused,

531 struct task_struct * p, struct pt_regs * regs)

532 {

533 struct pt_regs * childregs;

534

535 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) ­ 1;

536 struct_cpy(childregs, regs);

537 childregs­>eax = 0;

538 childregs­>esp = esp;

539

540 p­>thread.esp = (unsigned long) childregs;

541 p­>thread.esp0 = (unsigned long) (childregs+1);

542

543 p­>thread.eip = (unsigned long) ret_from_fork;

544

545 savesegment(fs,p­>thread.fs);

546 savesegment(gs,p­>thread.gs);

547

548 unlazy_fpu(current);

549 struct_cpy(&p­>thread.i387, ¤t­>thread.i387);

550

551 return 0;

552 }

copy_thread()
copy_thread()

535 3
CPU

pt_regs 535 p task_struct
THREAD_SIZE+(unsigned long)p

struct pt_regs* 1 pt_regs 4.3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

306

4.3

pt_regs childregs
pt_regs eax 0

0 esp esp __clone()
fork() vfork() do_fork() regs.esp

task_struct thread thread_struct

task_struct
540 p­>thread.esp pt_regs

p­>thread.esp0
TSS esp0 0

p­>thread.eip
ret_from_fork

545 546 savesegment 526
545 gcc

asm volatile (“movl %%fs, %0 “ : “ = m” (* (int *) & p­>thread.fs))

fs p­>thread.fs 546 548 549 i387

do_fork()

==================== kernel/fork.c 656 706 ====================
[sys_fork()>do_fork()]
656 /* Our parent execution domain becomes current domain

657 These must match for thread signalling to apply */

658

659 p­>parent_exec_id = p­>self_exec_id;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

307

660

661 /* ok, now we should be set up.. */

662 p­>swappable = 1;

663 p­>exit_signal = clone_flags & CSIGNAL;

664 p­>pdeath_signal = 0;

665

666 /*

667 * "share" dynamic priority between parent and child, thus the

668 * total amount of dynamic priorities in the system doesnt change,

669 * more scheduling fairness. This is only important in the first

670 * timeslice, on the long run the scheduling behaviour is unchanged.

671 */

672 p­>counter = (current­>counter + 1) >> 1;

673 current­>counter >>= 1;

674 if (!current­>counter)

675 current­>need_resched = 1;

676

677 /*

678 * Ok, add it to the run­queues and make it

679 * visible to the rest of the system.

680 *

681 * Let it rip!

682 */

683 retval = p­>pid;

684 p­>tgid = retval;

685 INIT_LIST_HEAD(&p­>thread_group);

686 write_lock_irq(&tasklist_lock);

687 if (clone_flags & CLONE_THREAD) {

688 p­>tgid = current­>tgid;

689 list_add(&p­>thread_group, ¤t­>thread_group);

690 }

691 SET_LINKS(p);

692 hash_pid(p);

693 nr_threads++;

694 write_unlock_irq(&tasklist_lock);

695

696 if (p­>ptrace & PT_PTRACED)

697 send_sig(SIGSTOP, p, 1);

698

699 wake_up_process(p); /* do this last */

700 ++total_forks;

701

702 fork_out:

703 if ((clone_flags & CLONE_VFORK) && (retval > 0))

704 down(&sem);

705 return retval;

706

parent_exec_id self_exec_id swappable

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

308

exit_signal exit() pdeath_signal
exit() task_struct counter

task_struct thread_group
SET_LINKS(p) task_struct

hash_pid() pid
wake_up_process()

do_fork() CLONE_VFORK 1
execve()

exit()
mm_struct

vm_area_struct
task_struct mm_struct CLONE_VM

CLONE_VM 1

do_fork() 703 704 CLONE_VFORK 1 fork
down()

sem 560 DECLARE

==================== kernel/fork.c 560 560 ====================
[sys_fork()>do_fork()]
560 DECLARE_MUTEX_LOCKED(sem);

DECLARE_MUTEX_LOCKED include/asm­i386/semaphore.h

==================== include/asm­i386/semaphore.h 70 71 ====================
70 #define DECLARE_MUTEX(name) __DECLARE_SEMAPHORE_GENERIC(name,1)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

309

71 define DECLARE_MUTEX_LOCKED(name) __DECLARE_SEMAPHORE_GENERIC(name,0)

DECLARE_MUTEX_LOCKED DECLARE_MUTEX
1 0 1 down()

0 down() 0

0 down()
up()

execve() execve()
exit()

do_fork() task_struct
vfork_sem do_fork() 586

CLONE_VM
CLONE_VFORK

execve()

4.4 execve()

Linux execve() C
execl() execlp() execle() execleo() execv()

execvp() system() exccve() system() fork() execve() wait4()
2 execve() execve()

execve() sys_execve() arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 722 740 ====================
722 /*

723 * sys_execve() executes a new program.

724 */

725 asmlinkage int sys_execve(struct pt_regs regs)

726 {

727 int error;

728 char * filename;

729

730 filename = getname((char *) regs.ebx);

731 error = PTR_ERR(filename);

732 if (IS_ERR(filename))

733 goto out;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

310

734 error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, ®s);

735 if (error == 0)

736 current­>ptrace &= ~PT_DTRACE;

737 putname(filename);

738 out:

739 return error;

740 }

regs.ebx
2 “/bin/echo regs.ebx

730 getname()
getname() fs/namei.c

==================== fs/namei.c 129 145 ====================
[sys_execve()>getname()]
129 char * getname(const char * filename)

130 {

131 char *tmp, *result;

132

133 result = ERR_PTR(­ENOMEM);

134 tmp = __getname();

135 if (tmp) {

136 int retval = do_getname(filename, tmp);

137

138 result = tmp;

139 if (retval < 0) {

140 putname(tmp);

141 result = ERR_PTR(retval);

142 }

143 }

144 return result;

145 }

__getname() do_getname()

7KB
getname() 4KB

do_getname() fs/namei.c

==================== fs/namei.c 102 127 ====================
[sys_execve()>getname()>do_getname()]
102 /* In order to reduce some races, while at the same time doing additional

103 * checking and hopefully speeding things up, we copy filenames to the

104 * kernel data space before using them..

105 *

106 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

311

107 */

108 static inline int do_getname(const char *filename, char *page)

109 {

110 int retval;

111 unsigned long len = PATH_MAX + 1;

112

113 if ((unsigned long) filename >= TASK_SIZE) {

114 if (!segment_eq(get_fs(), KERNEL_DS))

115 return ­EFAULT;

116 } else if (TASK_SIZE ­ (unsigned long) filename < PAGE_SIZE)

117 len = TASK_SIZE ­ (unsigned long) filename;

118

119 retval = strncpy_from_user((char *)page, filename, len);

120 if (retval > 0) {

121 if (retval < len)

122 return 0;

123 return ­ENAMETOOLONG;

124 } else if (!retval)

125 retval = ­ENOENT;

126 return retval;

127 }

filename TASK_SIZE filename
TASK_SIZE 3GB strncpy_from_user()

arch/i386/lib/usercopy.c

==================== arch/i386/lib/usercopy.c 100 107 ====================
[sys_execve()>getname()>do_getname()>strncpy_from_user()]
100 long

101 strncpy_from_user(char *dst, const char *src, long count)

102 {

103 long res = ­EFAULT;

104 if (access_ok(VERIFY_READ, src, 1))

105 __do_strncpy_from_user(dst, src, count, res);

106 return res;

107 }

strncpy_from_user() arch/i386/lib/usercopy.c
3 __generic_copy_from_user()

sys_execve() do_execve()
putname() do_execve()

fs/exec.c

==================== fs/exec.c 835 850 ====================
[sys_execve()>do_execve()]
835 /*

836 * sys_execve() executes a new program.

837 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

312

838 int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)

839 {

840 struct linux_binprm bprm;

841 struct file *file;

842 int retval;

843 int i;

844

845 file = open_exec(filename);

846

847 retval = PTR_ERR(file);

848 if (IS_ERR(file))

849 return retval;

850

open_exec()
fs/exec.c path_walk()

linux_binprm
include/linux/binfmts.h

==================== include/linux/binfmts.h 19 33 ====================
19 /*

20 * This structure is used to hold the arguments that are used when loading binaries.

21 */

22 struct linux_binprm{

23 char buf[BINPRM_BUF_SIZE];

24 struct page *page[MAX_ARG_PAGES];

25 unsigned long p; /* current top of mem */

26 int sh_bang;

27 struct file * file;

28 int e_uid, e_gid;

29 kernel_cap_t cap_inheritable, cap_permitted, cap_effective;

30 int argc, envc;

31 char * filename; /* Name of binary */

32 unsigned long loader, exec;

33 };

do_execve()

==================== fs/exec.c 851 887 ====================
[sys_execve()>do_execve()]
851 bprm.p = PAGE_SIZE*MAX_ARG_PAGES­sizeof(void *);

852 memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));

853

854 bprm.file = file;

855 bprm.filename = filename;

856 bprm.sh_bang = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

313

857 bprm.loader = 0;

858 bprm.exec = 0;

859 if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) {

860 allow_write_access(file);

861 fput(file);

862 return bprm.argc;

863 }

864

865 if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {

866 allow_write_access(file);

867 fput(file);

868 return bprm.envc;

869 }

870

871 retval = prepare_binprm(&bprm);

872 if (retval < 0)

873 goto out;

874

875 retval = copy_strings_kernel(1, &bprm.filename, &bprm);

876 if (retval < 0)

877 goto out;

878

879 bprm.exec = bprm.p;

880 retval = copy_strings(bprm.envc, envp, &bprm);

881 if (retval < 0)

882 goto out;

883

884 retval = copy_strings(bprm.argc, argv, &bprm);

885 if (retval < 0)

886 goto out;

887

linux_binprm bprm open_exec() file
bprm bprm.sh_bang

Shell Shell Script Shell shell
1 0

0
bprm

MAX_AGE_PAGES 32
memset() 0 bprm.p

0 argv[0] count() exec.c
argv[] bprm.p/sizeof(void *)

count() argv[] envp[]
count() fs/exec.c

get_user() 3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

314

__generic_copy_from_user() include/asm­i386/uaccess.h
arch/i386/lib/getuser.S [count()>get_user()>_get_user()>_get_user_4()] count()

allow_write_access() deny_write_access()
CPU

mmap() deny_write_access()
open_exec()

do_execve() prepare_binprm()
bprm 128 linux_binprm bprm

“set uid fs/exec.c
128

elf a.out 128

argv[] envp[]
bprm 1 argv[0] bprm.filename

copy_strings_kernel() copy_strings()
linux_binprm bprm

fs/exec.c

==================== fs/exec.c 888 906 ====================
[sys_execve()>do_execve()]
888 retval = search_binary_handler(&bprm,regs);

889 if (retval >= 0)

890 /* execve success */

891 return retval;

892

893 out:

894 /* Something went wrong, return the inode and free the argument pages*/

895 allow_write_access(bprm.file);

896 if (bprm.file)

897 fput(bprm.file);

898

899 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {

900 struct page * page = bprm.page[i];

901 if (page)

902 __free_page(page);

903 }

904

905 return retval;

906 }

search_binary_handler()
formats

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

315

128 bprm bprm
formats

formats formats
search_binary_handler() fs/exec.c alpha

==================== fs/exec.c 747 754 ====================
[sys_execve()>do_execve()>search_binary_handler()]
747 /*

748 * cycle the list of binary formats handler, until one recognizes the image

749 */

750 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)

751 {

752 int try,retval=0;

753 struct linux_binfmt *fmt;

754 #ifdef __alpha__

==================== fs/exec.c 785 832 ====================
785 #endif

786 for (try=0; try<2; try++) {

787 read_lock(&binfmt_lock);

788 for (fmt = formats ; fmt ; fmt = fmt­>next) {

789 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt­>load_binary;

790 if (!fn)

791 continue;

792 if (!try_inc_mod_count(fmt­>module))

793 continue;

794 read_unlock(&binfmt_lock);

795 retval = fn(bprm, regs);

796 if (retval >= 0) {

797 put_binfmt(fmt);

798 allow_write_access(bprm­>file);

799 if (bprm­>file)

800 fput(bprm­>file);

801 bprm­>file = NULL;

802 current­>did_exec = 1;

803 return retval;

804 }

805 read_lock(&binfmt_lock);

806 put_binfmt(fmt);

807 if (retval != ­ENOEXEC)

808 break;

809 if (!bprm­>file) {

810 read_unlock(&binfmt_lock);

811 return retval;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

316

812 }

813 }

814 read_unlock(&binfmt_lock);

815 if (retval != ­ENOEXEC) {

816 break;

817 #ifdef CONFIG_KMOD

818 }else{

819 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))

820 char modname[20];

821 if (printable(bprm­>buf[0]) &&

822 printable(bprm­>buf[1]) &&

823 printable(bprm­>buf[2]) &&

824 printable(bprm­>buf[3]))

825 break; /* ­ENOEXEC */

826 sprintf(modname, "binfmt­%04x", *(unsigned short *)(&bprm­>buf[2]));

827 request_module(modname);

828 #endif

829 }

830 }

831 return retval;

832 }

for formats
load_binary()

0 CPU
­ENOEXEC

­ENOEXEC
­ENOEXEC

CONFIG_KMOD
2 3 binfmt request_module()

for

Linux 4
magic number elf

“0x7F “e “l “f java “c “a “f”
“e Shell perl #! /bin/sh #! /usr/bin/perl

“# “!
linux_binfmt include/linux/binfmts.h

load_binary load_shlib core_dump
load_binary

execve() Linux a.out
a.out elf

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

317

a.out
a.out a.out elf

4.4.1 a.out

a.out fs/binfmt_aout.c a.out linux_binfmt
formats a.out

==================== fs/binfmt_aout.c 38 40 ====================
38 static struct linux_binfmt aout_format = {

39 NULL, THIS_MODULE, load_aout_binary, load_aout_library, aout_core_dump, PAGE_SIZE

40 };

a.out
load_aout_binary()

fs/binfmt_aout.c

==================== fs/binfmt_aout.c 249 268 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
249 /*

250 * These are the functions used to load a.out style executables and shared

251 * libraries. There is no binary dependent code anywhere else.

252 */

253

254 static int load_aout_binary(struct linux_binprm * bprm, struct pt_regs * regs)

255 {

256 struct exec ex;

257 unsigned long error;

258 unsigned long fd_offset;

259 unsigned long rlim;

260 int retval;

261

262 ex = *((struct exec *) bprm­>buf); /* exec­header */

263 if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != OMAGIC &&

264 N_MAGIC(ex) != QMAGIC && N_MAGIC(ex) != NMAGIC) ||

265 N_TRSIZE(ex) || N_DRSIZE(ex) ||

266 bprm­>file­>f_dentry­>d_inode­>i_size < ex.a_text+ex.a_data+N_SYMSIZE(ex)+N_TXTOFF(ex)) {

267 return ­ENOEXEC;

268 }

a.out
exec include/asm­i386/a.out.h

==================== include/asm­i386/a.out.h 4 18 ====================
4 struct exec

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

318

5 {

6 unsigned long a_info; /* Use macros N_MAGIC, etc for access */

7 unsigned a_text; /* length of text, in bytes */

8 unsigned a_data; /* length of data, in bytes */

9 unsigned a_bss; /* length of uninitialized data area for file, in bytes */

10 unsigned a_syms; /* length of symbol table data in file, in bytes */

11 unsigned a_entry; /* start address */

12 unsigned a_trsize; /* length of relocation info for text, in bytes */

13 unsigned a_drsize; /* length of relocation info for data, in bytes */

14 };

15

16 #define N_TRSIZE(a) ((a).a_trsize)

17 #define N_DRSIZE(a) ((a).a_drsize)

18 #define N_SYMSIZE(a) ((a).a_syms)

a_info 16 CPU
i386 CPU 100 0x64 16 magic number a.out

magic number
ZMAGIC OMAGIC QMAGIC NMAGIC include/linux/a.out.h

==================== include/linux/a.out.h 60 71 ====================
60 /* Code indicating object file or impure executable. */

61 #define OMAGIC 0407

62 /* Code indicating pure executable. */

63 #define NMAGIC 0410

64 /* Code indicating demand­paged executable. */

65 #define ZMAGIC 0413

66 /* This indicates a demand­paged executable with the header in the text.

67 The first page is unmapped to help trap NULL pointer references */

68 #define QMAGIC 0314

69

70 /* Code indicating core file. */

71 #define CMAGIC 0421

magic number exec
a.out ­ENOEXEC

fs/binfmt_aout.c

==================== fs/binfmt_aout.c 270 287 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
270 fd_offset = N_TXTOFF(ex);

271

272 /* Check initial limits. This avoids letting people circumvent

273 * size limits imposed on them by creating programs with large

274 * arrays in the data or bss.

275 */

276 rlim = current­>rlim[RLIMIT_DATA].rlim_cur;

277 if (rlim >= RLIM_INFINITY)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

319

278 rlim = ~0;

279 if (ex.a_data + ex.a_bss > rlim)

280 return ­ENOMEM;

281

282 /* Flush all traces of the currently running executable */

283 retval = flush_old_exec(bprm);

284 if (retval)

285 return retval;

286

287 /* OK, This is the point of no return */

a.out
N_TXTOFF() include/linux/a.out.h

==================== include/linux/a.out.h 80 86 ====================
80 #define _N_HDROFF(x) (1024 ­ sizeof (struct exec))

81

82 #if !defined (N_TXTOFF)

83 #define N_TXTOFF(x) \

84 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \

85 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))

86 #endif

task_struct rlim
data bss

flush_old_exec() fs/exec.c

==================== fs/exec.c 523 585 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()]
523 int flush_old_exec(struct linux_binprm * bprm)

524 {

525 char * name;

526 int i, ch, retval;

527 struct signal_struct * oldsig;

528

529 /*

530 * Make sure we have a private signal table

531 */

532 oldsig = current­>sig;

533 retval = make_private_signals();

534 if (retval) goto flush_failed;

535

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

320

536 /*

537 * Release all of the old mmap stuff

538 */

539 retval = exec_mmap();

540 if (retval) goto mmap_failed;

541

542 /* This is the point of no return */

543 release_old_signals(oldsig);

544

545 current­>sas_ss_sp = current­>sas_ss_size = 0;

546

547 if (current­>euid == current­>uid && current­>egid == current­>gid)

548 current­>dumpable = 1;

549 name = bprm­>filename;

550 for (i=0; (ch = *(name++)) != '\0';) {

551 if (ch == '/')

552 i = 0;

553 else

554 if (i < 15)

555 current­>comm[i++] = ch;

556 }

557 current­>comm[i] = '\0';

558

559 flush_thread();

560

561 de_thread(current);

562

563 if (bprm­>e_uid != current­>euid || bprm­>e_gid != current­>egid ||

564 permission(bprm­>file­>f_dentry­>d_inode,MAY_READ))

565 current­>dumpable = 0;

566

567 /* An exec changes our domain. We are no longer part of the thread

568 group */

569

570 current­>self_exec_id++;

571

572 flush_signal_handlers(current);

573 flush_old_files(current­>files);

574

575 return 0;

576

577 mmap_failed:

578 flush_failed:

579 spin_lock_irq(¤t­>sigmask_lock);

580 if (current­>sig != oldsig)

581 kfree(current­>sig);

582 current­>sig = oldsig;

583 spin_unlock_irq(¤t­>sigmask_lock);

584 return retval;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

321

585 }

make_private_signals() do_fork()
copy_sighand()

==================== fs/exec.c 429 452 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>make_private_signals()]
429 /*

430 * This function makes sure the current process has its own signal table,

431 * so that flush_signal_handlers can later reset the handlers without

432 * disturbing other processes. (Other processes might share the signal

433 * table via the CLONE_SIGNAL option to clone().)

434 */

435

436 static inline int make_private_signals(void)

437 {

438 struct signal_struct * newsig;

439

440 if (atomic_read(¤t­>sig­>count) <= 1)

441 return 0;

442 newsig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);

443 if (newsig == NULL)

444 return ­ENOMEM;

445 spin_lock_init(&newsig­>siglock);

446 atomic_set(&newsig­>count, 1);

447 memcpy(newsig­>action, current­>sig­>action, sizeof(newsig­>action));

448 spin_lock_irq(¤t­>sigmask_lock);

449 current­>sig = newsig;

450 spin_unlock_irq(¤t­>sigmask_lock);

451 return 0;

452 }

“lazy
computation execve()

execve()

fork() vfork()
__clone() make_private_signals()

exec_mmap()
fs/exec.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

322

==================== fs/exec.c 385 427 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()]
385 static int exec_mmap(void)

386 {

387 struct mm_struct * mm, * old_mm;

388

389 old_mm = current­>mm;

390 if (old_mm && atomic_read(&old_mm­>mm_users) == 1) {

391 flush_cache_mm(old_mm);

392 mm_release();

393 exit_mmap(old_mm);

394 flush_tlb_mm(old_mm);

395 return 0;

396 }

397

398 mm = mm_alloc();

399 if (mm) {

400 struct mm_struct *active_mm = current­>active_mm;

401

402 if (init_new_context(current, mm)) {

403 mmdrop(mm);

404 return ­ENOMEM;

405 }

406

407 /* Add it to the list of mm's */

408 spin_lock(&mmlist_lock);

409 list_add(&mm­>mmlist, &init_mm.mmlist);

410 spin_unlock(&mmlist_lock);

411

412 task_lock(current);

413 current­>mm = mm;

414 current­>active_mm = mm;

415 task_unlock(current);

416 activate_mm(active_mm, mm);

417 mm_release();

418 if (old_mm) {

419 if (active_mm != old_mm) BUG();

420 mmput(old_mm);

421 return 0;

422 }

423 mmdrop(active_mm);

424 return 0;

425 }

426 return ­ENOMEM;

427 }

current­>mm

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

323

1
mm_struct vm_area_struct mm_struct

0 exit_mmap() mm/mmap.c
exit_mmap() mm_release()

flush_cache_mm() flush_tlb_mm()
i386 fork()

execve()
fork()

vfork() BSD Unix sys_fork()
sys_vfork() do_fork() arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 690 693 ====================
690 asmlinkage int sys_fork(struct pt_regs regs)

691 {

692 return do_fork(SIGCHLD, regs.esp, ®s, 0);

693 }

==================== arch/i386/kernel/process.c 717 720 ====================
717 asmlinkage int sys_vfork(struct pt_regs regs)

718 {

719 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0);

720 }

sys_vfork() do_fork() sys_fork() CLONE_VFORK
CLONE_VM CLONE_VM 1

mm_struct
execve()

fork() execve()

“copy_on_write
“copy_on_write

vfork()
sys_vfork() do_fork() CLONE_VFORK

1 execve()
exit()

vfork()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

324

vfork()
execve()

execve() exit()
do_fork() 0 down()

mm_release() up()
mm_release() kernel/fork.c

==================== kernel/fork.c 255 277 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()>mm_release()]
255 /* Please note the differences between mmput and mm_release.

256 * mmput is called whenever we stop holding onto a mm_struct,

257 * error success whatever.

258 *

259 * mm_release is called after a mm_struct has been removed

260 * from the current process.

261 *

262 * This difference is important for error handling, when we

263 * only half set up a mm_struct for a new process and need to restore

264 * the old one. Because we mmput the new mm_struct before

265 * restoring the old one. . .

266 * Eric Biederman 10 January 1998

267 */

268 void mm_release(void)

269 {

270 struct task_struct *tsk = current;

271

272 /* notify parent sleeping on vfork() */

273 if (tsk­>flags & PF_VFORK) {

274 tsk­>flags &= ~PF_VFORK;

275 up(tsk­>p_opptr­>vfork_sem);

276 }

277 }

exec_mmap()
exit_mmap()

mm_struct i386
CPU init_new_context() 0 task_struct

mm active_mm mm_struct activate_mm()
include/asm­i386/mmu_context.h

==================== include/asm­i386/mmu_context.h 61 62 ====================
61 #define activate_mm(prev, next) \

62 switch_mm((prev),(next),NULL,smp_processor_id())

switch_mm()
mm_struct ”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

325

mm_release() CLONE_VFORK
CLONE_VM mm_release() mm_release()

1 0
mmput() kernel/fork.c

==================== kernel/fork.c 242 253 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()>mmput()]
242 /*

243 * Decrement the use count and release all resources for an mm.

244 */

245 void mmput(struct mm_struct *mm)

246 {

247 if (atomic_dec_and_lock(&mm­>mm_users, &mmlist_lock)) {

248 list_del(&mm­>mmlist);

249 spin_unlock(&mmlist_lock);

250 exit_mmap(mm);

251 mmdrop(mm);

252 }

253 }

mm­>mm_users 1 1 0 mm exit_mmap() mmdrop()
exit_mmap() mm_struct vm_area_struct

0 mmdrop()
mm_struct

mm­>mm_users 1 0

0
exec_mmap() exec_mmap()

task_struct mm_struct mm 0
mm_struct active_mm 0

task_struct mm_struct mm
active_mm

active_mm mm_struct
active_mm active_mm

0
active_mm mm_struct

mm_struct
active_mm mmdrop() inline

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

326

include/linux/sched.h

==================== include/linux/sched.h 709 715 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()>mmdrop()]
709 /* mmdrop drops the mm and the page tables */

710 extern inline void FASTCALL(__mmdrop(struct mm_struct *));

711 static inline void mmdrop(struct mm_struct * mm)

712 {

713 if (atomic_dec_and_test(&mm­>mm_count))

714 __mmdrop(mm);

715 }

__mmdrop() kernel/fork.c

==================== kernel/fork.c 229 240 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()>mmdrop()
>__mmdrop()]
229 /*

230 * Called when the last reference to the mm

231 * is dropped: either by a lazy thread or by

232 * mmput. Free the page directory and the mm.

233 */

234 inline void __mmdrop(struct mm_struct *mm)

235 {

236 if (mm == &init_mm) BUG();

237 pgd_free(mm­>pgd);

238 destroy_context(mm);

239 free_mm(mm);

240 }

mmdrop() mm_struct mm_count
0 mm_users mm_count mm_struct

1 mm_users mm_count
mm_struct

exec_mmap() flush_old_exec()
0 ”

0 release_old_signals()
task_struct comm[]

bprm­>filename flush_thread() debug
i387

task_struct thread_group
execve()

de_thread() fs/exec.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

327

==================== fs/exec.c 502 521 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>exec_mmap()>mmdrop()
>__mmdrop()]
502 /*

503 * An execve() will automatically "de­thread" the process.

504 * Note: we don't have to hold the tasklist_lock to test

505 * whether we migth need to do this. If we're not part of

506 * a thread group, there is no way we can become one

507 * dynamically. And if we are, we only need to protect the

508 * unlink ­ even if we race with the last other thread exit,

509 * at worst the list_del_init() might end up being a no­op.

510 */

511 static inline void de_thread(struct task_struct *tsk)

512 {

513 if (!list_empty(&tsk­>thread_group)) {

514 write_lock_irq(&tasklist_lock);

515 list_del_init(&tsk­>thread_group);

516 write_unlock_irq(&tasklist_lock);

517 }

518

519 /* Minor oddity: this might stay the same. */

520 tsk­>tgid = tsk­>pid;

521 }

default
SIG_IGN SIG_DFL

SIGQUIT exit()

SIG_DFL flush_signal_handlers() kernel/signal.c

==================== kernel/signal.c 127 143 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>flush_signal_handlers()]
127 /*

128 * Flush all handlers for a task.

129 */

130

131 void

132 flush_signal_handlers(struct task_struct *t)

133 {

134 int i;

135 struct k_sigaction *ka = &t­>sig­>action[0];

136 for (i = _NSIG ; i != 0 ; i­­) {

137 if (ka­>sa.sa_handler != SIG_IGN)

138 ka­>sa.sa_handler = SIG_DFL;

139 ka­>sa.sa_flags = 0;

140 sigemptyset(&ka­>sa.sa_mask);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

328

141 ka++;

142 }

143 }

flush_old_files() task_struct
file_struct “files file_struct

close_on_exec
flush_old_files() 0

fs/exec.c

==================== fs/exec.c 469 500 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>flush_old_exec()>flush_old_files()]
469 /*

470 * These functions flushes out all traces of the currently running executable

471 * so that a new one can be started

472 */

473

474 static inline void flush_old_files(struct files_struct * files)

475 {

476 long j = ­1;

477

478 write_lock(&files­>file_lock);

479 for (;;) {

480 unsigned long set, i;

481

482 j++;

483 i = j * __NFDBITS;

484 if (i >= files­>max_fds || i >= files­>max_fdset)

485 break;

486 set = files­>close_on_exec­>fds_bits[j];

487 if (!set)

488 continue;

489 files­>close_on_exec­>fds_bits[j] = 0;

490 write_unlock(&files­>file_lock);

491 for (; set ; i++,set >>= 1) {

492 if (set & 1) {

493 sys_close(i);

494 }

495 }

496 write_lock(&files­>file_lock);

497

498 }

499 write_unlock(&files­>file_lock);

500 }

fd 0 l 2 stdin stdout stderr
ioctl()

flush_old_exec() load_aout_binary()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

329

fs/binfmt_aout.c sparc

==================== fs/binfmt_aout.c 287 307 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
287 /* OK, This is the point of no return */

288 #if !defined(__sparc__)

289 set_personality(PER_LINUX);

290 #else

291 set_personality(PER_SUNOS);

292 #if !defined(__sparc_v9__)

293 memcpy(¤t­>thread.core_exec, &ex, sizeof(struct exec));

294 #endif

295 #endif

296

297 current­>mm­>end_code = ex.a_text +

298 (current­>mm­>start_code = N_TXTADDR(ex));

299 current­>mm­>end_data = ex.a_data +

300 (current­>mm­>start_data = N_DATADDR(ex));

301 current­>mm­>brk = ex.a_bss +

302 (current­>mm­>start_brk = N_BSSADDR(ex));

303

304 current­>mm­>rss = 0;

305 current­>mm­>mmap = NULL;

306 compute_creds(bprm);

307 current­>flags &= ~PF_FORKNOEXEC;

mm_struct
text data bss mm_struct

start end include/linux/a.out.h

==================== include/linux/a.out.h 108 111 ====================
108 /* Address of text segment in memory after it is loaded. */

109 #if !defined (N_TXTADDR)

110 #define N_TXTADDR(x) (N_MAGIC(x) == QMAGIC ? PAGE_SIZE : 0)

111 #endif

==================== include/linux/a.out.h 141 154 ====================
141 #define _N_SEGMENT_ROUND(x) (((x) + SEGMENT_SIZE ­ 1) & ~(SEGMENT_SIZE ­ 1))

142

143 #define _N_TXTENDADDR(x) (N_TXTADDR(x)+(x).a_text)

144

145 #ifndef N_DATADDR

146 #define N_DATADDR(x) \

147 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x)) \

148 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x))))

149 #endif

150

151 /* Address of bss segment in memory after it is loaded. */

152 #if !defined (N_BSSADDR)

153 #define N_BSSADDR(x) (N_DATADDR(x) + (x).a_data)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

330

154 #endif

0 PAGE_SIZE
bss

compute_creds() bprm
exec.c

a.out fs/binfmt_aout.c

==================== fs/binfmt_aout.c 308 309 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
308 #ifdef __sparc__

309 if (N_MAGIC(ex) == NMAGIC) {

==================== fs/binfmt_aout.c 321 351 ====================
321 #endif

322

323 if (N_MAGIC(ex) == OMAGIC) {

324 unsigned long text_addr, map_size;

325 loff_t pos;

326

327 text_addr = N_TXTADDR(ex);

328

329 #if defined(__alpha__) || defined(__sparc__)

330 pos = fd_offset;

331 map_size = ex.a_text+ex.a_data + PAGE_SIZE ­ 1;

332 #else

333 pos = 32;

334 map_size = ex.a_text+ex.a_data;

335 #endif

336

337 error = do_brk(text_addr & PAGE_MASK, map_size);

338 if (error != (text_addr & PAGE_MASK)) {

339 send_sig(SIGKILL, current, 0);

340 return error;

341 }

342

343 error = bprm­>file­>f_op­>read(bprm­>file, (char *)text_addr,

344 ex.a_text+ex.a_data, &pos);

345 if (error < 0) {

346 send_sig(SIGKILL, current, 0);

347 return error;

348 }

349

350 flush_icache_range(text_addr, text_addr+ex.a_text+ex.a_data);

351 } else {

a.out magic number magic number
OMAGIC do_brk()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

331

do_brk() 2

32
0 ex.a_text+ex.a_data i386 CPU flush_icache_range()

bss
OMAGIC a.out

OMAGIC fs/binfmt_aout.c

==================== fs/binfmt_aout.c 351 402 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
351 } else {

352 static unsigned long error_time, error_time2;

353 if ((ex.a_text & 0xfff || ex.a_data & 0xfff) &&

354 (N_MAGIC(ex) != NMAGIC) && (jiffies­error_time2) > 5*HZ)

355 {

356 printk(KERN_NOTICE "executable not page aligned\n");

357 error_time2 = jiffies;

358 }

359

360 if ((fd_offset & ~PAGE_MASK) != 0 &&

361 (jiffies­error_time) > 5*HZ)

362 {

363 printk(KERN_WARNING

364 "fd_offset is not page aligned. Please convert program: %s\n",

365 bprm­>file­>f_dentry­>d_name.name);

366 error_time = jiffies;

367 }

368

369 if (!bprm­>file­>f_op­>mmap||((fd_offset & ~PAGE_MASK) != 0)) {

370 loff_t pos = fd_offset;

371 do_brk(N_TXTADDR(ex), ex.a_text+ex.a_data);

372 bprm­>file­>f_op­>read(bprm­>file,(char *)N_TXTADDR(ex),

373 ex.a_text+ex.a_data, &pos);

374 flush_icache_range((unsigned long) N_TXTADDR(ex),

375 (unsigned long) N_TXTADDR(ex) +

376 ex.a_text+ex.a_data);

377 goto beyond_if;

378 }

379

380 down(¤t­>mm­>mmap_sem);

381 error = do_mmap(bprm­>file, N_TXTADDR(ex), ex.a_text,

382 PROT_READ | PROT_EXEC,

383 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,

384 fd_offset);

385 up(¤t­>mm­>mmap_sem);

386

387 if (error != N_TXTADDR(ex)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

332

388 send_sig(SIGKILL, current, 0);

389 return error;

390 }

391

392 down(¤t­>mm­>mmap_sem);

393 error = do_mmap(bprm­>file, N_DATADDR(ex), ex.a_data,

394 PROT_READ | PROT_WRITE | PROT_EXEC,

395 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,

396 fd_offset + ex.a_text);

397 up(¤t­>mm­>mmap_sem);

398 if (error != N_DATADDR(ex)) {

399 send_sig(SIGKILL, current, 0);

400 return error;

401 }

402 }

a.out OMAGIC ”

swap
NMAGIC

printk()
error_time2 5

mmap

fd_offset N_TXTOFF(ex)
N_TXTADDR(ex) do_mmap()

mmap()
mmap()

bss fs/binfmt_aout.c

==================== fs/binfmt_aout.c 403 416 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
403 beyond_if:

404 set_binfmt(&aout_format);

405

406 set_brk(current­>mm­>start_brk, current­>mm­>brk);

407

408 retval = setup_arg_pages(bprm);

409 if (retval < 0) {

410 /* Someone check­me: is this error path enough? */

411 send_sig(SIGKILL, current, 0);

412 return retval;

413 }

414

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

333

415 current­>mm­>start_stack =

416 (unsigned long) create_aout_tables((char *) bprm­>p, bprm);

set_binfmt() fs/exec.c

==================== fs/exec.c 908 916 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>set_binfmt()]
908 void set_binfmt(struct linux_binfmt *new)

909 {

910 struct linux_binfmt *old = current­>binfmt;

911 if (new && new­>module)

912 __MOD_INC_USE_COUNT(new­>module);

913 current­>binfmt = new;

914 if (old && old­>module)

915 __MOD_DEC_USE_COUNT(old­>module);

916 }

current­>binfmt
set_brk() bss

fs/binfmt_aout.c

==================== fs/binfmt_aout.c 42 49 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>set_brk()]
78 * dumping of the process results in another error..

79 */

80

81 static int aout_core_dump(long signr, struct pt_regs * regs, struct file *file)

82 {

83 mm_segment_t fs;

84 int has_dumped = 0;

85 unsigned long dump_start, dump_size;

2 do_brk() bss 0

setup_arg_pages() fs/exec.c

==================== fs/exec.c 288 332 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>setup_arg_pages()]
288 int setup_arg_pages(struct linux_binprm *bprm)

289 {

290 unsigned long stack_base;

291 struct vm_area_struct *mpnt;

292 int i;

293

294 stack_base = STACK_TOP ­ MAX_ARG_PAGES*PAGE_SIZE;

295

296 bprm­>p += stack_base;

297 if (bprm­>loader)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

334

298 bprm­>loader += stack_base;

299 bprm­>exec += stack_base;

300

301 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

302 if (!mpnt)

303 return ­ENOMEM;

304

305 down(¤t­>mm­>mmap_sem);

306 {

307 mpnt­>vm_mm = current­>mm;

308 mpnt­>vm_start = PAGE_MASK & (unsigned long) bprm­>p;

309 mpnt­>vm_end = STACK_TOP;

310 mpnt­>vm_page_prot = PAGE_COPY;

311 mpnt­>vm_flags = VM_STACK_FLAGS;

312 mpnt­>vm_ops = NULL;

313 mpnt­>vm_pgoff = 0;

314 mpnt­>vm_file = NULL;

315 mpnt­>vm_private_data = (void *) 0;

316 insert_vm_struct(current­>mm, mpnt);

317 current­>mm­>total_vm = (mpnt­>vm_end ­ mpnt­>vm_start) >> PAGE_SHIFT;

318 }

319

320 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {

321 struct page *page = bprm­>page[i];

322 if (page) {

323 bprm­>page[i] = NULL;

324 current­>mm­>rss++;

325 put_dirty_page(current,page,stack_base);

326 }

327 stack_base += PAGE_SIZE;

328 }

329 up(¤t­>mm­>mmap_sem);

330

331 return 0;

332 }

STACK_TOP TASK_SIZE 3GB
0xC0000000

MAX_ARG_PAGES

main() main argc argv[] argv[] argc
envp[]

envp[] argv[] argc

create_aout_tables() fs/binfmt_aout.c

==================== fs/binfmt_aout.c 187 200 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

335

[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()>create_aout_table()]
187 /*

188 * create_aout_tables() parses the env­ and arg­strings in new user

189 * memory and creates the pointer tables from them, and puts their

190 * addresses on the "stack", returning the new stack pointer value.

191 */

192 static unsigned long * create_aout_tables(char * p, struct linux_binprm * bprm)

193 {

194 char **argv, **envp;

195 unsigned long * sp;

196 int argc = bprm­>argc;

197 int envc = bprm­>envc;

198

199 sp = (unsigned long *) ((­(unsigned long)sizeof(char *)) & (unsigned long) p);

200 #ifdef __sparc__

==================== fs/binfmt_aout.c 204 205 ====================
204 #endif

205 #ifdef __alpha__

==================== fs/binfmt_aout.c 217 247 ====================
217 #endif

218 sp ­= envc+1;

219 envp = (char **) sp;

220 sp ­= argc+1;

221 argv = (char **) sp;

222 #if defined(__i386__) || defined(__mc68000__) || defined(__arm__)

223 put_user((unsigned long) envp,­­sp);

224 put_user((unsigned long) argv,­­sp);

225 #endif

226 put_user(argc,­­sp);

227 current­>mm­>arg_start = (unsigned long) p;

228 while (argc­­>0) {

229 char c;

230 put_user(p,argv++);

231 do {

232 get_user(c,p++);

233 } while (c);

234 }

235 put_user(NULL,argv);

236 current­>mm­>arg_end = current­>mm­>env_start = (unsigned long) p;

237 while (envc­­>0) {

238 char c;

239 put_user(p,envp++);

240 do {

241 get_user(c,p++);

242 } while (c);

243 }

244 put_user(NULL,envp);

245 current­>mm­>env_end = (unsigned long) p;

246 return sp;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

336

247 }

envp[] argv[] argc
228 234 237 243 get_user(c, ptt) get_user(&c,

ptt) get_user()
include/asm­i386/uaccess.h

==================== include/asm­i386/uaccess.h 89 124 ====================
89 /*

90 * These are the main single­value transfer routines. They automatically

91 * use the right size if we just have the right pointer type.

92 *

93 * This gets kind of ugly. We want to return _two_ values in "get_user()"

94 * and yet we don't want to do any pointers, because that is too much

95 * of a performance impact. Thus we have a few rather ugly macros here,

96 * and hide all the uglyness from the user.

97 *

98 * The "__xxx" versions of the user access functions are versions that

99 * do not verify the address space, that must have been done previously

100 * with a separate "access_ok()" call (this is used when we do multiple

101 * accesses to the same area of user memory).

102 */

103

104 extern void __get_user_1(void);

105 extern void __get_user_2(void);

106 extern void __get_user_4(void);

107

108 #define __get_user_x(size,ret,x,ptr) \

109 __asm__ __volatile__("call __get_user_" #size \

110 :"=a" (ret),"=d" (x) \

111 :"0" (ptr))

112

113 /* Careful: we have to cast the result to the type of the pointer for sign reasons */

114 #define get_user(x,ptr) \

115 ({ int __ret_gu,__val_gu; \

116 switch(sizeof (*(ptr))) { \

117 case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \

118 case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \

119 case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \

120 default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \

121 } \

122 (x) = (__typeof__(*(ptr)))__val_gu; \

123 __ret_gu; \

124 })

122 c &c gcc
__get_user_x() __get_user_1() __get_user_2() __get_user_4()

get_user 2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

337

__get_user_1() __get_user_2() __get_user_4() ptt EAX
EAX EDX

arch/i386/lib/getuser.S __get_user_1()

==================== arch/i386/lib/getuser.S 24 36 ====================
24 addr_limit = 12

25

26 .text

27 .align 4

28 .globl __get_user_1

29 __get_user_1:

30 movl %esp,%edx

31 andl $0xffffe000,%edx

32 cmpl addr_limit(%edx),%eax

33 jae bad_get_user

34 1: movzbl (%eax),%edx

35 xorl %eax,%eax

36 ret

==================== arch/i386/lib/getuser.S 64 68 ====================
64 bad_get_user:

65 xorl %edx,%edx

66 movl $­14,%eax

67 ret

68

30 31 8K
task_struct task_struct 12

task_struct
DX EAX 0

put_user()
CPU create_aout_tables() do_load_aout_binary() argv[] argc

fs/binfmt_aout.c

==================== fs/binfmt_aout.c 417 424 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_aout_binary()]
417 #ifdef __alpha__

418 regs­>gp = ex.a_gpvalue;

419 #endif

420 start_thread(regs, ex.a_entry, current­>mm­>start_stack);

421 if (current­>ptrace & PT_PTRACED)

422 send_sig(SIGTRAP, current, 0);

423 return 0;

424 }

start_thread()
include/asm­i386/processor.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

338

==================== include/asm­i386/processor.h 408 417 ====================
408 #define start_thread(regs, new_eip, new_esp) do { \

409 __asm__("movl %0,%%fs ; movl %0,%%gs": :"r" (0)); \

410 set_fs(USER_DS); \

411 regs­>xds = __USER_DS; \

412 regs­>xes = __USER_DS; \

413 regs­>xss = __USER_DS; \

414 regs­>xcs = __USER_CS; \

415 regs­>eip = new_eip; \

416 regs­>esp = new_esp; \

417 } while (0)

regs
CPU

current­>mm­>start_stack EIP ex.a_entry

do_execve() search_binary_handler()
CPU ex.a_entry

4.4.2

a.out
shell perl

binfmt_script.c
fs/binfmt_script.c

==================== fs/binfmt_script.c 95 97 ====================
95 struct linux_binfmt script_format = {

96 NULL, THIS_MODULE, load_script, NULL, NULL, 0

97 };

Script “#! /bin/sh
/usr/bin/perl 127 Script

load_script() fs/binfmt_script.c

==================== fs/binfmt_script.c 17 58 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_script()]
17 static int load_script(struct linux_binprm *bprm,struct pt_regs *regs)

18 {

19 char *cp, *i_name, *i_arg;

20 struct file *file;

21 char interp[BINPRM_BUF_SIZE];

22 int retval;

23

24 if ((bprm­>buf[0] != '#') || (bprm­>buf[1] != '!') || (bprm­>sh_bang))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

339

25 return ­ENOEXEC;

26 /*

27 * This section does the #! interpretation.

28 * Sorta complicated, but hopefully it will work. ­TYT

29 */

30

31 bprm­>sh_bang++;

32 allow_write_access(bprm­>file);

33 fput(bprm­>file);

34 bprm­>file = NULL;

35

36 bprm­>buf[BINPRM_BUF_SIZE ­ 1] = '\0';

37 if ((cp = strchr(bprm­>buf, '\n')) == NULL)

38 cp = bprm­>buf+BINPRM_BUF_SIZE­1;

39 *cp = '\0';

40 while (cp > bprm­>buf) {

41 cp­­;

42 if ((*cp == ' ') || (*cp == '\t'))

43 *cp = '\0';

44 else

45 break;

46 }

47 for (cp = bprm­>buf+2; (*cp == ' ') || (*cp == '\t'); cp++);

48 if (*cp == '\0')

49 return ­ENOEXEC; /* No interpreter name found */

50 i_name = cp;

51 i_arg = 0;

52 for (; *cp && (*cp != ' ') && (*cp != '\t'); cp++)

53 /* nothing */ ;

54 while ((*cp == ' ') || (*cp == '\t'))

55 *cp++ = '\0';

56 if (*cp)

57 i_arg = cp;

58 strcpy (interp, i_name);

script
script

fs/binfmt_script.c

==================== fs/binfmt_script.c 59 93 ====================
[sys_execve()>do_execve()>search_binary_handler()>load_script()]
59 /*

60 * OK, we've parsed out the interpreter name and

61 * (optional) argument.

62 * Splice in (1) the interpreter's name for argv[0]

63 * (2) (optional) argument to interpreter

64 * (3) filename of shell script (replace argv[0])

65 *

66 * This is done in reverse order, because of how the

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

340

67 * user environment and arguments are stored.

68 */

69 remove_arg_zero(bprm);

70 retval = copy_strings_kernel(1, &bprm­>filename, bprm);

71 if (retval < 0) return retval;

72 bprm­>argc++;

73 if (i_arg) {

74 retval = copy_strings_kernel(1, &i_arg, bprm);

75 if (retval < 0) return retval;

76 bprm­>argc++;

77 }

78 retval = copy_strings_kernel(1, &i_name, bprm);

79 if (retval) return retval;

80 bprm­>argc++;

81 /*

82 * OK, now restart the process with the interpreter's dentry.

83 */

84 file = open_exec(interp);

85 if (IS_ERR(file))

86 return PTR_ERR(file);

87

88 bprm­>file = file;

89 retval = prepare_binprm(bprm);

90 if (retval < 0)

91 return retval;

92 return search_binary_handler(bprm,regs);

93 }

Script load_script()
search_binary_handler() /bin/sh
/usr/bin/perl

4.5 exit() wait4()

exit() wait4() kernel/exit.c

exit() kernel/exit.c

==================== kernel/exit.c 482 485 ====================
482 asmlinkage long sys_exit(int error_code)

483 {

484 do_exit((error_code&0xff)<<8);

485 }

do_exit()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

341

==================== kernel/exit.c 421 433 ====================
[sys_exit()>do_exit()]
421 NORET_TYPE void do_exit(long code)

422 {

423 struct task_struct *tsk = current;

424

425 if (in_interrupt())

426 panic("Aiee, killing interrupt handler!");

427 if (!tsk­>pid)

428 panic("Attempted to kill the idle task!");

429 if (tsk­>pid == 1)

430 panic("Attempted to kill init!");

431 tsk­>flags |= PF_EXITING;

432 del_timer_sync(&tsk­>real_timer);

433

void NORET_TYPE include/linux/kernel.h NORET_TYPE
“/* */ CPU do_exit()

CPU do_exit()
sys_exit() exit() “exit

exit do_exit()
in_interrupt()

include/asm­i386/hardirq.h
in_interrupt()

==================== include/asm­i386/hardirq.h 20 25 ====================
20 /*

21 * Are we in an interrupt context? Either doing bottom half

22 * or hardware interrupt processing?

23 */

24 #define in_interrupt() ({ int __cpu = smp_processor_id(); \

25 (local_irq_count(__cpu) + local_bh_count(__cpu) != 0); })

CPU __cpu 0 3 handle_IRQ_event()
irq_enter() irq_exit() local_irq_count[__cpu]

0 CPU handle_IRQ_event()
local_bh_count[__cpu] 0 CPU bh

0
1 idle init

pid
task_struct real_timer

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Underline

sie
Underline

342

task_struct real_timer
del_timer_sync()

kernel/exit.c

==================== kernel/exit.c 434 472 ====================
[sys_exit()>do_exit()]
434 fake_volatile:

435 #ifdef CONFIG_BSD_PROCESS_ACCT

436 acct_process(code);

437 #endif

438 __exit_mm(tsk);

439

440 lock_kernel();

441 sem_exit();

442 __exit_files(tsk);

443 __exit_fs(tsk);

444 exit_sighand(tsk);

445 exit_thread();

446

447 if (current­>leader)

448 disassociate_ctty(1);

449

450 put_exec_domain(tsk­>exec_domain);

451 if (tsk­>binfmt && tsk­>binfmt­>module)

452 __MOD_DEC_USE_COUNT(tsk­>binfmt­>module);

453

454 tsk­>exit_code = code;

455 exit_notify();

456 schedule();

457 BUG();

458 /*

459 * In order to get rid of the "volatile function does return" message

460 * I did this little loop that confuses gcc to think do_exit really

461 * is volatile. In fact it's schedule() that is volatile in some

462 * circumstances: when current­>state = ZOMBIE, schedule() never

463 * returns.

464 *

465 * In fact the natural way to do all this is to have the label and the

466 * goto right after each other, but I put the fake_volatile label at

467 * the start of the function just in case something /really/ bad

468 * happens, and the schedule returns. This way we can try again. I'm

469 * not paranoid: it's just that everybody is out to get me.

470 */

471 goto fake_volatile;

472 }

do_fork()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

343

__exit_mm() __exit_files() __exit_fs() __exit_sighand()
do_fork() semaphore

exit()
task_struct

sig
sig sig

p_pptr task_struct task_struct
p_pptr p_pptr task_struct

task_struct semundo semsleeping
sem_undo sem_queue

sem_exit() ipc/sem.c

==================== ipc/sem.c 966 1041 ====================
[sys_exit()>do_exit()>sem_exit()]
966 /*

967 * add semadj values to semaphores, free undo structures.

968 * undo structures are not freed when semaphore arrays are destroyed

969 * so some of them may be out of date.

970 * IMPLEMENTATION NOTE: There is some confusion over whether the

971 * set of adjustments that needs to be done should be done in an atomic

972 * manner or not. That is, if we are attempting to decrement the semval

973 * should we queue up and wait until we can do so legally?

974 * The original implementation attempted to do this (queue and wait).

975 * The current implementation does not do so. The POSIX standard

976 * and SVID should be consulted to determine what behavior is mandated.

977 */

978 void sem_exit (void)

979 {

980 struct sem_queue *q;

981 struct sem_undo *u, *un = NULL, **up, **unp;

982 struct sem_array *sma;

983 int nsems, i;

984

985 /* If the current process was sleeping for a semaphore,

986 * remove it from the queue.

987 */

988 if ((q = current­>semsleeping)) {

989 int semid = q­>id;

990 sma = sem_lock(semid);

991 current­>semsleeping = NULL;

992

993 if (q­>prev) {

994 if(sma==NULL)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

344

995 BUG();

996 remove_from_queue(q­>sma,q);

997 }

998 if(sma!=NULL)

999 sem_unlock(semid);

1000 }

1001

1002 for (up = ¤t­>semundo; (u = *up); *up = u­>proc_next, kfree(u)) {

1003 int semid = u­>semid;

1004 if(semid == ­1)

1005 continue;

1006 sma = sem_lock(semid);

1007 if (sma == NULL)

1008 continue;

1009

1010 if (u­>semid == ­1)

1011 goto next_entry;

1012

1013 if (sem_checkid(sma,u­>semid))

1014 goto next_entry;

1015

1016 /* remove u from the sma­>undo list */

1017 for (unp = &sma­>undo; (un = *unp); unp = &un­>id_next) {

1018 if (u == un)

1019 goto found;

1020 }

1021 printk ("sem_exit undo list error id=%d\n", u­>semid);

1022 goto next_entry;

1023 found:

1024 *unp = un­>id_next;

1025 /* perform adjustments registered in u */

1026 nsems = sma­>sem_nsems;

1027 for (i = 0; i < nsems; i++) {

1028 struct sem * sem = &sma­>sem_base[i];

1029 sem­>semval += u­>semadj[i];

1030 if (sem­>semval < 0)

1031 sem­>semval = 0; /* shouldn't happen */

1032 sem­>sempid = current­>pid;

1033 }

1034 sma­>sem_otime = CURRENT_TIME;

1035 /* maybe some queued­up processes were waiting for this */

1036 update_queue(sma);

1037 next_entry:

1038 sem_unlock(semid);

1039 }

1040 current­>semundo = NULL;

1041 }

task_struct semsleeping

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

345

for

__exit_mm() kernel/exit.c

==================== kernel/exit.c 297 316 ====================
[sys_exit()>do_exit()>__exit_mm()]
297 /*

298 * Turn us into a lazy TLB process if we

299 * aren't already..

300 */

301 static inline void __exit_mm(struct task_struct * tsk)

302 {

303 struct mm_struct * mm = tsk­>mm;

304

305 mm_release();

306 if (mm) {

307 atomic_inc(&mm­>mm_count);

308 if (mm != tsk­>active_mm) BUG();

309 /* more a memory barrier than a real lock */

310 task_lock(tsk);

311 tsk­>mm = NULL;

312 task_unlock(tsk);

313 enter_lazy_tlb(mm, current, smp_processor_id());

314 mmput(mm);

315 }

316 }

mmput() fork.c
mm_relaese() fork() execve() do_fork()

CLONE_VFORK 1 up()

mm_release() up() execve()

task_struct mm 0
do_exit() i386

exit_thread()
TASK_ZOMBIE

task_struct

exit_notify()

task_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Underline

sie
Underline

346

3

task_struct

task_struct

schedule() exit.c
exit_notify()

==================== kernel/exit.c 323 331 ====================
[sys_exit()>do_exit()>exit_notify()]
323 /*

324 * Send signals to all our closest relatives so that they know

325 * to properly mourn us..

326 */

327 static void exit_notify(void)

328 {

329 struct task_struct * p, *t;

330

331 forget_original_parent(current);

task_struct p_opptr
“original parent p_pptr

p_pptr
ptrace() p_pptr

p_opptr

p_opptr init init
“original parent pid task_struct

exit() exit()
331 forget_original_parent() kernel/exit.c

==================== kernel/exit.c 147 174 ====================
[sys_exit()>do_exit()>exit_notify()>forget_original_parent()]
147 /*

148 * When we die, we re­parent all our children.

149 * Try to give them to another thread in our process

150 * group, and if no such member exists, give it to

151 * the global child reaper process (ie "init")

152 */

153 static inline void forget_original_parent(struct task_struct * father)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

sie
Underline

347

154 {

155 struct task_struct * p, *reaper;

156

157 read_lock(&tasklist_lock);

158

159 /* Next in our thread group */

160 reaper = next_thread(father);

161 if (reaper == father)

162 reaper = child_reaper;

163

164 for_each_task(p) {

165 if (p­>p_opptr == father) {

166 /* We dont want people slaying init */

167 p­>exit_signal = SIGCHLD;

168 p­>self_exec_id++;

169 p­>p_opptr = reaper;

170 if (p­>pdeath_signal) send_sig(p­>pdeath_signal, p, 0);

171 }

172 }

173 read_unlock(&tasklist_lock);

174 }

for_each_task include/linux/sched.h

==================== include/linux/sched.h 824 825 ====================
824 #define for_each_task(p) \

825 for (p = &init_task ; (p = p­>next_task) != &init_task ;)

task_struct p_opptr
child_reaper init exit() SIGCHLD child_reaper

task_struet pdeath_signal
exit_notify() p_pptr

kernel/exit.c

==================== kernel/exit.c 332 419 ====================
[sys_exit()>do_exit()>exit_notify()]
332 /*

333 * Check to see if any process groups have become orphaned

334 * as a result of our exiting, and if they have any stopped

335 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)

336 *

337 * Case i: Our father is in a different pgrp than we are

338 * and we were the only connection outside, so our pgrp

339 * is about to become orphaned.

340 */

341

342 t = current­>p_pptr;

343

344 if ((t­>pgrp != current­>pgrp) &&

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

348

345 (t­>session == current­>session) &&

346 will_become_orphaned_pgrp(current­>pgrp, current) &&

347 has_stopped_jobs(current­>pgrp)) {

348 kill_pg(current­>pgrp,SIGHUP,1);

349 kill_pg(current­>pgrp,SIGCONT,1);

350 }

351

352 /* Let father know we died

353 *

354 * Thread signals are configurable, but you aren't going to use

355 * that to send signals to arbitary processes.

356 * That stops right now.

357 *

358 * If the parent exec id doesn't match the exec id we saved

359 * when we started then we know the parent has changed security

360 * domain.

361 *

362 * If our self_exec id doesn't match our parent_exec_id then

363 * we have changed execution domain as these two values started

364 * the same after a fork.

365 *

366 */

367

368 if(current­>exit_signal != SIGCHLD &&

369 (current­>parent_exec_id != t­>self_exec_id ||

370 current­>self_exec_id != current­>parent_exec_id)

371 && !capable(CAP_KILL))

372 current­>exit_signal = SIGCHLD;

373

374

375 /*

376 * This loop does two things:

377 *

378 * A. Make init inherit all the child processes

379 * B. Check to see if any process groups have become orphaned

380 * as a result of our exiting, and if they have any stopped

381 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)

382 */

383

384 write_lock_irq(&tasklist_lock);

385 current­>state = TASK_ZOMBIE;

386 do_notify_parent(current, current­>exit_signal);

387 while (current­>p_cptr != NULL) {

388 p = current­>p_cptr;

389 current­>p_cptr = p­>p_osptr;

390 p­>p_ysptr = NULL;

391 p­>ptrace = 0;

392

393 p­>p_pptr = p­>p_opptr;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

349

394 p­>p_osptr = p­>p_pptr­>p_cptr;

395 if (p­>p_osptr)

396 p­>p_osptr­>p_ysptr = p;

397 p­>p_pptr­>p_cptr = p;

398 if (p­>state == TASK_ZOMBIE)

399 do_notify_parent(p, p­>exit_signal);

400 /*

401 * process group orphan check

402 * Case ii: Our child is in a different pgrp

403 * than we are, and it was the only connection

404 * outside, so the child pgrp is now orphaned.

405 */

406 if ((p­>pgrp != current­>pgrp) &&

407 (p­>session == current­>session)) {

408 int pgrp = p­>pgrp;

409

410 write_unlock_irq(&tasklist_lock);

411 if (is_orphaned_pgrp(pgrp) && has_stopped_jobs(pgrp)) {

412 kill_pg(pgrp,SIGHUP,1);

413 kill_pg(pgrp,SIGCONT,1);

414 }

415 write_lock_irq(&tasklist_lock);

416 }

417 }

418 write_unlock_irq(&tasklist_lock);

419 }

login
session

shell “ls | wc ­l
”(session) session

pid session
session

POSIX 3.2.2.2
SIGHUP SIGCONT kill_pg()

exit_notify()
do_notify_parent() kernel/signal.c

==================== kernel/signal.c 732 777 ====================
[sys_exit()>do_exit()>exit_notify()>do_notify_parent()]
732 /*

733 * Let a parent know about a status change of a child.

734 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

350

735

736 void do_notify_parent(struct task_struct *tsk, int sig)

737 {

738 struct siginfo info;

739 int why, status;

740

741 info.si_signo = sig;

742 info.si_errno = 0;

743 info.si_pid = tsk­>pid;

744 info.si_uid = tsk­>uid;

745

746 /* FIXME: find out whether or not this is supposed to be c*time. */

747 info.si_utime = tsk­>times.tms_utime;

748 info.si_stime = tsk­>times.tms_stime;

749

750 status = tsk­>exit_code & 0x7f;

751 why = SI_KERNEL; /* shouldn't happen */

752 switch (tsk­>state) {

753 case TASK_STOPPED:

754 /* FIXME ­­ can we deduce CLD_TRAPPED or CLD_CONTINUED? */

755 if (tsk­>ptrace & PT_PTRACED)

756 why = CLD_TRAPPED;

757 else

758 why = CLD_STOPPED;

759 break;

760

761 default:

762 if (tsk­>exit_code & 0x80)

763 why = CLD_DUMPED;

764 else if (tsk­>exit_code & 0x7f)

765 why = CLD_KILLED;

766 else {

767 why = CLD_EXITED;

768 status = tsk­>exit_code >> 8;

769 }

770 break;

771 }

772 info.si_code = why;

773 info.si_status = status;

774

775 send_sig_info(sig, &info, tsk­>p_pptr);

776 wake_up_parent(tsk­>p_pptr);

777 }

tsk task_struct TASK_ZOMBIE exit()
TASK_STOPPED do_notify_parent() parent

p_pptr p_opptr
forget_original_parent() p_opptr child_reaper notify_parent()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

351

p_pptr exit()
exit_notify() 392 p_pptr p_opptr

p_opptr p_pptr
p_cptr c “child p_cptr p_pptr

p_cptr
p_ysptr y “younger s “sibling
p_osptr o “older

p_ysptr p_osptr
p_pptr p_optr

p_opptr
task_struct

task_struct do_fork() SET_LINK
SET_LINK include/linux/sched.h

==================== include/linux/sched.h 813 822 ====================
813 #define SET_LINKS(p) do { \

814 (p)­>next_task = &init_task; \

815 (p)­>prev_task = init_task.prev_task; \

816 init_task.prev_task­>next_task = (p); \

817 init_task.prev_task = (p); \

818 (p)­>p_ysptr = NULL; \

819 if (((p)­>p_osptr = (p)­>p_pptr­>p_cptr) != NULL) \

820 (p)­>p_osptr­>p_ysptr = p; \

821 (p)­>p_pptr­>p_cptr = p; \

822 } while (0)

CPU do_notify_parent() exit_notify()
p_opptr child_reaper p_pptr while

child_reaper p_pptr child_reaper

session current­>leader 0 session
tty task_struct tty

disassociate_ctty() drivers/char/tty_io.c

==================== drivers/char/tty_io.c 560 606 ====================
[sys_exit()>do_exit()>exit_notify()>disassociate_ctty()]
560 /*

561 * This function is typically called only by the session leader, when

562 * it wants to disassociate itself from its controlling tty.

563 *

564 * It performs the following functions:

565 * (1) Sends a SIGHUP and SIGCONT to the foreground process group

566 * (2) Clears the tty from being controlling the session

567 * (3) Clears the controlling tty for all processes in the

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

352

568 * session group.

569 *

570 * The argument on_exit is set to 1 if called when a process is

571 * exiting; it is 0 if called by the ioctl TIOCNOTTY.

572 */

573 void disassociate_ctty(int on_exit)

574 {

575 struct tty_struct *tty = current­>tty;

576 struct task_struct *p;

577 int tty_pgrp = ­1;

578

579 if (tty) {

580 tty_pgrp = tty­>pgrp;

581 if (on_exit && tty­>driver.type != TTY_DRIVER_TYPE_PTY)

582 tty_vhangup(tty);

583 } else {

584 if (current­>tty_old_pgrp) {

585 kill_pg(current­>tty_old_pgrp, SIGHUP, on_exit);

586 kill_pg(current­>tty_old_pgrp, SIGCONT, on_exit);

587 }

588 return;

589 }

590 if (tty_pgrp > 0) {

591 kill_pg(tty_pgrp, SIGHUP, on_exit);

592 if (!on_exit)

593 kill_pg(tty_pgrp, SIGCONT, on_exit);

594 }

595

596 current­>tty_old_pgrp = 0;

597 tty­>session = 0;

598 tty­>pgrp = ­1;

599

600 read_lock(&tasklist_lock);

601 for_each_task(p)

602 if (p­>session == current­>session)

603 p­>tty = NULL;

604 read_unlock(&tasklist_lock);

605 }

606

task_struct tty
ioctl()

tty setsid()
session session leader session

session session

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

353

do_exit() CPU exit_notify() do_exit()
schedule() do_exit() do_exit()

schedule() schedule() schedule()
schedule()

task­>state schedule()
schedule()

schedule()
task­>state TASK_ZOMBIE schedule()

schedule() CPU

task_struct
task_struct

wait4()

wait4() sys_wait4() kernel/exit.c

==================== kernel/exit.c 487 496 ====================
487 asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru)

488 {

489 int flag, retval;

490 DECLARE_WAITQUEUE(wait, current);

491 struct task_struct *tsk;

492

493 if (options & ~(WNOHANG|WUNTRACED|__WNOTHREAD|__WCLONE|__WALL))

494 return ­EINVAL;

495

496 add_wait_queue(¤t­>wait_chldexit,&wait);

pid
DECLARE_WAITQUEUE

wait_queue_t include/linux/wait.h

==================== include/linux/wait.h 46 56 ====================
46 struct __wait_queue {

47 unsigned int flags;

48 #define WQ_FLAG_EXCLUSIVE 0x01

49 struct task_struct * task;

50 struct list_head task_list;

51 #if WAITQUEUE_DEBUG

52 long __magic;

53 long __waker;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

354

54 #endif

55 };

56 typedef struct __wait_queue wait_queue_t;

==================== include/linux/wait.h 92 115 ====================
92 struct __wait_queue_head {

93 wq_lock_t lock;

94 struct list_head task_list;

95 #if WAITQUEUE_DEBUG

96 long __magic;

97 long __creator;

98 #endif

99 };

100 typedef struct __wait_queue_head wait_queue_head_t;

101

102 #if WAITQUEUE_DEBUG

103 # define __WAITQUEUE_DEBUG_INIT(name) \

104 , (long)&(name).__magic, 0

105 # define __WAITQUEUE_HEAD_DEBUG_INIT(name) \

106 , (long)&(name).__magic, (long)&(name).__magic

107 #else

108 # define __WAITQUEUE_DEBUG_INIT(name)

109 # define __WAITQUEUE_HEAD_DEBUG_INIT(name)

110 #endif

111

112 #define __WAITQUEUE_INITIALIZER(name,task) \

113 { 0x0, task, { NULL, NULL } __WAITQUEUE_DEBUG_INIT(name)}

114 #define DECLARE_WAITQUEUE(name,task) \

115 wait_queue_t name = __WAITQUEUE_INITIALIZER(name,task)

sys_wait4() wait_queue_t
wait compiler_warning 0x1234567 task task_struct list_head

task_list NULL
sys_wait4() task_struct wait_queue_head_t

wait_chldexit
add_wait_queue() wait wait_chldexit

do_notify_parent()
kernel/exit.c sys_wait4()

==================== kernel/exit.c 497 583 ====================
[sys_wait4()]
497 repeat:

498 flag = 0;

499 current­>state = TASK_INTERRUPTIBLE;

500 read_lock(&tasklist_lock);

501 tsk = current;

502 do {

503 struct task_struct *p;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

355

504 for (p = tsk­>p_cptr ; p ; p = p­>p_osptr) {

505 if (pid>0) {

506 if (p­>pid != pid)

507 continue;

508 } else if (!pid) {

509 if (p­>pgrp != current­>pgrp)

510 continue;

511 } else if (pid != ­1) {

512 if (p­>pgrp != ­pid)

513 continue;

514 }

515 /* Wait for all children (clone and not) if __WALL is set;

516 * otherwise, wait for clone children *only* if __WCLONE is

517 * set; otherwise, wait for non­clone children *only*. (Note:

518 * A "clone" child here is one that reports to its parent

519 * using a signal other than SIGCHLD.) */

520 if (((p­>exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))

521 && !(options & __WALL))

522 continue;

523 flag = 1;

524 switch (p­>state) {

525 case TASK_STOPPED:

526 if (!p­>exit_code)

527 continue;

528 if (!(options & WUNTRACED) && !(p­>ptrace & PT_PTRACED))

529 continue;

530 read_unlock(&tasklist_lock);

531 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;

532 if (!retval && stat_addr)

533 retval = put_user((p­>exit_code << 8) | 0x7f, stat_addr);

534 if (!retval) {

535 p­>exit_code = 0;

536 retval = p­>pid;

537 }

538 goto end_wait4;

539 case TASK_ZOMBIE:

540 current­>times.tms_cutime += p­>times.tms_utime + p­>times.tms_cutime;

541 current­>times.tms_cstime += p­>times.tms_stime + p­>times.tms_cstime;

542 read_unlock(&tasklist_lock);

543 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;

544 if (!retval && stat_addr)

545 retval = put_user(p­>exit_code, stat_addr);

546 if (retval)

547 goto end_wait4;

548 retval = p­>pid;

549 if (p­>p_opptr != p­>p_pptr) {

550 write_lock_irq(&tasklist_lock);

551 REMOVE_LINKS(p);

552 p­>p_pptr = p­>p_opptr;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

356

553 SET_LINKS(p);

554 do_notify_parent(p, SIGCHLD);

555 write_unlock_irq(&tasklist_lock);

556 } else

557 release_task(p);

558 goto end_wait4;

559 default:

560 continue;

561 }

562 }

563 if (options & __WNOTHREAD)

564 break;

565 tsk = next_thread(tsk);

566 } while (tsk != current);

567 read_unlock(&tasklist_lock);

568 if (flag) {

569 retval = 0;

570 if (options & WNOHANG)

571 goto end_wait4;

572 retval = ­ERESTARTSYS;

573 if (signal_pending(current))

574 goto end_wait4;

575 schedule();

576 goto repeat;

577 }

578 retval = ­ECHILD;

579 end_wait4:

580 current­>state = TASK_RUNNING;

581 remove_wait_queue(¤t­>wait_chldexit,&wait);

582 return retval;

583 }

goto
“goto end_wait4
• TASK_STOPPED TASK_ZOMBIE
• options WNOHANG

1
• pid

TASK_INTERRUPTIBLE 499 575 schedule()
schedule()

576 goto repeat for
for

task_struct p_osptr pid
for do­while do­while

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

357

do­while thread_group
next_thread() thread_group task_struct tsk

wait4()
schedule() exit()

exit_notify() do_notify_parent()
siginfo send_sig_info()

wake_up_process() send_sig_info()
wake_up_process() TASK_INTERRUPTIBLE TASK_RUNNING

schedule()
exit() sys_wait4() repeat

TASK_ZOMBIE

release_task() task_sturct
kernel/exit.c

==================== kernel/exit.c 25 68 ====================
[sys_wait4()>release()]
25 static void release_task(struct task_struct * p)

26 {

27 if (p != current) {

28 #ifdef CONFIG_SMP

29 /*

30 * Wait to make sure the process isn't on the

31 * runqueue (active on some other CPU still)

32 */

33 for (;;) {

34 task_lock(p);

35 if (!p­>has_cpu)

36 break;

37 task_unlock(p);

38 do {

39 barrier();

40 } while (p­>has_cpu);

41 }

42 task_unlock(p);

43 #endif

44 atomic_dec(&p­>user­>processes);

45 free_uid(p­>user);

46 unhash_process(p);

47

48 release_thread(p);

49 current­>cmin_flt += p­>min_flt + p­>cmin_flt;

50 current­>cmaj_flt += p­>maj_flt + p­>cmaj_flt;

51 current­>cnswap += p­>nswap + p­>cnswap;

52 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

358

53 * Potentially available timeslices are retrieved

54 * here ­ this way the parent does not get penalized

55 * for creating too many processes.

56 *

57 * (this cannot be used to artificially 'generate'

58 * timeslices, because any timeslice recovered here

59 * was given away by the parent in the first place.)

60 */

61 current­>counter += p­>counter;

62 if (current­>counter >= MAX_COUNTER)

63 current­>counter = MAX_COUNTER;

64 free_task_struct(p);

65 } else {

66 printk("task releasing itself\n");

67 }

68 }

unhash_process() task_struct
release_thread() LDT

free_task_struct() task_struct
sys_wait4() p_opptr p_pptr

exit() do_notify_parent()
p_pptr p_opptr

REMOVE_LINKS task_struct SET_LINKS

wait4() put_user()
task_struct “goto

end_wait4 release() “ps”
“ZOMBIE exit_notify()

TASK_ZOMBIE
do_notify_parent()

release()
wait4() 3

entry.S
signal_return do_signal() do_signal() arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 643 651 ====================
643 ka = ¤t­>sig­>action[signr­1];

644 if (ka­>sa.sa_handler == SIG_IGN) {

645 if (signr != SIGCHLD)

646 continue;

647 /* Check for SIGCHLD: it's special. */

648 while (sys_wait4(­1, NULL, WNOHANG, NULL) > 0)

649 /* nothing */;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

359

650 continue;

651 }

SIGCHLD sys_wait4() pid ­1
sys_wait4() for pid

SIGCHLD
do_signal()

4.6

•

150
•

•

CPU
CPU CPU

Linux

(1)
(2) policy
(3) preemptive nonpreemptive

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

360

CPU

CPU

“policy

CPU
0.5 CPU

CPU
Linux

4.4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

361

4.4

schedule()
schedule() TASK_INTERRUPTIBLE

TASK_UNINTERRUPTIBLE pause()
schedule_timeout()

nanosleep() sleep()

open() read() write() select()

CPU
3 arch/i386/kernel/entry.S

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

362

==================== arch/i386/kernel/entry.S 260 261 ====================
260 ret_from_exception:

261 #ifdef CONFIG_SMP

==================== arch/i386/kernel/entry.S 267 279 ====================
267 #else

268 movl SYMBOL_NAME(irq_stat),%ecx # softirq_active

269 testl SYMBOL_NAME(irq_stat)+4,%ecx # softirq_mask

270 #endif

271 jne handle_softirq

272

273 ENTRY(ret_from_intr)

274 GET_CURRENT(%ebx)

275 movl EFLAGS(%esp),%eax # mix EFLAGS and CS

276 movb CS(%esp),%al

277 testl $(VM_MASK | 3),%eax # return to VM86 mode or non­supervisor?

278 jne ret_with_reschedule

279 jmp restore_all

277 EAX
CS ret_with_reschedule

CPU 3 VM_MASK
VM86 CPU

Unix

SMP
SMP SMP

CPU
CPU

up() down() Linux SMP
#ifdef __SMP__

Linux

CPU

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

363

arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 217 223 ====================
217 ret_with_reschedule:

218 cmpl $0,need_resched(%ebx)

219 jne reschedule

220 cmpl $0,sigpending(%ebx)

221 jne signal_return

222 restore_all:

223 RESTORE_ALL

==================== arch/i386/kernel/entry.S 287 289 ====================
287 reschedule:

288 call SYMBOL_NAME(schedule) # test

289 jmp ret_from_sys_call

task_struct need_resched 0 reschedule
schedule() task_struct

Linux

supervisor

Linux
Linux

UNIX

0

SCHED_FIFO
SCHED_RR SCHED_OTHER

sched_setscheduler() SCHED_FIFO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

364

SCHED_RR “RR “Round
Robin
SCHED_OTHER

schedule() exit()
do_exit() schedule() schedule()

kernel/sched.c

==================== kernel/sched.c 498 529 ====================
498 /*

499 * 'schedule()' is the scheduler function. It's a very simple and nice

500 * scheduler: it's not perfect, but certainly works for most things.

501 *

502 * The goto is "interesting".

503 *

504 * NOTE!! Task 0 is the 'idle' task, which gets called when no other

505 * tasks can run. It can not be killed, and it cannot sleep. The 'state'

506 * information in task[0] is never used.

507 */

508 asmlinkage void schedule(void)

509 {

510 struct schedule_data * sched_data;

511 struct task_struct *prev, *next, *p;

512 struct list_head *tmp;

513 int this_cpu, c;

514

515 if (!current­>active_mm) BUG();

516 need_resched_back:

517 prev = current;

518 this_cpu = prev­>processor;

519

520 if (in_interrupt())

521 goto scheduling_in_interrupt;

522

523 release_kernel_lock(prev, this_cpu);

524

525 /* Do "administrative" work here while we don't hold any locks */

526 if (softirq_active(this_cpu) & softirq_mask(this_cpu))

527 goto handle_softirq;

528 handle_softirq_back:

529

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

365

goto

task_struct mm_struct mm
mm

0 active_mm
schedule() active_mm 0 515

schedule()

need_resched 1 schedule()
3

schedule()
schedule()

CPU
3

schedule() scheduling_in_interrupt
kernel/sched.c

==================== kernel/sched.c 686 689 ====================
[schedule()]
686 scheduling_in_interrupt:

687 printk("Scheduling in interrupt\n");

688 BUG();

689 return;

/var/log/messages
BUG include/asm­i386/page.h

==================== include/asm­i386/page.h 85 92 ====================
85 /*

86 * Tell the user there is some problem. Beep too, so we can

87 * see^H^H^Hhear bugs in early bootup as well!

88 */

89 #define BUG() do { \

90 printk("kernel BUG at %s:%d!\n", __FILE__, __LINE__); \

91 __asm__ __volatile__(".byte 0x0f,0x0b"); \

92 } while (0)

91 0x0f 0x0b CPU
invalid_op CPU

do_invalid_op() bf schedule()

schedule() 523 release_kernel_lock() i386
3 handle_softirq

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

366

==================== kernel/sched.c 675 677 ====================
[schedule()]
675 handle_softirq:

676 do_softirq();

677 goto handle_softirq_back;

softirq

==================== kernel/sched.c 528 541 ====================
[schedule()]
528 handle_softirq_back:

529

530 /*

531 * 'sched_data' is protected by the fact that we can run

532 * only one process per CPU.

533 */

534 sched_data = & aligned_data[this_cpu].schedule_data;

535

536 spin_lock_irq(&runqueue_lock);

537

538 /* move an exhausted RR process to be last.. */

539 if (prev­>policy == SCHED_RR)

540 goto move_rr_last;

541 move_rr_back:

sched_data schedule_data
kernel/sched.c

==================== kernel/sched.c 91 101 ====================
91 /*

92 * We align per­CPU scheduling data on cacheline boundaries,

93 * to prevent cacheline ping­pong.

94 */

95 static union {

96 struct schedule_data {

97 struct task_struct * curr;

98 cycles_t last_schedule;

99 } schedule_data;

100 char __pad [SMP_CACHE_BYTES];

101 } aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};

cycles_t
SMP CPU0 schedule_data

{&init_task, 0} {0, 0} __cacheline_aligned

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

367

prev SCHED_RR SCHED_RR
SCHED_FIFO

SCHED_FIFO

SCHED_RR
SCHED_RR

SCHED_RR kernel/sched.c

==================== kernel/sched.c 679 685 ====================
[schedule()]
679 move_rr_last:

680 if (!prev­>counter) {

681 prev­>counter = NICE_TO_TICKS(prev­>nice);

682 move_last_runqueue(prev);

683 }

684 goto move_rr_back;

685

prev­>counter
update_process_times()

0 SCHED_RR
0 runqueue

NICE_TO_TICKS
kernel/sched.c

==================== kernel/sched.c 44 67 ====================
44 /*

45 * Scheduling quanta.

46 *

47 * NOTE! The unix "nice" value influences how long a process

48 * gets. The nice value ranges from ­20 to +19, where a ­20

49 * is a "high­priority" task, and a "+10" is a low­priority

50 * task.

51 *

52 * We want the time­slice to be around 50ms or so, so this

53 * calculation depends on the value of HZ.

54 */

55 #if HZ < 200

56 #define TICK_SCALE(x) ((x) >> 2)

57 #elif HZ < 400

58 #define TICK_SCALE(x) ((x) >> 1)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

368

59 #elif HZ < 800

60 #define TICK_SCALE(x) (x)

61 #elif HZ < 1600

62 #define TICK_SCALE(x) ((x) << 1)

63 #else

64 #define TICK_SCALE(x) ((x) << 2)

65 #endif

66

67 #define NICE_TO_TICKS(nice) (TICK_SCALE(20­(nice))+1)

task_struct move_last_runqueue
kernel/sched.c

==================== kernel/sched.c 309 313 ====================
[schedule()>move_last_runqueue()]
309 static inline void move_last_runqueue(struct task_struct * p)

310 {

311 list_del(&p­>run_list);

312 list_add_tail(&p­>run_list, &runqueue_head);

313 }

schedule()
kernel/sched.c

==================== kernel/sched.c 541 553 ====================
[schedule()]
541 move_rr_back:

542

543 switch (prev­>state) {

544 case TASK_INTERRUPTIBLE:

545 if (signal_pending(prev)) {

546 prev­>state = TASK_RUNNING;

547 break;

548 }

549 default:

550 del_from_runqueue(prev);

551 case TASK_RUNNING:

552 }

553 prev­>need_resched = 0;

schedule() TASK_RUNNING
do_exit() TASK_ZOMBIE

sys_wait4() schedule() TASK_INTERRUPTIBLE
prev­>state

del_from_runqueue()
TASK_INTERRUPTIBLE TASK_UNINTERRUPTIBLE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

369

TASK_RUNNING
548 549 break default

TASK_RUNNING
551
prev­>need_resched 0

kernel/sched.c

==================== kernel/sched.c 555 576 ====================
[schedule()]
555 /*

556 * this is the scheduler proper:

557 */

558

559 repeat_schedule:

560 /*

561 * Default process to select..

562 */

563 next = idle_task(this_cpu);

564 c = ­1000;

565 if (prev­>state == TASK_RUNNING)

566 goto still_running;

567

568 still_running_back:

569 list_for_each(tmp, &runqueue_head) {

570 p = list_entry(tmp, struct task_struct, run_list);

571 if (can_schedule(p, this_cpu)) {

572 int weight = goodness(p, this_cpu, prev­>active_mm);

573 if (weight > c)

574 c = weight, next = p;

575 }

576 }

next c
idle 0 ­1000

runqueue CPU can_schedule()
1

goodness() c “weight > c

list_for_each include/linux/list.h

==================== include/linux/list.h 144 150 ====================
144 /**

145 * list_for_each ­ iterate over a list

146 * @pos: the &struct list_head to use as a loop counter.

147 * @head: the head for your list.

148 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

370

149 #define list_for_each(pos, head) \

150 for (pos = (head)­>next; pos != (head); pos = pos­>next)

still_running
kernel/sched.c

==================== kernel/sched.c 670 674 ====================
[schedule()]
670 still_running:

671 c = goodness(prev, this_cpu, prev­>active_mm);

672 next = prev;

673 goto still_running_back;

674

goodness() kernel/sched.c

==================== kernel/sched.c 123 187 ====================
[schedule()>goodness()]
123 /*

124 * This is the function that decides how desirable a process is..

125 * You can weigh different processes against each other depending

126 * on what CPU they've run on lately etc to try to handle cache

127 * and TLB miss penalties.

128 *

129 * Return values:

130 * ­1000: never select this

131 * 0: out of time, recalculate counters (but it might still be

132 * selected)

133 * +ve: "goodness" value (the larger, the better)

134 * +1000: realtime process, select this.

135 */

136

137 static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)

138 {

139 int weight;

140

141 /*

142 * select the current process after every other

143 * runnable process, but before the idle thread.

144 * Also, dont trigger a counter recalculation.

145 */

146 weight = ­1;

147 if (p­>policy & SCHED_YIELD)

148 goto out;

149

150 /*

151 * Non­RT process ­ normal case first.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

371

152 */

153 if (p­>policy == SCHED_OTHER) {

154 /*

155 * Give the process a first­approximation goodness value

156 * according to the number of clock­ticks it has left.

157 *

158 * Don't do any other calculations if the time slice is

159 * over..

160 */

161 weight = p­>counter;

162 if (!weight)

163 goto out;

164

165 #ifdef CONFIG_SMP

166 /* Give a largish advantage to the same processor... */

167 /* (this is equivalent to penalizing other processors) */

168 if (p­>processor == this_cpu)

169 weight += PROC_CHANGE_PENALTY;

170 #endif

171

172 /* .. and a slight advantage to the current MM */

173 if (p­>mm == this_mm || !p­>mm)

174 weight += 1;

175 weight += 20 ­ p­>nice;

176 goto out;

177 }

178

179 /*

180 * Realtime process, select the first one on the

181 * runqueue (taking priorities within processes

182 * into account).

183 */

184 weight = 1000 + p­>rt_priority;

185 out:

186 return weight;

187 }

sched_yield() ­1
0

SCHED_OTHER
0 nice

Unix “nice 19 ­20
­20 nice 0 (20 ­ p­>nice) 1

40
1

SCHED_FIFO SCHED_RR

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

372

rt_priority “rt “real time (1000 + p­>rt_priority)
SCHED_FIFO SCHED_RR SCHED_OTHER

1000 rt_priority
sched_setscheduler()

p­>counter
SCHED_RR p­>counter 0

nice SCHED_RR

Linux Unix

POSIX goodness() Linux
SCHED_RR

recalculate

schedule() while c
0 next c 0

0 init sched_yield()
0

0 SCHED_OTHER SCHED_FIFO
SCHED_RR 1000

kernel/sched.c

==================== kernel/sched.c 578 580 ====================
[schedule()]
578 /* Do we need to re­calculate counters? */

579 if (!c)

580 goto recalculate;

0

SCHED_OTHER 0

==================== kernel/sched.c 658 669 ====================
[schedule()]
658 recalculate:

659 {

660 struct task_struct *p;

661 spin_unlock_irq(&runqueue_lock);

662 read_lock(&tasklist_lock);

663 for_each_task(p)

664 p­>counter = (p­>counter >> 1) + NICE_TO_TICKS(p­>nice);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

373

665 read_unlock(&tasklist_lock);

666 spin_lock_irq(&runqueue_lock);

667 }

668 goto repeat_schedule;

669

for_each_task()
p­>counter 2 nice tick NICE_TO_TICKS

nice
for_each_task()

NICE_TO_TICKS(p­>nice)
NICE_TO_TICKS(p­>nice)

1000
SCHED_FIFO

repeat_schedule
c 0 next

kernel/sched.c

==================== kernel/sched.c 581 596 ====================
[schedule()]
581 /*

582 * from this point on nothing can prevent us from

583 * switching to the next task, save this fact in

584 * sched_data.

585 */

586 sched_data­>curr = next;

587 #ifdef CONFIG_SMP

588 next­>has_cpu = 1;

589 next­>processor = this_cpu;

590 #endif

591 spin_unlock_irq(&runqueue_lock);

592

593 if (prev == next)

594 goto same_process;

595

596 #ifdef CONFIG_SMP

==================== kernel/sched.c 612 657 ====================
612 #endif /* CONFIG_SMP */

613

614 kstat.context_swtch++;

615 /*

616 * there are 3 processes which are affected by a context switch:

617 *

618 * prev == ==> (last => next)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

374

619 *

620 * It's the 'much more previous' 'prev' that is on next's stack,

621 * but prev is set to (the just run) 'last' process by switch_to().

622 * This might sound slightly confusing but makes tons of sense.

623 */

624 prepare_to_switch();

625 {

626 struct mm_struct *mm = next­>mm;

627 struct mm_struct *oldmm = prev­>active_mm;

628 if (!mm) {

629 if (next­>active_mm) BUG();

630 next­>active_mm = oldmm;

631 atomic_inc(&oldmm­>mm_count);

632 enter_lazy_tlb(oldmm, next, this_cpu);

633 } else {

634 if (next­>active_mm != mm) BUG();

635 switch_mm(oldmm, mm, next, this_cpu);

636 }

637

638 if (!prev­>mm) {

639 prev­>active_mm = NULL;

640 mmdrop(oldmm);

641 }

642 }

643

644 /*

645 * This just switches the register state and the

646 * stack.

647 */

648 switch_to(prev, next, prev);

649 __schedule_tail(prev);

650

651 same_process:

652 reacquire_kernel_lock(current);

653 if (current­>need_resched)

654 goto need_resched_back;

655

656 return;

657

SMP next prev
same_process reacquire_kernel_lock() i386 CPU

need_resched 0 0
tq_scheduler_back next

prev i386 CPU prepare_to_switch()
649 __schedule_tail() prev task_struct policy SCHED_YIELD

0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

375

switch_to()
scope mm

oldmm ”next mm_struct ”prev active_mm
active_mm 0

active_mm
mm_struct

mm_struct 628 630
mm_struct

mm_struct
638 641 mmdrop()

mm_struct 1
1 0 next mm_struct next­>actieve_mm

next­>mm switch_mm()
inline include/asm­i386/mmu­context.h

==================== kernel/sched.c 612 657 ====================
[schedule()>switch_mm()]
28 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk,

unsigned cpu)

29 {

30 if (prev != next) {

31 /* stop flush ipis for the previous mm */

32 clear_bit(cpu, &prev­>cpu_vm_mask);

33 /*

34 * Re­load LDT if necessary

35 */

36 if (prev­>context.segments != next­>context.segments)

37 load_LDT(next);

38 #ifdef CONFIG_SMP

39 cpu_tlbstate[cpu].state = TLBSTATE_OK;

40 cpu_tlbstate[cpu].active_mm = next;

41 #endif

42 set_bit(cpu, &next­>cpu_vm_mask);

43 /* Re­load page tables */

44 asm volatile("movl %0,%%cr3": :"r" (__pa(next­>pgd)));

45 }

46 #ifdef CONFIG_SMP

==================== include/asm­i386/mmu_context.h 58 59 ====================
58 #endif

59 }

CPU 44
CR3 2 CR3

LDT VM86

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

376

CR3
CPU

switch_to()
include/asm­i386/system.h

==================== include/asm­i386/system.h 15 33 ====================
[schedule()>switch_to()]
15 #define switch_to(prev,next,last) do { \

16 asm volatile("pushl %%esi\n\t" \

17 "pushl %%edi\n\t" \

18 "pushl %%ebp\n\t" \

19 "movl %%esp,%0\n\t" /* save ESP */ \

20 "movl %3,%%esp\n\t" /* restore ESP */ \

21 "movl $1f,%1\n\t" /* save EIP */ \

22 "pushl %4\n\t" /* restore EIP */ \

23 "jmp __switch_to\n" \

24 "1:\t" \

25 "popl %%ebp\n\t" \

26 "popl %%edi\n\t" \

27 "popl %%esi\n\t" \

28 :"=m" (prev­>thread.esp),"=m" (prev­>thread.eip), \

29 "=b" (last) \

30 :"m" (next­>thread.esp),"m" (next­>thread.eip), \

31 "a" (prev), "d" (next), \

32 "b" (prev)); \

33 } while (0)

C
%0 %1

prev­>thread.esp prev­>thread.eip %2 EBX last
5 %3 %4 next­>thread.esp next­>thread.eip %5 %6 %7

EAX EDX EBX prev next prev
push pop

19 20 19 ESP
prev prev­>thread.esp 20 next

next­>thread.esp ESP CPU 20 21
A B prev A next B

A B 16 20
A 21 B 21

B A task_struct
current ESP 21 current

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

377

B task_struct 20

16 18 push A 25 27 B POP
25 27 push

21 24 21 “1”
25 pop prev­>thread.eip A

next­>thread.eip
next­>thread.eip B 21 “1 25

pop 23 jmp call __switch_to()
__switch_to() CPU ret jmp

next­>thread.eip “1 25 pop
21

25
16 21 task_struct thread.eip

“1
fork() copy_thread() arch/i386/kernel/process.c

ret_from_fork entry.S

==================== arch/i386/kernel/entry.S 179 186 ====================
179 ENTRY(ret_from_fork)

180 pushl %ebx

181 call SYMBOL_NAME(schedule_tail)

182 addl $4, %esp

183 GET_CURRENT(%ebx)

184 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

185 jne tracesys_exit

186 jmp ret_from_sys_call

schedule_tail() ret_from_sys_call ”

fork()
4.5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

378

4.5

fork()
CPU entry.S

SAVE_ALL regs
EAX 0 ESP

copy_thread()
fork() schedule() task_struct

need_resched 1 do_fork() sys_fork() entry.S ret_from_sys_call
ret_with_reschedule task_struct need_resched 0

regs RESTORE_ALL 3
need_resched 1 schedule()

schedule()
4.5

switch_to() 21 switch_to()
switch_to()

switch_to() 20 __switch_to() ret 25
__switch_to() entry.S

289 ret_from_sys_call
ret_from_sys_call __switch_to() ret

__switch_t() arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 604 688 ====================
[schedule()>switch_to()>__switch_to()]
604 /*

605 * switch_to(x,yn) should switch tasks from x to y.

606 *

607 * We fsave/fwait so that an exception goes off at the right time

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

379

608 * (as a call from the fsave or fwait in effect) rather than to

609 * the wrong process. Lazy FP saving no longer makes any sense

610 * with modern CPU's, and this simplifies a lot of things (SMP

611 * and UP become the same).

612 *

613 * NOTE! We used to use the x86 hardware context switching. The

614 * reason for not using it any more becomes apparent when you

615 * try to recover gracefully from saved state that is no longer

616 * valid (stale segment register values in particular). With the

617 * hardware task­switch, there is no way to fix up bad state in

618 * a reasonable manner.

619 *

620 * The fact that Intel documents the hardware task­switching to

621 * be slow is a fairly red herring ­ this code is not noticeably

622 * faster. However, there _is_ some room for improvement here,

623 * so the performance issues may eventually be a valid point.

624 * More important, however, is the fact that this allows us much

625 * more flexibility.

626 */

627 void __switch_to(struct task_struct *prev_p, struct task_struct *next_p)

628 {

629 struct thread_struct *prev = &prev_p­>thread,

630 *next = &next_p­>thread;

631 struct tss_struct *tss = init_tss + smp_processor_id();

632

633 unlazy_fpu(prev_p);

634

635 /*

636 * Reload esp0, LDT and the page table pointer:

637 */

638 tss­>esp0 = next­>esp0;

639

640 /*

641 * Save away %fs and %gs. No need to save %es and %ds, as

642 * those are always kernel segments while inside the kernel.

643 */

644 asm volatile("movl %%fs,%0":"=m" (*(int *)&prev­>fs));

645 asm volatile("movl %%gs,%0":"=m" (*(int *)&prev­>gs));

646

647 /*

648 * Restore %fs and %gs.

649 */

650 loadsegment(fs, next­>fs);

651 loadsegment(gs, next­>gs);

652

653 /*

654 * Now maybe reload the debug registers

655 */

656 if (next­>debugreg[7]){

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

380

657 loaddebug(next, 0);

658 loaddebug(next, 1);

659 loaddebug(next, 2);

660 loaddebug(next, 3);

661 /* no 4 and 5 */

662 loaddebug(next, 6);

663 loaddebug(next, 7);

664 }

665

666 if (prev­>ioperm || next­>ioperm) {

667 if (next­>ioperm) {

668 /*

669 * 4 cachelines copy ... not good, but not that

670 * bad either. Anyone got something better?

671 * This only affects processes which use ioperm().

672 * [Putting the TSSs into 4k­tlb mapped regions

673 * and playing VM tricks to switch the IO bitmap

674 * is not really acceptable.]

675 */

676 memcpy(tss­>io_bitmap, next­>io_bitmap,

677 IO_BITMAP_SIZE*sizeof(unsigned long));

678 tss­>bitmap = IO_BITMAP_OFFSET;

679 } else

680 /*

681 * a bitmap offset pointing outside of the TSS limit

682 * causes a nicely controllable SIGSEGV if a process

683 * tries to use a port IO instruction. The first

684 * sys_ioperm() call sets up the bitmap properly.

685 */

686 tss­>bitmap = INVALID_IO_BITMAP_OFFSET;

687 }

688 }

TSS 638 TSS 0 next­>esp0
CPU TSS
3 fs gs CPU debug

I/O 3
3 Intel TSS TSS

TR CPU
Linux

switch_to() schedule()
switch_to() “1 switch_to() __switch_to()

ret switch_to() 25 switch_to()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

381

23 switch_to()

exit() schedule() 4.6 schedule()
do_exit() 4.6

4.6

(1) switch_to() “1 switch_to()
schedule()

(2) schedule() do_exit()
(3) do_exit() sys_exit()
(4) sys_exit() entry.S system_call 204
(5) RESTORE_ALL

fork()

schedule() entry.S reschedule
exit() schedule() TASK_ZOMBIE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

382

4.7

Linux

3 entry.S ret_with_reschedule
schedule() task_struct need_resched

1 0 need_resched 1
CPU

•
•
•

task_struct counter
SCHED_RR SCHED_FIFO

SCHED_OTHER

0
3 do_timer_interrupt()

do_timer() CPU SMP
CPU APIC update_process_times()

kemel/sched.c

==================== kernel/timer.c 575 597 ====================
[do_timer_interrupt()>do_timer()>update_process_times()]
575 /*

576 * Called from the timer interrupt handler to charge one tick to the current

577 * process. user_tick is 1 if the tick is user time, 0 for system.

578 */

579 void update_process_times(int user_tick)

580 {

581 struct task_struct *p = current;

582 int cpu = smp_processor_id(), system = user_tick ^ 1;

583

584 update_one_process(p, user_tick, system, cpu);

585 if (p­>pid) {

586 if (­­p­>counter <= 0) {

587 p­>counter = 0;

588 p­>need_resched = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

383

589 }

590 if (p­>nice > 0)

591 kstat.per_cpu_nice[cpu] += user_tick;

592 else

593 kstat.per_cpu_user[cpu] += user_tick;

594 kstat.per_cpu_system[cpu] += system;

595 } else if (local_bh_count(cpu) || local_irq_count(cpu) > 1)

596 kstat.per_cpu_system[cpu] += system;

597 }

0 1 0 task_struct
need_resched 1 update_one_process()

wake_up_process()
kernel/sched.c

==================== kernel/sched.c 321 344 ====================
321 /*

322 * Wake up a process. Put it on the run­queue if it's not

323 * already there. The "current" process is always on the

324 * run­queue (except when the actual re­schedule is in

325 * progress), and as such you're allowed to do the simpler

326 * "current­>state = TASK_RUNNING" to mark yourself runnable

327 * without the overhead of this.

328 */

329 inline void wake_up_process(struct task_struct * p)

330 {

331 unsigned long flags;

332

333 /*

334 * We want the common case fall through straight, thus the goto.

335 */

336 spin_lock_irqsave(&runqueue_lock, flags);

337 p­>state = TASK_RUNNING;

338 if (task_on_runqueue(p))

339 goto out;

340 add_to_runqueue(p);

341 reschedule_idle(p);

342 out:

343 spin_unlock_irqrestore(&runqueue_lock, flags);

344 }

TASK_RUNNING runqueue
reschedule_idel() CPU

==================== kernel/sched.c 198 207 ====================
198 /*

199 * This is ugly, but reschedule_idle() is very timing­critical.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

384

200 * We are called with the runqueue spinlock held and we must

201 * not claim the tasklist_lock.

202 */

203 static FASTCALL(void reschedule_idle(struct task_struct * p));

204

205 static void reschedule_idle(struct task_struct * p)

206 {

207 #ifdef CONFIG_SMP

==================== kernel/sched.c 286 294 ====================
286 #else /* UP */

287 int this_cpu = smp_processor_id();

288 struct task_struct *tsk;

289

290 tsk = cpu_curr(this_cpu);

291 if (preemption_goodness(tsk, p, this_cpu) > 1)

292 tsk­>need_resched = 1;

293 #endif

294 }

need rescbed 1 preemption_goodness()
kernel/sched.c

==================== kernel/sched.c 189 196 ====================
[wake_up_process()>reschedule_idle()>preemption_goodness()]
189 /*

190 * the 'goodness value' of replacing a process on a given CPU.

191 * positive value means 'replace', zero or negative means 'dont'.

192 */

193 static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)

194 {

195 return goodness(p, cpu, prev­>active_mm) ­ goodness(prev, cpu, prev­>active_mm);

196 }

reschedule_idle() current
cpu_curr cpu_curr kernel/sched.c

==================== kernel/sched.c 103 103 ====================
103 #define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr

schedule()
kernel/sched.c 586 current

CPU

need_resched 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

385

sched_setscheduler() sched_yield()
sched_setscheduler()
SCHED_OTHER fork()

sched_setscheduler()
sys_sched_setscheduler() kernel/sched.c

==================== kernel/sched.c 957 966 ====================
957 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,

958 struct sched_param *param)

959 {

960 return setscheduler(pid, policy, param);

961 }

962

963 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)

964 {

965 return setscheduler(pid, ­1, param);

966 }

==================== kernel/sched.c 887 955 ====================
887 static int setscheduler(pid_t pid, int policy,

888 struct sched_param *param)

889 {

890 struct sched_param lp;

891 struct task_struct *p;

892 int retval;

893

894 retval = ­EINVAL;

895 if (!param || pid < 0)

896 goto out_nounlock;

897

898 retval = ­EFAULT;

899 if (copy_from_user(&lp, param, sizeof(struct sched_param)))

900 goto out_nounlock;

901

902 /*

903 * We play safe to avoid deadlocks.

904 */

905 read_lock_irq(&tasklist_lock);

906 spin_lock(&runqueue_lock);

907

908 p = find_process_by_pid(pid);

909

910 retval = ­ESRCH;

911 if (!p)

912 goto out_unlock;

913

914 if (policy < 0)

915 policy = p­>policy;

916 else {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

386

917 retval = ­EINVAL;

918 if (policy != SCHED_FIFO && policy != SCHED_RR &&

919 policy != SCHED_OTHER)

920 goto out_unlock;

921 }

922

923 /*

924 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid

925 * priority for SCHED_OTHER is 0.

926 */

927 retval = ­EINVAL;

928 if (lp.sched_priority < 0 || lp.sched_priority > 99)

929 goto out_unlock;

930 if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))

931 goto out_unlock;

932

933 retval = ­EPERM;

934 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&

935 !capable(CAP_SYS_NICE))

936 goto out_unlock;

937 if ((current­>euid != p­>euid) && (current­>euid != p­>uid) &&

938 !capable(CAP_SYS_NICE))

939 goto out_unlock;

940

941 retval = 0;

942 p­>policy = policy;

943 p­>rt_priority = lp.sched_priority;

944 if (task_on_runqueue(p))

945 move_first_runqueue(p);

946

947 current­>need_resched = 1;

948

949 out_unlock:

950 spin_unlock(&runqueue_lock);

951 read_unlock_irq(&tasklist_lock);

952

953 out_nounlock:

954 return retval;

955 }

Linux SCHED_FIFO SCHED_RR
SCHED_OTHER 918

capable() inline current­>cap_effective 1
include/inux/capability.h

move_first_runqueue()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

387

need_resched 1
sched_yield()

sys_sched_yield() kernel/sched.c

==================== kernel/sched.c 1019 1052 ====================
1019 asmlinkage long sys_sched_yield(void)

1020 {

1021 /*

1022 * Trick. sched_yield() first counts the number of truly

1023 * 'pending' runnable processes, then returns if it's

1024 * only the current processes. (This test does not have

1025 * to be atomic.) In threaded applications this optimization

1026 * gets triggered quite often.

1027 */

1028

1029 int nr_pending = nr_running;

1030

1031 #if CONFIG_SMP

1032 int i;

1033

1034 // Substract non­idle processes running on other CPUs.

1035 for (i = 0; i < smp_num_cpus; i++)

1036 if (aligned_data[i].schedule_data.curr != idle_task(i))

1037 nr_pending­­;

1038 #else

1039 // on UP this process is on the runqueue as well

1040 nr_pending­­;

1041 #endif

1042 if (nr_pending) {

1043 /*

1044 * This process can only be rescheduled by us,

1045 * so this is safe without any locking.

1046 */

1047 if (current­>policy == SCHED_OTHER)

1048 current­>policy |= SCHED_YIELD;

1049 current­>need_resched = 1;

1050 }

1051 return 0;

1052 }

nr_pending
current­>policy SCHED_YIELD 1

0 __schedule_tail() schedule() switch_to()

need_resched 1
dispatch latency

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

388

exit()
socket

client/server

bh

SCHED_FIFO
SCHED_RR

linux

4.8 nanosleep() pause()

CPU
sched_yield()

TASK_INTERRUPTIBLE TASK_UNINTERRUPTIBLE

TASK_RUNNING
CPU

CPU CPU
CPU read() write()

open() send() recvfrom()
CPU

nanosleep() pause()
nanosleep()

sleep()
nanosleep()

pause()
wait4() wait3()

pause() SIGCHLD

SIGSTOP

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

389

do_signal() schedule()
TASK_STOPPED SIGCONT

do_signal()
schedule()

nanosleep() pause()
nanosleep() sys_nanosleep() kernel/sched.c

==================== kernel/timer.c 797 836 ====================
797 asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)

798 {

799 struct timespec t;

800 unsigned long expire;

801

802 if(copy_from_user(&t, rqtp, sizeof(struct timespec)))

803 return ­EFAULT;

804

805 if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)

806 return ­EINVAL;

807

808

809 if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&

810 current­>policy != SCHED_OTHER)

811 {

812 /*

813 * Short delay requests up to 2 ms will be handled with

814 * high precision by a busy wait for all real­time processes.

815 *

816 * Its important on SMP not to do this holding locks.

817 */

818 udelay((t.tv_nsec + 999) / 1000);

819 return 0;

820 }

821

822 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);

823

824 current­>state = TASK_INTERRUPTIBLE;

825 expire = schedule_timeout(expire);

826

827 if (expire) {

828 if (rmtp) {

829 jiffies_to_timespec(expire, &t);

830 if (copy_to_user(rmtp, &t, sizeof(struct timespec)))

831 return ­EFAULT;

832 }

833 return ­EINTR;

834 }

835 return 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

390

836 }

sleep() nanosleep() timespec
rqtp rmtp

­1 rmtp
rmtp NULL

timespec include/linux/time.h

==================== include/linux/time.h 9 12 ====================
9 struct timespec {

10 time_t tv_sec; /* seconds */

11 long tv_nsec; /* nanoseconds */

12 };

tv_sec tv_nsec 10­9

Hz 100
include/asm­i386/param.h 10

10 809 821
2

SCHED_FIFO SCHED_RR
10

udelay()
include/asm­i386/delay.h

==================== include/asm­i386/delay.h 16 18 ====================
16 #define udelay(n) (__builtin_constant_p(n) ? \

17 ((n) > 20000 ? __bad_udelay() : __const_udelay((n) * 0x10c6ul)) : \

18 __udelay(n))

__udelay() arch/i386/lib/delay.c

==================== arch/i386/lib/delay.c 76 79 ====================
[sys_nanosleep()>udelay()>__udelay()]
76 void __udelay(unsigned long usecs)

77 {

78 __const_udelay(usecs * 0x000010c6); /* 2**32 / 1000000 */

79 }

ysnanodeeP() u lay() udday() consLudday()1

==================== arch/i386/lib/delay.c 67 74 ====================
67 inline void __const_udelay(unsigned long xloops)

68 {

69 int d0;

70 __asm__("mull %0"

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

391

71 :"=d" (xloops), "=&a" (d0)

72 :"1" (xloops),"0" (current_cpu_data.loops_per_jiffy));

73 __delay(xloops * HZ);

74 }

current_cpu_data.loops_per_sec CPU
current_cpu_data

==================== arch/i386/lib/delay.c 59 65 ====================
[sys_nanosleep()>udelay()>__udelay()>__const_udelay()>__delay()]
59 void __delay(unsigned long loops)

60 {

61 if(x86_udelay_tsc)

62 __rdtsc_delay(loops);

63 else

64 __loop_delay(loops);

65 }

CPU __rdtsc_delay()

==================== arch/i386/lib/delay.c 42 57 ====================
[sys_nanosleep()>udelay()>__udelay()>__const_udelay()>__delay()>__loop_delay()]
42 /*

43 * Non TSC based delay loop for 386, 486, MediaGX

44 */

45

46 static void __loop_delay(unsigned long loops)

47 {

48 int d0;

49 __asm__ __volatile__(

50 "\tjmp 1f\n"

51 ".align 16\n"

52 "1:\tjmp 2f\n"

53 ".align 16\n"

54 "2:\tdecl %0\n\tjns 2b"

55 :"=&a" (d0)

56 :"0" (loops));

57 }

C
udelay()
CPU

2

sys_nanosleep() timespec_to_jiffies() t

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

392

time.h time.h

==================== include/linux/time.h 17 42 ====================
[sys_nanosleep()>timespec_to_jiffies()]
17 /*

18 * Change timeval to jiffies, trying to avoid the

19 * most obvious overflows..

20 *

21 * And some not so obvious.

22 *

23 * Note that we don't want to return MAX_LONG, because

24 * for various timeout reasons we often end up having

25 * to wait "jiffies+1" in order to guarantee that we wait

26 * at _least_ "jiffies" ­ so "jiffies+1" had better still

27 * be positive.

28 */

29 #define MAX_JIFFY_OFFSET ((~0UL >> 1)­1)

30

31 static __inline__ unsigned long

32 timespec_to_jiffies(struct timespec *value)

33 {

34 unsigned long sec = value­>tv_sec;

35 long nsec = value­>tv_nsec;

36

37 if (sec >= (MAX_JIFFY_OFFSET / HZ))

38 return MAX_JIFFY_OFFSET;

39 nsec += 1000000000L / HZ ­ 1;

40 nsec /= 1000000000L / HZ;

41 return HZ * sec + nsec;

42 }

sys_nanosleep() 822 (t.tv_sec || t.tv_nsec) 1 0
TASK_lNTERRUPT schedule_timeout()

TASK_INTERRUPT TASK_UNINTERRUPT
schedule_timeout() sched.c

==================== kernel/sched.c 369 419 ====================
[sys_nanosleep()>schedule_timeout()]
369 signed long schedule_timeout(signed long timeout)

370 {

371 struct timer_list timer;

372 unsigned long expire;

373

374 switch (timeout)

375 {

376 case MAX_SCHEDULE_TIMEOUT:

377 /*

378 * These two special cases are useful to be comfortable

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

393

379 * in the caller. Nothing more. We could take

380 * MAX_SCHEDULE_TIMEOUT from one of the negative value

381 * but I' d like to return a valid offset (>=0) to allow

382 * the caller to do everything it want with the retval.

383 */

384 schedule();

385 goto out;

386 default:

387 /*

388 * Another bit of PARANOID. Note that the retval will be

389 * 0 since no piece of kernel is supposed to do a check

390 * for a negative retval of schedule_timeout() (since it

391 * should never happens anyway). You just have the printk()

392 * that will tell you if something is gone wrong and where.

393 */

394 if (timeout < 0)

395 {

396 printk(KERN_ERR "schedule_timeout: wrong timeout "

397 "value %lx from %p\n", timeout,

398 __builtin_return_address(0));

399 current­>state = TASK_RUNNING;

400 goto out;

401 }

402 }

403

404 expire = timeout + jiffies;

405

406 init_timer(&timer);

407 timer.expires = expire;

408 timer.data = (unsigned long) current;

409 timer.function = process_timeout;

410

411 add_timer(&timer);

412 schedule();

413 del_timer_sync(&timer);

414

415 timeout = expire ­ jiffies;

416

417 out:

418 return timeout < 0 ? 0 : timeout;

419 }

“jiffy”
jiffies

schedule_timeout()
jiffies

1 sys_nanosleep() timespec_to_jiffies()
822 MAX_JIFFY_OFFSET schedule_timeout()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

394

384 schedule()

schedule_timeout()
MAX_JIFFY_OFFSET schedule() goto

out timeout MAX_JIFFY_OFFSET

timer
timer timer_list include/linux/time.h

3

schedule_timeout() init_timer()
expire process_timeout()

process_timeout() current
task_struct data

task_struct

add_timer() timer timer.c

==================== kernel/timer.c 176 190 ====================
[sys_nanosleep()>schedule_timeout()>add_timer()]
176 void add_timer(struct timer_list *timer)

177 {

178 unsigned long flags;

179

180 spin_lock_irqsave(&timerlist_lock, flags);

181 if (timer_pending(timer))

182 goto bug;

183 internal_add_timer(timer);

184 spin_unlock_irqrestore(&timerlist_lock, flags);

185 return;

186 bug:

187 spin_unlock_irqrestore(&timerlist_lock, flags);

188 printk("bug: kernel timer added twice at %p.\n",

189 __builtin_return_address(0));

190 }

internal_add_timer()
spin_lock_irqsave() spin_unlock_irqsave()

internal_add_timer() timer.c

==================== kernel/timer.c 122 160 ====================
[sys_nanosleep()>schedule_timeout()>add_timer()>internal_add_timer()]
122 static inline void internal_add_timer(struct timer_list *timer)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

395

123 {

124 /*

125 * must be cli­ed when calling this

126 */

127 unsigned long expires = timer­>expires;

128 unsigned long idx = expires ­ timer_jiffies;

129 struct list_head * vec;

130

131 if (idx < TVR_SIZE) {

132 int i = expires & TVR_MASK;

133 vec = tv1.vec + i;

134 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {

135 int i = (expires >> TVR_BITS) & TVN_MASK;

136 vec = tv2.vec + i;

137 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {

138 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;

139 vec = tv3.vec + i;

140 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {

141 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;

142 vec = tv4.vec + i;

143 } else if ((signed long) idx < 0) {

144 /* can happen if you add a timer with expires == jiffies,

145 * or you set a timer to go off in the past

146 */

147 vec = tv1.vec + tv1.index;

148 } else if (idx <= 0xffffffffUL) {

149 int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;

150 vec = tv5.vec + i;

151 } else {

152 /* Can only get here on architectures with 64­bit jiffies */

153 INIT_LIST_HEAD(&timer­>list);

154 return;

155 }

156 /*

157 * Timers are FIFO!

158 */

159 list_add(&timer­>list, vec­>prev);

160 }

128 timer_jiffies
jiffies

internal_add_timer()
timer_list

jiffies

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

396

hash

2

jiffies 32
10 210

222

232

Linux

Linux timer.c

==================== kernel/timer.c 74 102 ====================
74 /*

75 * Event timer code

76 */

77 #define TVN_BITS 6

78 #define TVR_BITS 8

79 #define TVN_SIZE (1 << TVN_BITS)

80 #define TVR_SIZE (1 << TVR_BITS)

81 #define TVN_MASK (TVN_SIZE ­ 1)

82 #define TVR_MASK (TVR_SIZE ­ 1)

83

84 struct timer_vec {

85 int index;

86 struct list_head vec[TVN_SIZE];

87 };

88

89 struct timer_vec_root {

90 int index;

91 struct list_head vec[TVR_SIZE];

92 };

93

94 static struct timer_vec tv5;

95 static struct timer_vec tv4;

96 static struct timer_vec tv3;

97 static struct timer_vec tv2;

98 static struct timer_vec_root tv1;

99

100 static struct timer_vec * const tvecs[] = {

101 (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

397

102 };

tv1 tv2 tv5 timer_list bucket
tv1 tv1

28 26 28+4×26=512
index

32 8 tv1 6

256 8
tv1 tv1 256

256
214 6 8 14

tv2 4.7

4.7

tv2 tv1 tv1
tv2 tv2 256

tv2 tv1 214 220

internal_add_timer()
list_add()

tv1

jiffies
tv1 index

index tv1.index 256
0 256 tv1

tv2 tv2.index tv2 tv1
internal_add_timer()

256 tv1
tv2 tv1

tv2 2 tv1 226 tv5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

398

tv1 tv1

schedule_timeout() schedule()

3 bh
timer_bh() timer_bh() run_timer_list() kernel/timer.c

==================== kernel/timer.c 668 672 ====================
668 void timer_bh(void)

669 {

670 update_times();

671 run_timer_list();

672 }

run_timer_list() kernel/sched.c

==================== kernel/timer.c 288 324 ====================
[timetbh() runnmerlist()]
288 struct task_struct *tsk;

289

290 tsk = cpu_curr(this_cpu);

291 if (preemption_goodness(tsk, p, this_cpu) > 1)

292 tsk­>need_resched = 1;

293 #endif

294 }

295

296 /*

297 * Careful!

298 *

299 * This has to add the process to the _beginning_ of the

300 * run­queue, not the end. See the comment about "This is

301 * subtle" in the scheduler proper..

302 */

303 static inline void add_to_runqueue(struct task_struct * p)

304 {

305 list_add(&p­>run_list, &runqueue_head);

306 nr_running++;

307 }

308

309 static inline void move_last_runqueue(struct task_struct * p)

310 {

311 list_del(&p­>run_list);

312 list_add_tail(&p­>run_list, &runqueue_head);

313 }

314

315 static inline void move_first_runqueue(struct task_struct * p)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

399

316 {

317 list_del(&p­>run_list);

318 list_add(&p­>run_list, &runqueue_head);

319 }

320

321 /*

322 * Wake up a process. Put it on the run­queue if it's not

323 * already there. The "current" process is always on the

324 * run­queue (except when the actual re­schedule is in

jiffies 1
jiffies tv1.index 0 0

tv2 tv1 0
goto
detach_timer()

times_jiffies tv1.index tv1.index 256 TVR_MASK
255 0 cascade_timers()

tv2 tv1 tv2 index jiffies 256
256 tv2.index tv1.index tv2.index

64 63 0 tv2.index 1 tv3 tv2
tv1

tv2.index 1 0 tv3 internal
idx TVR_SIZE 256 136 1

0 tv2 0 tv1 tv2
tvecs[] 1 tv2

298 tv2.index 1 tv3
NOOF_TVECS 5 timer.c

==================== kernel/timer.c 104 104 ====================
104 #define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))

cascade_timers()

==================== kernel/timer.c 264 286 ====================
[timer_bh()>run_timer_list()>cascade_timers()]
264 static inline void cascade_timers(struct timer_vec *tv)

265 {

266 /* cascade all the timers from tv up one level */

267 struct list_head *head, *curr, *next;

268

269 head = tv­>vec + tv­>index;

270 curr = head­>next;

271 /*

272 * We are removing _all_ timers from the list, so we don't have to

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

400

273 * detach them individually, just clear the list afterwards.

274 */

275 while (curr != head) {

276 struct timer_list *tmp;

277

278 tmp = list_entry(curr, struct timer_list, list);

279 next = curr­>next;

280 list_del(curr); // not needed

281 internal_add_timer(tmp);

282 curr = next;

283 }

284 INIT_LIST_HEAD(head);

285 tv­>index = (tv­>index + 1) & TVN_MASK;

286 }

process_timeout task_struct
process_timeout() sched.c

==================== kernel/sched.c 362 367 ====================
[timer_bh()>run_timer_list()>process_timeout()]
362 static void process_timeout(unsigned long __data)

363 {

364 struct task_struct * p = (struct task_struct *) __data;

365

366 wake_up_process(p);

367 }

wake_up_process
schedule_timeout()

schedule_timeout() schedule()
schedute_timeout() schedule() del_timer_sync()

run_timer_list() detach_timer()
del_timer_sync() del_timer_sync() del_timer()

detach_timet() del_timer() sched.c

==================== kernel/timer.c 192 198 ====================
[timer_bh()>run_timer_list()>detach­tiner()]
192 static inline int detach_timer (struct timer_list *timer)

193 {

194 if (!timer_pending(timer))

195 return 0;

196 list_del(&timer­>list);

197 return 1;

198 }

==================== include/linux/timer.h 54 57 ====================
tinsewbhh() runtimerlist() detacLtlner() timeL ending()

54 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

401

55 long time_phase; /* phase offset (scaled us) */

56 long time_freq = ((1000000 + HZ/2) % HZ ­ HZ/2) << SHIFT_USEC;

57 /* frequency offset (scaled ppm)*/

detach_tiner() timer_list
del_timer() detach_timer()

==================== kernel/timer.c 213 223 ====================
[sys_nanosleep()>schedute_timeout()>del_timer()]
213 int del_timer(struct timer_list * timer)

214 {

215 int ret;

216 unsigned long flags;

217

218 spin_lock_irqsave(&timerlist_lock, flags);

219 ret = detach_timer(timer);

220 timer­>list.next = timer­>list.prev = NULL;

221 spin_unlock_irqrestore(&timerlist_lock, flags);

222 return ret;

223 }

del_timer()
run_timer_list()

schedule_timcout()
del_timer() timer

schedule_timeout()

expire jiffies
sys_nanosheep() timespec

jiffies

sys_nanoshecp() schedule_timeout()
interruptible_sleep_on_timeout()

schedule_timeout()

sys_nanosheep() sys_pause()
arch/i386/kernel/sys_i386.c

==================== arch/i386/kernel/sys_i386.c 250 255 ====================
250 asmlinkage int sys_pause(void)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

402

251 {

252 current­>state = TASK_INTERRUPTIBLE;

253 schedule();

254 return ­ERESTARTNOHAND;

255 }

sys_pause()

4.9

bh
SMP

schedule() CPU

bh

SMP

vfork()
semaphore

down() up() P V
semaphore

struct semaphore include/asm/i386/semaphore.h

==================== include/asm­i386/semaphore.h 44 51 ====================
44 struct semaphore {

45 atomic_t count;

46 int sleepers;

47 wait_queue_head_t wait;

48 #if WAITQUEUE_DEBUG

49 long __magic;

50 #endif

51 };

count

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

403

count
count

wait sleepers

0

umount()
umount

fs/super.c

==================== fs/super.c 44 50 ====================
44 /*

45 * We use a semaphore to synchronize all mount/umount

46 * activity ­ imagine the mess if we have a race between

47 * unmounting a filesystem and re­mounting it (or something

48 * else).

49 */

50 static DECLARE_MUTEX(mount_sem);

==================== fs/super.c 1117 1118 ====================
1117 asmlinkage long sys_umount(char * name, int flags)

1118 {

==================== fs/super.c 1144 1146 ====================
1144 down(&mount_sem);

1145 retval = do_umount(nd.mnt, 0, flags);

1146 up(&mount_sem);

==================== fs/super.c 1152 1153 ====================
1152 return retval;

1153 }

do_umount()

50 ”mount_sem
down up

down() up()
critical

section critical section critical

DECLAR_MUTEX() include/asm­i386/semaphore.h

==================== include/asm­i386/semaphore.h 53 71 ====================
53 #if WAITQUEUE_DEBUG

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

404

54 # define __SEM_DEBUG_INIT(name) \

55 , (int)&(name).__magic

56 #else

57 # define __SEM_DEBUG_INIT(name)

58 #endif

59

60 #define __SEMAPHORE_INITIALIZER(name,count) \

61 { ATOMIC_INIT(count), 0, __WAIT_QUEUE_HEAD_INITIALIZER((name).wait) \

62 __SEM_DEBUG_INIT(name) }

63

64 #define __MUTEX_INITIALIZER(name) \

65 __SEMAPHORE_INITIALIZER(name,1)

66

67 #define __DECLARE_SEMAPHORE_GENERIC(name,count) \

68 struct semaphore name = __SEMAPHORE_INITIALIZER(name,count)

69

70 #define DECLARE_MUTEX(name) __DECLARE_SEMAPHORE_GENERIC(name,1)

71 #define DECLARE_MUTEX_LOCKED(name) __DECLARE_SEMAPHORE_GENERIC

ATOMIC_INIT() __WAIT_QUEUE_HEAD_INITIALIZER()
include/asm­i386/atomic.h include/linux/wait.h gcc

50

static struct semaphore mount_sem={[(1)] O …}

DECLARE_MUTEX() 1
DECLARE_MUTEX_LOCKED()

up() fork()
MUTEX MUTEX_LOCKED

down() up() inline
include/asm­i386/semaphore.h down()

==================== include/asm­i386/semaphore.h 109 132 ====================
109 /*

110 * This is ugly, but we want the default case to fall through.

111 * "__down_failed" is a special asm handler that calls the C

112 * routine that actually waits. See arch/i386/kernel/semaphore.c

113 */

114 static inline void down(struct semaphore * sem)

115 {

116 #if WAITQUEUE_DEBUG

117 CHECK_MAGIC(sem­>__magic);

118 #endif

119

120 __asm__ __volatile__(

121 "# atomic down operation\n\t"

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

405

122 LOCK "decl %0\n\t" /* ­­sem­>count */

123 "js 2f\n"

124 "1:\n"

125 ".section .text.lock,\"ax\"\n"

126 "2:\tcall __down_failed\n\t"

127 "jmp 1b\n"

128 ".previous"

129 :"=m" (sem­>count)

130 :"c" (sem)

131 :"memory");

132 }

sem
ECX count semaphore sem

sem­>count 122 decl sem­>count
0 0 “1

decl LOCK CPU

“2 __down_failed()
__down_failed()

“1 down()
__down_failed() arch/i386/kernel/semaphore.c

==================== arch/i386/kernel/semaphore.c 171 193 ====================
[down()>__down_failed()]
171 /*

172 * The semaphore operations have a special calling sequence that

173 * allow us to do a simpler in­line version of them. These routines

174 * need to convert that sequence back into the C sequence when

175 * there is contention on the semaphore.

176 *

177 * %ecx contains the semaphore pointer on entry. Save the C­clobbered

178 * registers (%eax, %edx and %ecx) except %eax when used as a return

179 * value..

180 */

181 asm(

182 ".align 4\n"

183 ".globl __down_failed\n"

184 "__down_failed:\n\t"

185 "pushl %eax\n\t"

186 "pushl %edx\n\t"

187 "pushl %ecx\n\t"

188 "call __down\n\t"

189 "popl %ecx\n\t"

190 "popl %edx\n\t"

191 "popl %eax\n\t"

192 "ret"

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

406

193);

__down() semaphore.c

==================== arch/i386/kernel/semaphore.c 20 39 ====================
20 /*

21 * Semaphores are implemented using a two­way counter:

22 * The "count" variable is decremented for each process

23 * that tries to acquire the semaphore, while the "sleeping"

24 * variable is a count of such acquires.

25 *

26 * Notably, the inline "up()" and "down()" functions can

27 * efficiently test if they need to do any extra work (up

28 * needs to do something only if count was negative before

29 * the increment operation.

30 *

31 * "sleeping" and the contention routine ordering is

32 * protected by the semaphore spinlock.

33 *

34 * Note that these functions are only called when there is

35 * contention on the lock, and as such all this is the

36 * "non­critical" part of the whole semaphore business. The

37 * critical part is the inline stuff in <asm/semaphore.h>

38 * where we want to avoid any extra jumps and calls.

39 */

__down()

==================== arch/i386/kernel/semaphore.c 58 89 ====================
[down()>__down_failed()__down()]
58 void __down(struct semaphore * sem)

59 {

60 struct task_struct *tsk = current;

61 DECLARE_WAITQUEUE(wait, tsk);

62 tsk­>state = TASK_UNINTERRUPTIBLE;

63 add_wait_queue_exclusive(&sem­>wait, &wait);

64

65 spin_lock_irq(&semaphore_lock);

66 sem­>sleepers++;

67 for (;;) {

68 int sleepers = sem­>sleepers;

69

70 /*

71 * Add "everybody else" into it. They aren't

72 * playing, because we own the spinlock.

73 */

74 if (!atomic_add_negative(sleepers ­ 1, &sem­>count)) {

75 sem­>sleepers = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

407

76 break;

77 }

78 sem­>sleepers = 1; /* us ­ see ­1 above */

79 spin_unlock_irq(&semaphore_lock);

80

81 schedule();

82 tsk­>state = TASK_UNINTERRUPTIBLE;

83 spin_lock_irq(&semaphore_lock);

84 }

85 spin_unlock_irq(&semaphore_lock);

86 remove_wait_queue(&sem­>wait, &wait);

87 tsk­>state = TASK_RUNNING;

88 wake_up(&sem­>wait);

89 }

wait_queue_t DECLARE_WAITQUEUE()
add_wait_queue_exclusive()

wait sem­>wait CPU for(;;) sem­>sleepers

__down() spin_lock_irq()
up()

for() atomic_ddd_negative()
(sleepers­1) sem­>count

­1 down() sem­>count 0
up() (sleepers­1) 0 sem­>count ­1 ­1

atomic_add_negative() 65
up() sleepers­1 0 sem­>count 0 0

atomic_add_negative()
down() sem­>count 1 0 sem­>count 0

sem­>count
up() sem­>count 1

0
break for

74
sem­>sleepers 0 75 (sleepers­1) ­1

sem­>count 1 atomic_add_negative() 0
atomic_add_negative() 0 81

schedule() TASK_UNINTERRUPTIBLE
TASK_EXCLUSIVE 1

schedule() sem­>sleepers

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

408

78 1 (sleepers­1) 0 sem­>count
(­1) up() sem­>count 0 for()

__down() __down()

Linux

up() semaphore.h

==================== include/asm­i386/semaphore.h 182 205 ====================
182 /*

183 * Note! This is subtle. We jump to wake people up only if

184 * the semaphore was negative (== somebody was waiting on it).

185 * The default case (no contention) will result in NO

186 * jumps for both down() and up().

187 */

188 static inline void up(struct semaphore * sem)

189 {

190 #if WAITQUEUE_DEBUG

191 CHECK_MAGIC(sem­>__magic);

192 #endif

193 __asm__ __volatile__(

194 "# atomic up operation\n\t"

195 LOCK "incl %0\n\t" /* ++sem­>count */

196 "jle 2f\n"

197 "1:\n"

198 ".section .text.lock,\"ax\"\n"

199 "2:\tcall __up_wakeup\n\t"

200 "jmp 1b\n"

201 ".previous"

202 :"=m" (sem­>count)

203 :"c" (sem)

204 :"memory");

205 }

down() sem­>count

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

409

0 __up_wakeup() semaphore.c

==================== arch/i386/kernel/semaphore.c 219 231 ====================
[up()>__up_wakeup()]
219 asm(

220 ".align 4\n"

221 ".globl __up_wakeup\n"

222 "__up_wakeup:\n\t"

223 "pushl %eax\n\t"

224 "pushl %edx\n\t"

225 "pushl %ecx\n\t"

226 "call __up\n\t"

227 "popl %ecx\n\t"

228 "popl %edx\n\t"

229 "popl %eax\n\t"

230 "ret"

231);

__up() semaphore.c

==================== arch/i386/kernel/semaphore.c 41 54 ====================
[up()>__up_wakeup()>__up()]
41 /*

42 * Logic:

43 * ­ only on a boundary condition do we need to care. When we go

44 * from a negative count to a non­negative, we wake people up.

45 * ­ when we go from a non­negative count to a negative do we

46 * (a) synchronize with the "sleeper" count and (b) make sure

47 * that we're on the wakeup list before we synchronize so that

48 * we cannot lose wakeup events.

49 */

50

51 void __up(struct semaphore *sem)

52 {

53 wake_up(&sem­>wait);

54 }

wake_up() sched.h

==================== include/linux/sched.h 555 560 ====================
555 #define wake_up(x) __wake_up((x),TASK_UNINTERRUPTIBLE |

TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

556 #define wake_up_all(x) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,0)

557 #define wake_up_sync(x) __wake_up_sync((x),TASK_UNINTERRUPTIBLE |

TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

558 #define wake_up_interruptible(x) __wake_up((x),TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

559 #define wake_up_interruptible_all(x) __wake_up((x),TASK_INTERRUPTIBLE,0)

560 #define wake_up_interruptible_sync(x) __wake_up_sync((x),TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

__wake_up() sched.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

410

TASK_EXCLUSIVE 1
kernel/sched.c

==================== kernel/sched.c 766 769 ====================
[up()>__up_wakeup()>__up()>wake_up()>__wake_up()]
766 void __wake_up(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)

767 {

768 __wake_up_common(q, mode, wq_mode, 0);

769 }

==================== kernel/sched.c 692 764 ====================
[up()>__up_wakeup()>__up()>wake_up()>__wake_up()>__wake_up_common()]
692 static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,

693 unsigned int wq_mode, const int sync)

694 {

695 struct list_head *tmp, *head;

696 struct task_struct *p, *best_exclusive;

697 unsigned long flags;

698 int best_cpu, irq;

699

700 if (!q)

701 goto out;

702

703 best_cpu = smp_processor_id();

704 irq = in_interrupt();

705 best_exclusive = NULL;

706 wq_write_lock_irqsave(&q­>lock, flags);

707

708 #if WAITQUEUE_DEBUG

709 CHECK_MAGIC_WQHEAD(q);

710 #endif

711

712 head = &q­>task_list;

713 #if WAITQUEUE_DEBUG

714 if (!head­>next || !head­>prev)

715 WQ_BUG();

716 #endif

717 tmp = head­>next;

718 while (tmp != head) {

719 unsigned int state;

720 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);

721

722 tmp = tmp­>next;

723

724 #if WAITQUEUE_DEBUG

725 CHECK_MAGIC(curr­>__magic);

726 #endif

727 p = curr­>task;

728 state = p­>state;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

411

729 if (state & mode) {

730 #if WAITQUEUE_DEBUG

731 curr­>__waker = (long)__builtin_return_address(0);

732 #endif

733 /*

734 * If waking up from an interrupt context then

735 * prefer processes which are affine to this

736 * CPU.

737 */

738 if (irq && (curr­>flags & wq_mode & WQ_FLAG_EXCLUSIVE)) {

739 if (!best_exclusive)

740 best_exclusive = p;

741 if (p­>processor == best_cpu) {

742 best_exclusive = p;

743 break;

744 }

745 } else {

746 if (sync)

747 wake_up_process_synchronous(p);

748 else

749 wake_up_process(p);

750 if (curr­>flags & wq_mode & WQ_FLAG_EXCLUSIVE)

751 break;

752 }

753 }

754 }

755 if (best_exclusive) {

756 if (sync)

757 wake_up_process_synchronous(best_exclusive);

758 else

759 wake_up_process(best_exclusive);

760 }

761 wq_write_unlock_irqrestore(&q­>lock, flags);

762 out:

763 return;

764 }

A B
B
A

Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

412

A B B A

bh

__down() spin_lock_irq()
spin_unlock_irq() SMP

include/1inux/spinlock.h

==================== include/linux/spinlock.h 6 32 ====================
6 /*

7 * These are the generic versions of the spinlocks and read­write

8 * locks..

9 */

10 #define spin_lock_irqsave(lock, flags) do { local_irq_save(flags); spin_lock(lock); }

while (0)

11 #define spin_lock_irq(lock) do { local_irq_disable(); spin_lock(lock); } while (0)

12 #define spin_lock_bh(lock) do { local_bh_disable(); spin_lock(lock); } while (0)

13

14 #define read_lock_irqsave(lock, flags) do { local_irq_save(flags); read_lock(lock); }

while (0)

15 #define read_lock_irq(lock) do { local_irq_disable(); read_lock(lock); } while (0)

16 #define read_lock_bh(lock) do { local_bh_disable(); read_lock(lock); } while (0)

17

18 #define write_lock_irqsave(lock, flags) do { local_irq_save(flags); write_lock(lock); }

while (0)

19 #define write_lock_irq(lock) do { local_irq_disable(); write_lock(lock); } while

(0)

20 #define write_lock_bh(lock) do { local_bh_disable(); write_lock(lock); } while (0)

21

22 #define spin_unlock_irqrestore(lock, flags) do { spin_unlock(lock); local_irq_restore(flags); }

while (0)

23 #define spin_unlock_irq(lock) do { spin_unlock(lock); local_irq_enable(); } while

(0)

24 #define spin_unlock_bh(lock) do { spin_unlock(lock); local_bh_enable(); } while

(0)

25

26 #define read_unlock_irqrestore(lock, flags) do { read_unlock(lock); local_irq_restore(flags); }

while (0)

27 #define read_unlock_irq(lock) do { read_unlock(lock); local_irq_enable(); } while

(0)

28 #define read_unlock_bh(lock) do { read_unlock(lock); local_bh_enable(); } while

(0)

29

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

413

30 #define write_unlock_irqrestore(lock, flags) do { write_unlock(lock); local_irq_restore(flags); }

while (0)

31 #define write_unlock_irq(lock) do { write_unlock(lock); local_irq_enable(); } while

(0)

32 #define write_unlock_bh(lock) do { write_unlock(lock); local_bh_enable(); } while

(0)

spin_lock_irqsave() spin_lock_irq()
local_irq_save() local_irq_disable() spin_unlock_irqsave()

spin_unlock_irq() local_irq_restore() local_irq_enable()
spin_lock_irq() read_lock_irq()

spin_lock() read_lock()
local_

_lock
include/asm­i386/system.h

==================== include/asm­i386/system.h 304 307 ====================
304 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input

*/ :"memory")

305 #define local_irq_restore(x) __restore_flags(x)

306 #define local_irq_disable() __cli()

307 #define local_irq_enable() __sti()

local_irq_save() local_irq_disable() cli
IF cli

IF 0 push
pop x local_irq_restore() local_irq_enable()

spin_lock() spinlock.h

==================== include/asm­i386/spinlock.h 78 91 ====================
78 static inline void spin_lock(spinlock_t *lock)

79 {

80 #if SPINLOCK_DEBUG

81 __label__ here;

82 here:

83 if (lock­>magic != SPINLOCK_MAGIC) {

84 printk("eip: %p\n", &&here);

85 BUG();

86 }

87 #endif

88 __asm__ __volatile__(

89 spin_lock_string

90 :"=m" (lock­>lock) : : "memory");

91 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

414

lock spinlock_t include/asm­i386/spinlock.h

==================== include/asm­i386/spinlock.h 17 26 ====================
17 /*

18 * Your basic SMP spinlocks, allowing only a single CPU anywhere

19 */

20

21 typedef struct {

22 volatile unsigned int lock;

23 #if SPINLOCK_DEBUG

24 unsigned magic;

25 #endif

26 } spinlock_t;

gcc
spin_lock_string

==================== include/asm­i386/spinlock.h 50 60 ====================
50 #define spin_lock_string \

51 "\n1:\t" \

52 "lock ; decb %0\n\t" \

53 "js 2f\n" \

54 ".section .text.lock,\"ax\"\n" \

55 "2:\t" \

56 "cmpb $0,%0\n\t" \

57 "rep;nop\n\t" \

58 "jle 2b\n\t" \

59 "jmp 1b\n" \

60 ".previous"

%0 lock­>lock decb lock­>lock 1 b
8 “lock

1 0
1

“2 lock­>lock 0
lock­>lock 0

0 spin_lock spin
down()

CPU
bh

spin_unlock()

==================== include/asm­i386/spinlock.h 93 104 ====================
93 static inline void spin_unlock(spinlock_t *lock)

94 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

415

95 #if SPINLOCK_DEBUG

96 if (lock­>magic != SPINLOCK_MAGIC)

97 BUG();

98 if (!spin_is_locked(lock))

99 BUG();

100 #endif

101 __asm__ __volatile__(

102 spin_unlock_string

103 :"=m" (lock­>lock) : : "memory");

104 }

spin_unlock_string

==================== include/asm­i386/spinlock.h 62 66 ====================
62 /*

63 * This works. Despite all the confusion.

64 */

65 #define spin_unlock_string \

66 "movb $1,%0"

movb lock­>lock 1 “lock
movb decb — —

read_lock() write_lock() spinlock.h

==================== include/asm­i386/spinlock.h 135 165 ====================
135 /*

136 * On x86, we implement read­write locks as a 32­bit counter

137 * with the high bit (sign) being the "contended" bit.

138 *

139 * The inline assembly is non­obvious. Think about it.

140 *

141 * Changed to use the same technique as rw semaphores. See

142 * semaphore.h for details. ­ben

143 */

144 /* the spinlock helpers are in arch/i386/kernel/semaphore.c */

145

146 static inline void read_lock(rwlock_t *rw)

147 {

148 #if SPINLOCK_DEBUG

149 if (rw­>magic != RWLOCK_MAGIC)

150 BUG();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

416

151 #endif

152 __build_read_lock(rw, "__read_lock_failed");

153 }

154

155 static inline void write_lock(rwlock_t *rw)

156 {

157 #if SPINLOCK_DEBUG

158 if (rw­>magic != RWLOCK_MAGIC)

159 BUG();

160 #endif

161 __build_write_lock(rw, "__write_lock_failed");

162 }

163

164 #define read_unlock(rw) asm volatile("lock ; incl %0" :"=m" ((rw)­>lock) : : "memory")

165 #define write_unlock(rw) asm volatile("lock ; addl $" RW_LOCK_BIAS_STR ",%0":"=m" ((rw)­>lock) : :

"memory")

==================== include/asm­i386/rwlock.h 20 81 ====================
20 #define RW_LOCK_BIAS 0x01000000

21 #define RW_LOCK_BIAS_STR "0x01000000"

22

23 #define __build_read_lock_ptr(rw, helper) \

24 asm volatile(LOCK "subl $1,(%0)\n\t" \

25 "js 2f\n" \

26 "1:\n" \

27 ".section .text.lock,\"ax\"\n" \

28 "2:\tcall " helper "\n\t" \

29 "jmp 1b\n" \

30 ".previous" \

31 ::"a" (rw) : "memory")

32

33 #define __build_read_lock_const(rw, helper) \

34 asm volatile(LOCK "subl $1,%0\n\t" \

35 "js 2f\n" \

36 "1:\n" \

37 ".section .text.lock,\"ax\"\n" \

38 "2:\tpushl %%eax\n\t" \

39 "leal %0,%%eax\n\t" \

40 "call " helper "\n\t" \

41 "popl %%eax\n\t" \

42 "jmp 1b\n" \

43 ".previous" \

44 :"=m" (*(volatile int *)rw) : : "memory")

45

46 #define __build_read_lock(rw, helper) do { \

47 if (__builtin_constant_p(rw)) \

48 __build_read_lock_const(rw, helper); \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

417

49 else \

50 __build_read_lock_ptr(rw, helper); \

51 } while (0)

52

53 #define __build_write_lock_ptr(rw, helper) \

54 asm volatile(LOCK "subl $" RW_LOCK_BIAS_STR ",(%0)\n\t" \

55 "jnz 2f\n" \

56 "1:\n" \

57 ".section .text.lock,\"ax\"\n" \

58 "2:\tcall " helper "\n\t" \

59 "jmp 1b\n" \

60 ".previous" \

61 ::"a" (rw) : "memory")

62

63 #define __build_write_lock_const(rw, helper) \

64 asm volatile(LOCK "subl $" RW_LOCK_BIAS_STR ",(%0)\n\t" \

65 "jnz 2f\n" \

66 "1:\n" \

67 ".section .text.lock,\"ax\"\n" \

68 "2:\tpushl %%eax\n\t" \

69 "leal %0,%%eax\n\t" \

70 "call " helper "\n\t" \

71 "popl %%eax\n\t" \

72 "jmp 1b\n" \

73 ".previous" \

74 :"=m" (*(volatile int *)rw) : : "memory")

75

76 #define __build_write_lock(rw, helper) do { \

77 if (__builtin_constant_p(rw)) \

78 __build_write_lock_const(rw, helper); \

79 else \

80 __build_write_lock_ptr(rw, helper); \

81 } while (0)

__build_read_lock() __build_write_lock()
__read_lock_failed __write_lock_failed 152 161

==================== arch/i386/kernel/semaphore.c 426 453 ====================
426 #if defined(CONFIG_SMP)

427 asm(

428 "

429 .align 4

430 .globl __write_lock_failed

431 __write_lock_failed:

432 " LOCK "addl $" RW_LOCK_BIAS_STR ",(%eax)

433 1: cmpl $" RW_LOCK_BIAS_STR ",(%eax)

434 jne 1b

435

436 " LOCK "subl $" RW_LOCK_BIAS_STR ",(%eax)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

418

437 jnz __write_lock_failed

438 ret

439

440

441 .align 4

442 .globl __read_lock_failed

443 __read_lock_failed:

444 lock ; incl (%eax)

445 1: cmpl $1,(%eax)

446 js 1b

447

448 lock ; decl (%eax)

449 js __read_lock_failed

450 ret

451 "

452);

453 #endif

CPU A B
B A

down()

(1)
(2) A

B
Linux

Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

419

5

5.1

MSDOS
Linux

Unix

(1) Linux Ext2 MSDOS FAT16
Windows NT NTFS FAT32

(2)

(3)

Linux minix minix
64M 14

Unix Ext2
“Linux

Linux Ext2 Linux

”VFS Virtual Filesystem System
read() write() lseek()

“VFS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

420

Linux
DOS

Ext2
PC VFS

VFS file_operations
include/linux/fs.h

==================== include/linux/fs.h 768 790 ====================
768 /*

769 * NOTE:

770 * read, write, poll, fsync, readv, writev can be called

771 * without the big kernel lock held in all filesystems.

772 */

773 struct file_operations {

774 struct module *owner;

775 loff_t (*llseek) (struct file *, loff_t, int);

776 ssize_t (*read) (struct file *, char *, size_t, loff_t *);

777 ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

778 int (*readdir) (struct file *, void *, filldir_t);

779 unsigned int (*poll) (struct file *, struct poll_table_struct *);

780 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

781 int (*mmap) (struct file *, struct vm_area_struct *);

782 int (*open) (struct inode *, struct file *);

783 int (*flush) (struct file *);

784 int (*release) (struct inode *, struct file *);

785 int (*fsync) (struct file *, struct dentry *, int datasync);

786 int (*fasync) (int, struct file *, int);

787 int (*lock) (struct file *, int, struct file_lock *);

788 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);

789 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);

790 };

file_operations
read
file_operations NULL

open()
file file_operations f_op file

f_op file_operations

Linux VFS 5.1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

421

5.1 VFS

file task_struct
task_struct

include/linux/sched.h

==================== include/linux/sched.h 277 277 ====================
277 struct task_struct {

.

==================== include/linux/sched.h 375 378 ====================
375 /* filesystem information */

376 struct fs_struct *fs;

377 /* open file information */

378 struct files_struct *files;

.

==================== include/linux/sched.h 397 397 ====================
397 };

fs files fs_struct
files_struct fs_struct include/linux/fs_struct.h

==================== include/linux/fs_struct.h 5 11 ====================
5 struct fs_struct {

6 atomic_t count;

7 rwlock_t lock;

8 int umask;

9 struct dentry * root, * pwd, * altroot;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

422

10 struct vfsmount * rootmnt, * pwdmnt, * altrootmnt;

dentry root pwd altroot
dentry

pwd root dentry
altroot

“/”
Ext2 /dosc DOS

”

vfsmount fs_struct
Ext2

DOS
file files_struct file

”fid fid file
file f_op

file_operations file f_dentry dentry
dentry file file

dentry
file_operations

dentry inode
dentry inode d_inode

inode dentry inode
dentry inode

dentry
inode

VFS file_operations
dentry_operations

inode_operations

file_operations dentry_operations
include/linux/dcache.h

==================== include/linux/dcache.h 79 86 ====================
79 struct dentry_operations {

80 int (*d_revalidate)(struct dentry *, int);

81 int (*d_hash) (struct dentry *, struct qstr *);

82 int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

423

83 int (*d_delete)(struct dentry *);

84 void (*d_release)(struct dentry *);

85 void (*d_iput)(struct dentry *, struct inode *);

86 };

d_delete d_release ”

d_compare

8 255

VFS file_operations
dentry_operations inode_operations

5.2

5.2 Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

424

Linux inode u union
union inode

socket u socket inode Ext2 u
Ext2 ext2_inode_info union Linux

inode include/linux/fs.h

==================== include/linux/fs.h 433 460 ====================
433 union {

434 struct minix_inode_info minix_i;

435 struct ext2_inode_info ext2_i;

436 struct hpfs_inode_info hpfs_i;

437 struct ntfs_inode_info ntfs_i;

438 struct msdos_inode_info msdos_i;

439 struct umsdos_inode_info umsdos_i;

440 struct iso_inode_info isofs_i;

441 struct nfs_inode_info nfs_i;

442 struct sysv_inode_info sysv_i;

443 struct affs_inode_info affs_i;

444 struct ufs_inode_info ufs_i;

445 struct efs_inode_info efs_i;

446 struct romfs_inode_info romfs_i;

447 struct shmem_inode_info shmem_i;

448 struct coda_inode_info coda_i;

449 struct smb_inode_info smbfs_i;

450 struct hfs_inode_info hfs_i;

451 struct adfs_inode_info adfs_i;

452 struct qnx4_inode_info qnx4_i;

453 struct bfs_inode_info bfs_i;

454 struct udf_inode_info udf_i;

455 struct ncp_inode_info ncpfs_i;

456 struct proc_inode_info proc_i;

457 struct socket socket_i;

458 struct usbdev_inode_info usbdev_i;

459 void *generic_ip;

460 } u;

ext2 msdos
hpfs——IBM PC OS/2 OS/2

msdos
ntfs——Windows NT
umsdos—— msdos Ext2

DOS Linux
DOS

isofs—— CDROM
nfs——“ ”NFS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

425

sysv——Unix V S5FS
affs——BSD S5FS ”FFS

Amiga AmigaOS affs
ufs—— FFS BSD Unix SunOS

Solaris FreeBSD NetBSD OpenBSD Nextstep “Unix File System
ufs

efs——Silicon Graphics IRIX
romfs——“ EPROM PROM

msdos
30K nfs 57K romfs romfs

coda—— nfs
smbfs—— samba Win 95 Win NT Linux
hfs——Apple Macintosh
adfs——Acorn ARM RISC PC RISCOS

“Acorn Disk Filing System
qnx4——QNX QNXFS
bfs—— SCO Unix Ware V
udf——“Universal Disk File DVD
ncpfs——Novell NetWare
proc—— /proc
usbdev——“ ”USB

union Linux inode
union

Linux ext Xiafs
Ext2 ext 2 Linux “man mount”

“man fs inode u Ext2
file_operations

file_operations 6
Ext2

file_operations
Linux

union usbdev

inode union
proc socket FIFO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

426

inode union file_operations

5.3

5.3 Linux

5.1.1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

427

romfs EPROM RAMDISK

inode inode
inode

Ext2 dentry

5.1.2

5.1.3

inode dentry

CPU
“dev/null

“/dev”

FIFO Unix socket
“/proc

inode inode “i

inode include/linux/fs.h

inode include/linux/fs.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

428

==================== include/linux/fs.h 387 435 ====================
387 struct inode {

388 struct list_head i_hash;

389 struct list_head i_list;

390 struct list_head i_dentry;

391

392 struct list_head i_dirty_buffers;

393

394 unsigned long i_ino;

395 atomic_t i_count;

396 kdev_t i_dev;

397 umode_t i_mode;

398 nlink_t i_nlink;

399 uid_t i_uid;

400 gid_t i_gid;

401 kdev_t i_rdev;

402 loff_t i_size;

403 time_t i_atime;

404 time_t i_mtime;

405 time_t i_ctime;

406 unsigned long i_blksize;

407 unsigned long i_blocks;

408 unsigned long i_version;

409 struct semaphore i_sem;

410 struct semaphore i_zombie;

411 struct inode_operations *i_op;

412 struct file_operations *i_fop; /* former ­>i_op­>default_file_ops */

413 struct super_block *i_sb;

414 wait_queue_head_t i_wait;

415 struct file_lock *i_flock;

416 struct address_space *i_mapping;

417 struct address_space i_data;

418 struct dquot *i_dquot[MAXQUOTAS];

419 struct pipe_inode_info *i_pipe;

420 struct block_device *i_bdev;

421

422 unsigned long i_dnotify_mask; /* Directory notify events */

423 struct dnotify_struct *i_dnotify; /* for directory notifications */

424

425 unsigned long i_state;

426

427 unsigned int i_flags;

428 unsigned char i_sock;

429

430 atomic_t i_writecount;

431 unsigned int i_attr_flags;

432 __u32 i_generation;

433 union {

434 struct minix_inode_info minix_i;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

429

435 struct ext2_inode_info ext2_i;

.

==================== include/linux/fs.h 460 461 ====================
460 } u;

461 };

inode “i ”i_ino i
i inode

uid
gid inode i_uid i_gid

inode i_dev i_rdev
i_dev
i_rdev

IDE SCSI

inode inode i_atime
i_mtime i_ctime

i_size
inode union

”

link
inode inode i_link

i_dentry dentry
dentry

inode i_count
inode inode

list_head
inode union inode

5.3 VFS VFS
inode dentry

Ext2

inode
Linux Ext2 ext2_inode

include/linux/ext2_fs.h inode

==================== include/linux/ext2_fs.h 214 269 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

430

214 /*

215 * Structure of an inode on the disk

216 */

217 struct ext2_inode {

218 __u16 i_mode; /* File mode */

219 __u16 i_uid; /* Low 16 bits of Owner Uid */

220 __u32 i_size; /* Size in bytes */

221 __u32 i_atime; /* Access time */

222 __u32 i_ctime; /* Creation time */

223 __u32 i_mtime; /* Modification time */

224 __u32 i_dtime; /* Deletion Time */

225 __u16 i_gid; /* Low 16 bits of Group Id */

226 __u16 i_links_count; /* Links count */

227 __u32 i_blocks; /* Blocks count */

228 __u32 i_flags; /* File flags */

229 union {

230 struct {

231 __u32 l_i_reserved1;

232 } linux1;

233 struct {

234 __u32 h_i_translator;

235 } hurd1;

236 struct {

237 __u32 m_i_reserved1;

238 } masix1;

239 } osd1; /* OS dependent 1 */

240 __u32 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */

241 __u32 i_generation; /* File version (for NFS) */

242 __u32 i_file_acl; /* File ACL */

243 __u32 i_dir_acl; /* Directory ACL */

244 __u32 i_faddr; /* Fragment address */

245 union {

246 struct {

247 __u8 l_i_frag; /* Fragment number */

248 __u8 l_i_fsize; /* Fragment size */

249 __u16 i_pad1;

250 __u16 l_i_uid_high; /* these 2 fields */

251 __u16 l_i_gid_high; /* were reserved2[0] */

252 __u32 l_i_reserved2;

253 } linux2;

254 struct {

255 __u8 h_i_frag; /* Fragment number */

256 __u8 h_i_fsize; /* Fragment size */

257 __u16 h_i_mode_high;

258 __u16 h_i_uid_high;

259 __u16 h_i_gid_high;

260 __u32 h_i_author;

261 } hurd2;

262 struct {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

431

263 __u8 m_i_frag; /* Fragment number */

264 __u8 m_i_fsize; /* Fragment size */

265 __u16 m_pad1;

266 __u32 m_i_reserved2[2];

267 } masix2;

268 } osd2; /* OS dependent 2 */

269 };

Linux FSF Ext2
union osd1 osd2

inode ext2_inode

inode
“/

Ext2 ext2_dir_entry
ext2_dir_entry_2 include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 474 474 ====================
474 #define EXT2_NAME_LEN 255

.

==================== include/linux/ext2_fs.h 483 495 ====================
483 /*

484 * The new version of the directory entry. Since EXT2 structures are

485 * stored in intel byte order, and the name_len field could never be

486 * bigger than 255 chars, it's safe to reclaim the extra byte for the

487 * file_type field.

488 */

489 struct ext2_dir_entry_2 {

490 __u32 inode; /* Inode number */

491 __u16 rec_len; /* Directory entry length */

492 __u8 name_len; /* Name length */

493 __u8 file_type;

494 char name[EXT2_NAME_LEN]; /* File name */

495 };

255 ext2_dir_entry name_len
ext2_dir_entry_2 8

file_type

==================== include/linux/ext2_fs.h 497 510 ====================
497 /*

498 * Ext2 directory file types. Only the low 3 bits are used. The

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

432

499 * other bits are reserved for now.

500 */

501 #define EXT2_FT_UNKNOWN 0

502 #define EXT2_FT_REG_FILE 1

503 #define EXT2_FT_DIR 2

504 #define EXT2_FT_CHRDEV 3

505 #define EXT2_FT_BLKDEV 4

506 #define EXT2_FT_FIFO 5

507 #define EXT2_FT_SOCK 6

508 #define EXT2_FT_SYMLINK 7

509

510 #define EXT2_FT_MAX 8

EXT2_FT_CHRDEV EXT2_FT_BLKDEV
“/proc EXT2_FT_REG_FILE

ext2_dir_entry_2 rec_len
255

name
ext2_inode inode

ext2_dir_entry_2 dentry dentry
include/linux/dcache.h

==================== include/linux/dcache.h 57 77 ====================
57 #define DNAME_INLINE_LEN 16

58

59 struct dentry {

60 atomic_t d_count;

61 unsigned int d_flags;

62 struct inode * d_inode; /* Where the name belongs to ­ NULL is negative */

63 struct dentry * d_parent; /* parent directory */

64 struct list_head d_vfsmnt;

65 struct list_head d_hash; /* lookup hash list */

66 struct list_head d_lru; /* d_count = 0 LRU list */

67 struct list_head d_child; /* child of parent list */

68 struct list_head d_subdirs; /* our children */

69 struct list_head d_alias; /* inode alias list */

70 struct qstr d_name;

71 unsigned long d_time; /* used by d_revalidate */

72 struct dentry_operations *d_op;

73 struct super_block * d_sb; /* The root of the dentry tree */

74 unsigned long d_reftime; /* last time referenced */

75 void * d_fsdata; /* fs­specific data */

76 unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */

77 };

dentry

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

433

ext2_dir_entry_2
dentry ext2_dir_entry_2 inode ext2_inode

dentry inode VFS ext2_dir_entry_2
ext2_inode Ext2

i

“/

super block

“/
“/

super_block
“/

“/

“/

pwd pwd
fs_struct

pwd dentry task_struct
fs fs_struct chdir()

login “Home Directory pwd
dentry “../

dentry d_parent dentry
fs_struct root “/ dentry

“/ Unix
chroot()

fork()
chdir("/")

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

434

FTP FTP FTP ”daemon
FTP “cd / “get

/etc/passwd
chroot() FTP

“get /etc/passwd passwd

fs_struct altroot
chdir("/") altroot 0

”

Ext2
(1) ext2_dir_entry_2
(2) ext2_inode
(3)
(4)

Ext2 4 5.4

5.4

super_block inode
super_block inode union

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

435

VFS
file f_op dentry inode

file
(1) file_operations file f_op file_operations

read() wirte() file_operations
Ext2

(2) dentry_operations dentry d_op
dentry_operations hash() compare() d_op

0 Linux Ext2

(3) inode_operations inode i_op
inode_operations mkdir() mknod() lockup() permission()

file_operations
(4) super_operations super_block s_op

super_operations read_inode() write_inode() delete_inode()

(5)

file dentry inode super_block
VFS

inode i_fop file_operations file
f_op inode inode

file

dentry inode

5.2

path_init() path_walk()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

436

dentry inode namei()
lnamei() namei() lnamei()

__user_walk() path_init() path_walk()
fs/namei.c

__user_walk()

==================== fs/namei.c 778 803 ====================
778 /*

779 * namei()

780 *

781 * is used by most simple commands to get the inode of a specified name.

782 * Open, link etc use their own routines, but this is enough for things

783 * like 'chmod' etc.

784 *

785 * namei exists in two versions: namei/lnamei. The only difference is

786 * that namei follows links, while lnamei does not.

787 * SMP­safe

788 */

789 int __user_walk(const char *name, unsigned flags, struct nameidata *nd)

790 {

791 char *tmp;

792 int err;

793

794 tmp = getname(name);

795 err = PTR_ERR(tmp);

796 if (!IS_ERR(tmp)) {

797 err = 0;

798 if (path_init(tmp, flags, nd))

799 err = path_walk(tmp, nd);

800 putname(tmp);

801 }

802 return err;

803 }

name flags
include/linux/fs.h

==================== include/linux/fs.h 1128 1140 ====================
1128 /*

1129 * The bitmask for a lookup event:

1130 * ­ follow links at the end

1131 * ­ require a directory

1132 * ­ ending slashes ok even for nonexistent files

1133 * ­ internal "there are more path compnents" flag

1134 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

437

1135 #define LOOKUP_FOLLOW (1)

1136 #define LOOKUP_DIRECTORY (2)

1137 #define LOOKUP_CONTINUE (4)

1138 #define LOOKUP_POSITIVE (8)

1139 #define LOOKUP_PARENT (16)

1140 #define LOOKUP_NOALT (32)

LOOKUP_DIRECTORY
LOOKUP_FOLLOW

link() symlink()

fs/namei.c

==================== fs/namei.c 87 94 ====================
87 /* [Feb­Apr 2000 AV] Complete rewrite. Rules for symlinks:

88 * inside the path ­ always follow.

89 * in the last component in creation/removal/renaming ­ never follow.

90 * if LOOKUP_FOLLOW passed ­ follow.

91 * if the pathname has trailing slashes ­ follow.

92 * otherwise ­ don't follow.

93 * (applied in that order).

94 *

==================== fs/namei.c 100 100 ====================
100 */

follow

nd nameidata include/linux/fs.h

==================== include/linux/fs.h 613 619 ====================
613 struct nameidata {

614 struct dentry *dentry;

615 struct vfsmount *mnt;

616 struct qstr last;

617 unsigned int flags;

618 int last_type;

619 };

dentry
dentry dentry inode mnt vfsmount

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

438

__user_walk() getname()
4K

putname() PTR_ERR IS_ERR inline
include/linux/fs.h

==================== include/linux/fs.h 1105 1126 ====================
1105 /*

1106 * Kernel pointers have redundant information, so we can use a

1107 * scheme where we can return either an error code or a dentry

1108 * pointer with the same return value.

1109 *

1110 * This should be a per­architecture thing, to allow different

1111 * error and pointer decisions.

1112 */

1113 static inline void *ERR_PTR(long error)

1114 {

1115 return (void *) error;

1116 }

1117

1118 static inline long PTR_ERR(const void *ptr)

1119 {

1120 return (long) ptr;

1121 }

1122

1123 static inline long IS_ERR(const void *ptr)

1124 {

1125 return (unsigned long)ptr > (unsigned long)­1000L;

1126 }

path_init() path_walk() fs/namei.c
path_init()

==================== fs/namei.c 690 702 ====================
690 /* SMP­safe */

691 int path_init(const char *name, unsigned int flags, struct nameidata *nd)

692 {

693 nd­>last_type = LAST_ROOT; /* if there are only slashes... */

694 nd­>flags = flags;

695 if (*name=='/')

696 return walk_init_root(name,nd);

697 read_lock(¤t­>fs­>lock);

698 nd­>mnt = mntget(current­>fs­>pwdmnt);

699 nd­>dentry = dget(current­>fs­>pwd);

700 read_unlock(¤t­>fs­>lock);

701 return 1;

702 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

439

nameidata last_type LAST_ROOT
include/linux/fs.h

==================== include/linux/fs.h 1141 1144 ====================
1141 /*

1142 * Type of the last component on LOOKUP_PARENT

1143 */

1144 enum {LAST_NORM, LAST_ROOT, LAST_DOT, LAST_DOTDOT, LAST_BIND};

LAST_NORM “. LAST_DOT
“/
“/ task_struct

fs fs_struct fs_struct pwd dentry
nameidata dentry

dentry
dentry dget()

fs_sturct pwdmnt vfsmount
vfsmount

fs_sturct pwdmnt
vfsmount nameidata

mnt vfsmount nameidata

“/ walk_init_root()
fs/namei.c

==================== fs/namei.c 671 688 ====================
[path_init()>walk_init_root()]
671 /* SMP­safe */

672 static inline int

673 walk_init_root(const char *name, struct nameidata *nd)

674 {

675 read_lock(¤t­>fs­>lock);

676 if (current­>fs­>altroot && !(nd­>flags & LOOKUP_NOALT)) {

677 nd­>mnt = mntget(current­>fs­>altrootmnt);

678 nd­>dentry = dget(current­>fs­>altroot);

679 read_unlock(¤t­>fs­>lock);

680 if (__emul_lookup_dentry(name,nd))

681 return 0;

682 read_lock(¤t­>fs­>lock);

683 }

684 nd­>mnt = mntget(current­>fs­>rootmnt);

685 nd­>dentry = dget(current­>fs­>root);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

440

686 read_unlock(¤t­>fs­>lock);

687 return 1;

688 }

chroot() if
current­>fs­>altroot 0 nameidata dentry

vfsmount path_init()
flags LOOKUP_NOALT 1 0

__emul_lookup_dentry() nameidata
Unix Solaris

“/usr “/usr/altroot/home/userl/…” chroot()
fs_struct altroot altrootmnt

i386
linux if current­>fs­>altroot NULL

path_init() nameidata dentry
path_walk() fs/namei.c

==================== fs/namei.c 414 437 ====================
414 /*

415 * Name resolution.

416 *

417 * This is the basic name resolution function, turning a pathname

418 * into the final dentry.

419 *

420 * We expect 'base' to be positive and a directory.

421 */

422 int path_walk(const char * name, struct nameidata *nd)

423 {

424 struct dentry *dentry;

425 struct inode *inode;

426 int err;

427 unsigned int lookup_flags = nd­>flags;

428

429 while (*name=='/')

430 name++;

431 if (!*name)

432 goto return_base;

433

434 inode = nd­>dentry­>d_inode;

435 if (current­>link_count)

436 lookup_flags = LOOKUP_FOLLOW;

437

“/ nameidata dentry
“/ “/

“/

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

441

task_struct link_count

path_walk() path_walk()
0 path_walk()

LOOKUP_FOLLOW 1 path_walk()
inode

for fs/namei.c

==================== fs/namei.c 438 467 ====================
[path_walk()]
438 /* At this point we know we have a real path component. */

439 for(;;) {

440 unsigned long hash;

441 struct qstr this;

442 unsigned int c;

443

444 err = permission(inode, MAY_EXEC);

445 dentry = ERR_PTR(err);

446 if (err)

447 break;

448

449 this.name = name;

450 c = *(const unsigned char *)name;

451

452 hash = init_name_hash();

453 do {

454 name++;

455 hash = partial_name_hash(c, hash);

456 c = *(const unsigned char *)name;

457 } while (c && (c != '/'));

458 this.len = name ­ (const char *) this.name;

459 this.hash = end_name_hash(hash);

460

461 /* remove trailing slashes? */

462 if (!c)

463 goto last_component;

464 while (*++name == '/');

465 if (!*name)

466 goto last_with_slashes;

467

permission()

MAY_EXEC permission
break

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

442

this qstr
include/linux/dcache.h

==================== include/linux/dcache.h 20 28 ====================
20 /*

21 * "quick string" ­­ eases parameter passing, but more importantly

22 * saves "metadata" about the string (ie length and the hash).

23 */

24 struct qstr {

25 const unsigned char * name;

26 unsigned int len;

27 unsigned int hash;

28 };

453 457

“/
(1) “\0 last_component
(2) “/

“/
shell “ls /usr/include/

last_with_slashes
“/ “/

last_component “.
“.

“..

==================== fs/namei.c 468 484 ====================
[path_walk()]
468 /*

469 * "." and ".." are special ­ ".." especially so because it has

470 * to be able to know about the current root directory and

471 * parent relationships.

472 */

473 if (this.name[0] == '.') switch (this.len) {

474 default:

475 break;

476 case 2:

477 if (this.name[1] != '.')

478 break;

479 follow_dotdot(nd);

480 inode = nd­>dentry­>d_inode;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

443

481 /* fallthrough */

482 case 1:

483 continue;

484 }

“. 1 2 2
“. 475 478 break

“.. nd­>dentry
follow_dotdot()

==================== fs/namei.c 380 413 ====================
[path_walk()>follow_dotdot()]
380 static inline void follow_dotdot(struct nameidata *nd)

381 {

382 while(1) {

383 struct vfsmount *parent;

384 struct dentry *dentry;

385 read_lock(¤t­>fs­>lock);

386 if (nd­>dentry == current­>fs­>root &&

387 nd­>mnt == current­>fs­>rootmnt) {

388 read_unlock(¤t­>fs­>lock);

389 break;

390 }

391 read_unlock(¤t­>fs­>lock);

392 spin_lock(&dcache_lock);

393 if (nd­>dentry != nd­>mnt­>mnt_root) {

394 dentry = dget(nd­>dentry­>d_parent);

395 spin_unlock(&dcache_lock);

396 dput(nd­>dentry);

397 nd­>dentry = dentry;

398 break;

399 }

400 parent=nd­>mnt­>mnt_parent;

401 if (parent == nd­>mnt) {

402 spin_unlock(&dcache_lock);

403 break;

404 }

405 mntget(parent);

406 dentry=dget(nd­>mnt­>mnt_mountpoint);

407 spin_unlock(&dcache_lock);

408 dput(nd­>dentry);

409 nd­>dentry = dentry;

410 mntput(nd­>mnt);

411 nd­>mnt = parent;

412 }

413 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

444

nd­>dentry
nd­>dentry

nd­>dentry
dentry dentry dentry
d_parent

nd­>dentry

vfsmount
vfsmount mnt

mnt_mountpoint dentry

vfsmount 399 break
while(1) nameidata dentry mnt

“cd .. “cd usr/./../..
nameidata

vfsmount dentry while(1)
nameidata dentry

path_walk() “case 2 break “case 1
continue for(;;)

“.

==================== fs/namei.c 485 535 ====================
[path_walk()]
485 /*

486 * See if the low­level filesystem might want

487 * to use its own hash..

488 */

489 if (nd­>dentry­>d_op && nd­>dentry­>d_op­>d_hash) {

490 err = nd­>dentry­>d_op­>d_hash(nd­>dentry, &this);

491 if (err < 0)

492 break;

493 }

494 /* This does the actual lookups.. */

495 dentry = cached_lookup(nd­>dentry, &this, LOOKUP_CONTINUE);

496 if (!dentry) {

497 dentry = real_lookup(nd­>dentry, &this, LOOKUP_CONTINUE);

498 err = PTR_ERR(dentry);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

445

499 if (IS_ERR(dentry))

500 break;

501 }

502 /* Check mountpoints.. */

503 while (d_mountpoint(dentry) && __follow_down(&nd­>mnt, &dentry))

504 ;

505

506 err = ­ENOENT;

507 inode = dentry­>d_inode;

508 if (!inode)

509 goto out_dput;

510 err = ­ENOTDIR;

511 if (!inode­>i_op)

512 goto out_dput;

513

514 if (inode­>i_op­>follow_link) {

515 err = do_follow_link(dentry, nd);

516 dput(dentry);

517 if (err)

518 goto return_err;

519 err = ­ENOENT;

520 inode = nd­>dentry­>d_inode;

521 if (!inode)

522 break;

523 err = ­ENOTDIR;

524 if (!inode­>i_op)

525 break;

526 } else {

527 dput(nd­>dentry);

528 nd­>dentry = dentry;

529 }

530 err = ­ENOTDIR;

531 if (!inode­>i_op­>lookup)

532 break;

533 continue;

534 /* here ends the main loop */

535

dentry_operations d_hash

cached_lookup() real_lookup() cache_lookup()
dentry dentry_hashtable list_head

dentry
path_walk()

dentry
dentry real_lookup()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

446

dentry

dentry_unused 0 dentry
list_head LRU dentry

dentry
dentry_unused

dentry
dentry dput()

0
dentry 6 list_head d_vfsmnt d_hash d_lru d_child d_subdirs d_alias

list_head
d_vfsmnt dentry dentry d_hash

dentry_hashtable 0 d_lru LRU dentry_unused
dentry d_child d_subdirs

d_parent dentry dentry d_subdirs

dentry inode
dentry d_inode

inode inode dentry
link

inode i_dentry dentry
d_alias inode i_dentry dentry d_sb

super_block d_op
dentry_operations dentry

• dentry d_hash dentry_hashtable
• 0 dentry d_lru LRU dentry_unused

• dentry d_inode inode dentry
inode

• inode dentry d_alias inode
i_dentry

• dentry d_parent dentry d_child
dentry d_subdirs

• dentry d_sb super_block
• dentry d_op dentry_operations
• dentry d_vfsmnt

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

447

cached_lookup() fs/namei.c

==================== fs/namei.c 243 258 ====================
[path_walk()>cached_lookup()]
243 /*

244 * Internal lookup() using the new generic dcache.

245 * SMP­safe

246 */

247 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, int flags)

248 {

249 struct dentry * dentry = d_lookup(parent, name);

250

251 if (dentry && dentry­>d_op && dentry­>d_op­>d_revalidate) {

252 if (!dentry­>d_op­>d_revalidate(dentry, flags) && !d_invalidate(dentry)) {

253 dput(dentry);

254 dentry = NULL;

255 }

256 }

257 return dentry;

258 }

d_lookup() fs/dcache.c

==================== fs/dcache.c 703 749 ====================
[path_walk()>cached_lookup()>d_lookup()]
703 /**

704 * d_lookup ­ search for a dentry

705 * @parent: parent dentry

706 * @name: qstr of name we wish to find

707 *

708 * Searches the children of the parent dentry for the name in question. If

709 * the dentry is found its reference count is incremented and the dentry

710 * is returned. The caller must use d_put to free the entry when it has

711 * finished using it. %NULL is returned on failure.

712 */

713

714 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)

715 {

716 unsigned int len = name­>len;

717 unsigned int hash = name­>hash;

718 const unsigned char *str = name­>name;

719 struct list_head *head = d_hash(parent,hash);

720 struct list_head *tmp;

721

722 spin_lock(&dcache_lock);

723 tmp = head­>next;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

448

724 for (;;) {

725 struct dentry * dentry = list_entry(tmp, struct dentry, d_hash);

726 if (tmp == head)

727 break;

728 tmp = tmp­>next;

729 if (dentry­>d_name.hash != hash)

730 continue;

731 if (dentry­>d_parent != parent)

732 continue;

733 if (parent­>d_op && parent­>d_op­>d_compare) {

734 if (parent­>d_op­>d_compare(parent, &dentry­>d_name, name))

735 continue;

736 } else {

737 if (dentry­>d_name.len != len)

738 continue;

739 if (memcmp(dentry­>d_name.name, str, len))

740 continue;

741 }

742 __dget_locked(dentry);

743 dentry­>d_flags |= DCACHE_REFERENCED;

744 spin_unlock(&dcache_lock);

745 return dentry;

746 }

747 spin_unlock(&dcache_lock);

748 return NULL;

749 }

parent dentry name path_walk qstr

list_head dentry_hashtable 719
d_hash()

==================== fs/dcache.c 696 701 ====================
[path_walk()>cached_1ookup()>d_lookup()>d_hash()]
696 static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash)

697 {

698 hash += (unsigned long) parent / L1_CACHE_BYTES;

699 hash = hash ^ (hash >> D_HASHBITS) ^ (hash >> D_HASHBITS*2);

700 return dentry_hashtable + (hash & D_HASHMASK);

701 }

dentry

/home “project1
“project1 dentry

“project1/src
“src

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

449

d_lookup() for
dentry_operations

memcmp()
cached_lookup() dentry_operations

dentry d_invalidate()
”NFS

dentry_operations
d_revalidate dentry

dentry_operations dentry d_op 0 Linux
Ext2 dentry_operations Linux

Ext2 dentry_operations
d_revalidate Ext2

dentry_operations
cache_lookup()

dentry NULL
real_lookup()
dentry path_walk() 497 real_lookup() fs/namei.c

==================== fs/namei.c 260 310 ====================
[path_walk()>real_lookup()]
260 /*

261 * This is called when everything else fails, and we actually have

262 * to go to the low­level filesystem to find out what we should do..

263 *

264 * We get the directory semaphore, and after getting that we also

265 * make sure that nobody added the entry to the dcache in the meantime..

266 * SMP­safe

267 */

268 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, int flags)

269 {

270 struct dentry * result;

271 struct inode *dir = parent­>d_inode;

272

273 down(&dir­>i_sem);

274 /*

275 * First re­do the cached lookup just in case it was created

276 * while we waited for the directory semaphore..

277 *

278 * FIXME! This could use version numbering or similar to

279 * avoid unnecessary cache lookups.

280 */

281 result = d_lookup(parent, name);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

450

282 if (!result) {

283 struct dentry * dentry = d_alloc(parent, name);

284 result = ERR_PTR(­ENOMEM);

285 if (dentry) {

286 lock_kernel();

287 result = dir­>i_op­>lookup(dir, dentry);

288 unlock_kernel();

289 if (result)

290 dput(dentry);

291 else

292 result = dentry;

293 }

294 up(&dir­>i_sem);

295 return result;

296 }

297

298 /*

299 * Uhhuh! Nasty case: the cache was re­populated while

300 * we waited on the semaphore. Need to revalidate.

301 */

302 up(&dir­>i_sem);

303 if (result­>d_op && result­>d_op­>d_revalidate) {

304 if (!result­>d_op­>d_revalidate(result, flags) && !d_invalidate(result)) {

305 dput(result);

306 result = ERR_PTR(­ENOENT);

307 }

308 }

309 return result;

310 }

dentry
down()
dentry d_lookup()

dentry

cached_lookup()
dentry

dentry 283 d_alloc()
fs/dcache.c

==================== fs/dcache.c 589 646 ====================
[path_walk()>real_lookup()>d_alloc()]
589 /**

590 * d_alloc ­ allocate a dcache entry

591 * @parent: parent of entry to allocate

592 * @name: qstr of the name

593 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

451

594 * Allocates a dentry. It returns %NULL if there is insufficient memory

595 * available. On a success the dentry is returned. The name passed in is

596 * copied and the copy passed in may be reused after this call.

597 */

598

599 struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)

600 {

601 char * str;

602 struct dentry *dentry;

603

604 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);

605 if (!dentry)

606 return NULL;

607

608 if (name­>len > DNAME_INLINE_LEN­1) {

609 str = kmalloc(NAME_ALLOC_LEN(name­>len), GFP_KERNEL);

610 if (!str) {

611 kmem_cache_free(dentry_cache, dentry);

612 return NULL;

613 }

614 } else

615 str = dentry­>d_iname;

616

617 memcpy(str, name­>name, name­>len);

618 str[name­>len] = 0;

619

620 atomic_set(&dentry­>d_count, 1);

621 dentry­>d_flags = 0;

622 dentry­>d_inode = NULL;

623 dentry­>d_parent = NULL;

624 dentry­>d_sb = NULL;

625 dentry­>d_name.name = str;

626 dentry­>d_name.len = name­>len;

627 dentry­>d_name.hash = name­>hash;

628 dentry­>d_op = NULL;

629 dentry­>d_fsdata = NULL;

630 INIT_LIST_HEAD(&dentry­>d_vfsmnt);

631 INIT_LIST_HEAD(&dentry­>d_hash);

632 INIT_LIST_HEAD(&dentry­>d_lru);

633 INIT_LIST_HEAD(&dentry­>d_subdirs);

634 INIT_LIST_HEAD(&dentry­>d_alias);

635 if (parent) {

636 dentry­>d_parent = dget(parent);

637 dentry­>d_sb = parent­>d_sb;

638 spin_lock(&dcache_lock);

639 list_add(&dentry­>d_child, &parent­>d_subdirs);

640 spin_unlock(&dcache_lock);

641 } else

642 INIT_LIST_HEAD(&dentry­>d_child);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

452

643

644 dentry_stat.nr_dentry++;

645 return dentry;

646 }

dentry kmem_alloc() slab
dentry d_iname

dentry d_name.name dentry
d_sb dentry

“/ dget() dentry
dentry d_subdirs d_subdirs

dentry
real_lookup()

dput() dentry
real_lookup() 295 return dentry

inode i_op
inode_operations inode inode inode_operation

Ext2 ext2_dir_inode_operations
fs/ext2/namei.c

==================== fs/ext2/namei.c 811 824 ====================
811 /*

812 * directories can handle most operations...

813 */

814 struct inode_operations ext2_dir_inode_operations = {

815 create: ext2_create,

816 lookup: ext2_lookup,

817 link: ext2_link,

818 unlink: ext2_unlink,

819 symlink: ext2_symlink,

820 mkdir: ext2_mkdir,

821 rmdir: ext2_rmdir,

822 mknod: ext2_mknod,

823 rename: ext2_rename,

824 };

ext2_lookup() fs/ext2/namei.c

==================== fs/ext2/namei.c 163 184 ====================
[path_walk()>real_lookup()>ext2_lookup()]
163 static struct dentry *ext2_lookup(struct inode * dir, struct dentry *dentry)

164 {

165 struct inode * inode;

166 struct ext2_dir_entry_2 * de;

167 struct buffer_head * bh;

168

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

453

169 if (dentry­>d_name.len > EXT2_NAME_LEN)

170 return ERR_PTR(­ENAMETOOLONG);

171

172 bh = ext2_find_entry (dir, dentry­>d_name.name, dentry­>d_name.len, &de);

173 inode = NULL;

174 if (bh) {

175 unsigned long ino = le32_to_cpu(de­>inode);

176 brelse (bh);

177 inode = iget(dir­>i_sb, ino);

178

179 if (!inode)

180 return ERR_PTR(­EACCES);

181 }

182 d_add(dentry, inode);

183 return NULL;

184 }

ext2_find_entry() iget()
inode d_add dentry

ext2_find_entry() fs/ext2/namei.c

==================== fs/ext2/namei.c 52 161 ====================
[path_walk()>real_lookup()>ext2_lookup()>ext2_find_entry()]
52 /*

53 * ext2_find_entry()

54 *

55 * finds an entry in the specified directory with the wanted name. It

56 * returns the cache buffer in which the entry was found, and the entry

57 * itself (as a parameter ­ res_dir). It does NOT read the inode of the

58 * entry ­ you'll have to do that yourself if you want to.

59 */

60 static struct buffer_head * ext2_find_entry (struct inode * dir,

61 const char * const name, int namelen,

62 struct ext2_dir_entry_2 ** res_dir)

63 {

64 struct super_block * sb;

65 struct buffer_head * bh_use[NAMEI_RA_SIZE];

66 struct buffer_head * bh_read[NAMEI_RA_SIZE];

67 unsigned long offset;

68 int block, toread, i, err;

69

70 *res_dir = NULL;

71 sb = dir­>i_sb;

72

73 if (namelen > EXT2_NAME_LEN)

74 return NULL;

75

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

454

76 memset (bh_use, 0, sizeof (bh_use));

77 toread = 0;

78 for (block = 0; block < NAMEI_RA_SIZE; ++block) {

79 struct buffer_head * bh;

80

81 if ((block << EXT2_BLOCK_SIZE_BITS (sb)) >= dir­>i_size)

82 break;

83 bh = ext2_getblk (dir, block, 0, &err);

84 bh_use[block] = bh;

85 if (bh && !buffer_uptodate(bh))

86 bh_read[toread++] = bh;

87 }

88

89 for (block = 0, offset = 0; offset < dir­>i_size; block++) {

90 struct buffer_head * bh;

91 struct ext2_dir_entry_2 * de;

92 char * dlimit;

93

94 if ((block % NAMEI_RA_BLOCKS) == 0 && toread) {

95 ll_rw_block (READ, toread, bh_read);

96 toread = 0;

97 }

98 bh = bh_use[block % NAMEI_RA_SIZE];

99 if (!bh) {

100 #if 0

101 ext2_error (sb, "ext2_find_entry",

102 "directory #%lu contains a hole at offset %lu",

103 dir­>i_ino, offset);

104 #endif

105 offset += sb­>s_blocksize;

106 continue;

107 }

108 wait_on_buffer (bh);

109 if (!buffer_uptodate(bh)) {

110 /*

111 * read error: all bets are off

112 */

113 break;

114 }

115

116 de = (struct ext2_dir_entry_2 *) bh­>b_data;

117 dlimit = bh­>b_data + sb­>s_blocksize;

118 while ((char *) de < dlimit) {

119 /* this code is executed quadratically often */

120 /* do minimal checking `by hand' */

121 int de_len;

122

123 if ((char *) de + namelen <= dlimit &&

124 ext2_match (namelen, name, de)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

455

125 /* found a match ­

126 just to be sure, do a full check */

127 if (!ext2_check_dir_entry("ext2_find_entry",

128 dir, de, bh, offset))

129 goto failure;

130 for (i = 0; i < NAMEI_RA_SIZE; ++i) {

131 if (bh_use[i] != bh)

132 brelse (bh_use[i]);

133 }

134 *res_dir = de;

135 return bh;

136 }

137 /* prevent looping on a bad block */

138 de_len = le16_to_cpu(de­>rec_len);

139 if (de_len <= 0)

140 goto failure;

141 offset += de_len;

142 de = (struct ext2_dir_entry_2 *)

143 ((char *) de + de_len);

144 }

145

146 brelse (bh);

147 if (((block + NAMEI_RA_SIZE) << EXT2_BLOCK_SIZE_BITS (sb)) >=

148 dir­>i_size)

149 bh = NULL;

150 else

151 bh = ext2_getblk (dir, block + NAMEI_RA_SIZE, 0, &err);

152 bh_use[block % NAMEI_RA_SIZE] = bh;

153 if (bh && !buffer_uptodate(bh))

154 bh_read[toread++] = bh;

155 }

156

157 failure:

158 for (i = 0; i < NAMEI_RA_SIZE; ++i)

159 brelse (bh_use[i]);

160 return NULL;

161 }

”

Ext2
ext2_dir_entry_2

255
ext2_dir_entry_2 ext2_dir_entry_2

255
rec_len

Ext2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

456

“big ending “little ending
i386 “little ending 16 0x1234 0x3412
32 32 16

“little ending CPU “big ending”
CPU Ext2 “little ending

8 le32_to_cpu() lel6_to_cpu()
“little ending CPU i386 Ext2

Read Ahead
CPU

CPU

fs/ext2/namei.c

==================== fs/ext2/namei.c 28 34 ====================
28 /*

29 * define how far ahead to read directories while searching them.

30 */

31 #define NAMEI_RA_CHUNKS 2

32 #define NAMEI_RA_BLOCKS 4

33 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)

34 #define NAMEI_RA_INDEX(c,b) (((c) * NAMEI_RA_BLOCKS) + (b))

8 CPU
8

buffer_head

bh_use[] bh_read[]
NAMEI_RA_SIZE 8 for ext2_getblk()

8 buffer_head
bh_use[] bh_use[] 8

78 dir inode dentry 8
85 bh_read[]

for

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

457

block 0 NAMEI_RA_BLOCKS
8 bh_read[] 8

CPU CPU
wait_on_buffer()

116 144 Ext2
116

130 133 res_dir

ext2_lookup() iget() inode
iget() inline indude/linux/fs.h

==================== include/linux/fs.h 1185 1188 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()]
1185 static inline struct inode *iget(struct super_block *sb, unsigned long ino)

1186 {

1187 return iget4(sb, ino, NULL, NULL);

1188 }

iget4() fs/inode.c

==================== fs/inode.c 774 794 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>iget4()]
774 struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque)

775 {

776 struct list_head * head = inode_hashtable + hash(sb,ino);

777 struct inode * inode;

778

779 spin_lock(&inode_lock);

780 inode = find_inode(sb, ino, head, find_actor, opaque);

781 if (inode) {

782 __iget(inode);

783 spin_unlock(&inode_lock);

784 wait_on_inode(inode);

785 return inode;

786 }

787 spin_unlock(&inode_lock);

788

789 /*

790 * get_new_inode() will do the right thing, re­trying the search

791 * in case it had to block at any point.

792 */

793 return get_new_inode(sb, ino, head, find_actor, opaque);

794 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

458

inode
dentry dentry_hashtable inode inode_hashtable

inode i_hash list_head
find_inode() iget()

super_block
inode get_new_inode()

inode fs/inode.c

==================== fs/inode.c 649 707 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()]
649 /*

650 * This is called without the inode lock held.. Be careful.

651 *

652 * We no longer cache the sb_flags in i_flags ­ see fs.h

653 * ­­ rmk@arm.uk.linux.org

654 */

655 static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head,

find_inode_t find_actor, void *opaque)

656 {

657 struct inode * inode;

658

659 inode = alloc_inode();

660 if (inode) {

661 struct inode * old;

662

663 spin_lock(&inode_lock);

664 /* We released the lock, so.. */

665 old = find_inode(sb, ino, head, find_actor, opaque);

666 if (!old) {

667 inodes_stat.nr_inodes++;

668 list_add(&inode­>i_list, &inode_in_use);

669 list_add(&inode­>i_hash, head);

670 inode­>i_sb = sb;

671 inode­>i_dev = sb­>s_dev;

672 inode­>i_ino = ino;

673 inode­>i_flags = 0;

674 atomic_set(&inode­>i_count, 1);

675 inode­>i_state = I_LOCK;

676 spin_unlock(&inode_lock);

677

678 clean_inode(inode);

679 sb­>s_op­>read_inode(inode);

680

681 /*

682 * This is special! We do not need the spinlock

683 * when clearing I_LOCK, because we're guaranteed

684 * that nobody else tries to do anything about the

mailto:rmk@arm.uk.linux.org
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

459

685 * state of the inode when it is locked, as we

686 * just created it (so there can be no old holders

687 * that haven't tested I_LOCK).

688 */

689 inode­>i_state &= ~I_LOCK;

690 wake_up(&inode­>i_wait);

691

692 return inode;

693 }

694

695 /*

696 * Uhhuh, somebody else created the same inode under

697 * us. Use the old inode instead of the one we just

698 * allocated.

699 */

700 __iget(old);

701 spin_unlock(&inode_lock);

702 destroy_inode(inode);

703 inode = old;

704 wait_on_inode(inode);

705 }

706 return inode;

707 }

dentry

inode
i_dev inode i_dev

super_block
ino super_block

inode find_inode()
sb ino

super_operations read_inode
super_block s_op Ext2

ext2_sops ext2_read_inode() fs/ext2/super.c

==================== fs/ext2/super.c 148 157 ====================
148 static struct super_operations ext2_sops = {

149 read_inode: ext2_read_inode,

150 write_inode: ext2_write_inode,

151 put_inode: ext2_put_inode,

152 delete_inode: ext2_delete_inode,

153 put_super: ext2_put_super,

154 write_super: ext2_write_super,

155 statfs: ext2_statfs,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

460

156 remount_fs: ext2_remount,

157 };

ext2_read_inode() fs/ext2/inode.c

==================== fs/ext2/inode.c 961 1057 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()>ext2_read_inode()]
961 void ext2_read_inode (struct inode * inode)

962 {

963 struct buffer_head * bh;

964 struct ext2_inode * raw_inode;

965 unsigned long block_group;

966 unsigned long group_desc;

967 unsigned long desc;

968 unsigned long block;

969 unsigned long offset;

970 struct ext2_group_desc * gdp;

971

972 if ((inode­>i_ino != EXT2_ROOT_INO && inode­>i_ino != EXT2_ACL_IDX_INO &&

973 inode­>i_ino != EXT2_ACL_DATA_INO &&

974 inode­>i_ino < EXT2_FIRST_INO(inode­>i_sb)) ||

975 inode­>i_ino > le32_to_cpu(inode­>i_sb­>u.ext2_sb.s_es­>s_inodes_count)) {

976 ext2_error (inode­>i_sb, "ext2_read_inode",

977 "bad inode number: %lu", inode­>i_ino);

978 goto bad_inode;

979 }

980 block_group = (inode­>i_ino ­ 1) / EXT2_INODES_PER_GROUP(inode­>i_sb);

981 if (block_group >= inode­>i_sb­>u.ext2_sb.s_groups_count) {

982 ext2_error (inode­>i_sb, "ext2_read_inode",

983 "group >= groups count");

984 goto bad_inode;

985 }

986 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode­>i_sb);

987 desc = block_group & (EXT2_DESC_PER_BLOCK(inode­>i_sb) ­ 1);

988 bh = inode­>i_sb­>u.ext2_sb.s_group_desc[group_desc];

989 if (!bh) {

990 ext2_error (inode­>i_sb, "ext2_read_inode",

991 "Descriptor not loaded");

992 goto bad_inode;

993 }

994

995 gdp = (struct ext2_group_desc *) bh­>b_data;

996 /*

997 * Figure out the offset within the block group inode table

998 */

999 offset = ((inode­>i_ino ­ 1) % EXT2_INODES_PER_GROUP(inode­>i_sb)) *

1000 EXT2_INODE_SIZE(inode­>i_sb);

1001 block = le32_to_cpu(gdp[desc].bg_inode_table) +

1002 (offset >> EXT2_BLOCK_SIZE_BITS(inode­>i_sb));

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

461

1003 if (!(bh = bread (inode­>i_dev, block, inode­>i_sb­>s_blocksize))) {

1004 ext2_error (inode­>i_sb, "ext2_read_inode",

1005 "unable to read inode block ­ "

1006 "inode=%lu, block=%lu", inode­>i_ino, block);

1007 goto bad_inode;

1008 }

1009 offset &= (EXT2_BLOCK_SIZE(inode­>i_sb) ­ 1);

1010 raw_inode = (struct ext2_inode *) (bh­>b_data + offset);

1011

1012 inode­>i_mode = le16_to_cpu(raw_inode­>i_mode);

1013 inode­>i_uid = (uid_t)le16_to_cpu(raw_inode­>i_uid_low);

1014 inode­>i_gid = (gid_t)le16_to_cpu(raw_inode­>i_gid_low);

1015 if(!(test_opt (inode­>i_sb, NO_UID32))) {

1016 inode­>i_uid |= le16_to_cpu(raw_inode­>i_uid_high) << 16;

1017 inode­>i_gid |= le16_to_cpu(raw_inode­>i_gid_high) << 16;

1018 }

1019 inode­>i_nlink = le16_to_cpu(raw_inode­>i_links_count);

1020 inode­>i_size = le32_to_cpu(raw_inode­>i_size);

1021 inode­>i_atime = le32_to_cpu(raw_inode­>i_atime);

1022 inode­>i_ctime = le32_to_cpu(raw_inode­>i_ctime);

1023 inode­>i_mtime = le32_to_cpu(raw_inode­>i_mtime);

1024 inode­>u.ext2_i.i_dtime = le32_to_cpu(raw_inode­>i_dtime);

1025 /* We now have enough fields to check if the inode was active or not.

1026 * This is needed because nfsd might try to access dead inodes

1027 * the test is that same one that e2fsck uses

1028 * NeilBrown 1999oct15

1029 */

1030 if (inode­>i_nlink == 0 && (inode­>i_mode == 0 || inode­>u.ext2_i.i_dtime)) {

1031 /* this inode is deleted */

1032 brelse (bh);

1033 goto bad_inode;

1034 }

1035 inode­>i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size

*/

1036 inode­>i_blocks = le32_to_cpu(raw_inode­>i_blocks);

1037 inode­>i_version = ++event;

1038 inode­>u.ext2_i.i_flags = le32_to_cpu(raw_inode­>i_flags);

1039 inode­>u.ext2_i.i_faddr = le32_to_cpu(raw_inode­>i_faddr);

1040 inode­>u.ext2_i.i_frag_no = raw_inode­>i_frag;

1041 inode­>u.ext2_i.i_frag_size = raw_inode­>i_fsize;

1042 inode­>u.ext2_i.i_file_acl = le32_to_cpu(raw_inode­>i_file_acl);

1043 if (S_ISDIR(inode­>i_mode))

1044 inode­>u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode­>i_dir_acl);

1045 else {

1046 inode­>u.ext2_i.i_high_size = le32_to_cpu(raw_inode­>i_size_high);

1047 inode­>i_size |= ((__u64)le32_to_cpu(raw_inode­>i_size_high)) << 32;

1048 }

1049 inode­>i_generation = le32_to_cpu(raw_inode­>i_generation);

1050 inode­>u.ext2_i.i_block_group = block_group;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

462

1051

1052 /*

1053 * NOTE! The in­memory inode i_data array is in little­endian order

1054 * even on big­endian machines: we do NOT byteswap the block numbers!

1055 */

1056 for (block = 0; block < EXT2_N_BLOCKS; block++)

1057 inode­>u.ext2_i.i_data[block] = raw_inode­>i_block[block];

Ext2 include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 55 63 ====================
55 /*

56 * Special inodes numbers

57 */

58 #define EXT2_BAD_INO 1 /* Bad blocks inode */

59 #define EXT2_ROOT_INO 2 /* Root inode */

60 #define EXT2_ACL_IDX_INO 3 /* ACL inode */

61 #define EXT2_ACL_DATA_INO 4 /* ACL inode */

62 #define EXT2_BOOT_LOADER_INO 5 /* Boot loader inode */

63 #define EXT2_UNDEL_DIR_INO 6 /* Undelete directory inode */

EXT2_ACL_IDX_INO EXT2_ACL_DATA_INO access control list
super_block

Ext2

ext2

super_block
980 999

1001 bread
ext2_inode

raw_inode inode
VFS

union Ext2
ext2_inode_info include/linux/ext2_fs.h

==================== include/linux/ext2_fs_i.h 19 40 ====================
19 /*

20 * second extended file system inode data in memory

21 */

22 struct ext2_inode_info {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

463

23 __u32 i_data[15];

24 __u32 i_flags;

25 __u32 i_faddr;

26 __u8 i_frag_no;

27 __u8 i_frag_size;

28 __u16 i_osync;

29 __u32 i_file_acl;

30 __u32 i_dir_acl;

31 __u32 i_dtime;

32 __u32 not_used_1; /* FIX: not used/ 2.2 placeholder */

33 __u32 i_block_group;

34 __u32 i_next_alloc_block;

35 __u32 i_next_alloc_goal;

36 __u32 i_prealloc_block;

37 __u32 i_prealloc_count;

38 __u32 i_high_size;

39 int i_new_inode:1; /* Is a freshly allocated inode */

40 };

i_data[]

15 32 60
255 60

for 15 inode union
ext2_read_inode() fs/ext2/inode.c

==================== fs/ext2/inode.c 1059 1102 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()>ext2_read_inode()]
1059 if (inode­>i_ino == EXT2_ACL_IDX_INO ||

1060 inode­>i_ino == EXT2_ACL_DATA_INO)

1061 /* Nothing to do */ ;

1062 else if (S_ISREG(inode­>i_mode)) {

1063 inode­>i_op = &ext2_file_inode_operations;

1064 inode­>i_fop = &ext2_file_operations;

1065 inode­>i_mapping­>a_ops = &ext2_aops;

1066 } else if (S_ISDIR(inode­>i_mode)) {

1067 inode­>i_op = &ext2_dir_inode_operations;

1068 inode­>i_fop = &ext2_dir_operations;

1069 } else if (S_ISLNK(inode­>i_mode)) {

1070 if (!inode­>i_blocks)

1071 inode­>i_op = &ext2_fast_symlink_inode_operations;

1072 else {

1073 inode­>i_op = &page_symlink_inode_operations;

1074 inode­>i_mapping­>a_ops = &ext2_aops;

1075 }

1076 } else

1077 init_special_inode(inode, inode­>i_mode,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

464

1078 le32_to_cpu(raw_inode­>i_block[0]));

1079 brelse (bh);

1080 inode­>i_attr_flags = 0;

1081 if (inode­>u.ext2_i.i_flags & EXT2_SYNC_FL) {

1082 inode­>i_attr_flags |= ATTR_FLAG_SYNCRONOUS;

1083 inode­>i_flags |= S_SYNC;

1084 }

1085 if (inode­>u.ext2_i.i_flags & EXT2_APPEND_FL) {

1086 inode­>i_attr_flags |= ATTR_FLAG_APPEND;

1087 inode­>i_flags |= S_APPEND;

1088 }

1089 if (inode­>u.ext2_i.i_flags & EXT2_IMMUTABLE_FL) {

1090 inode­>i_attr_flags |= ATTR_FLAG_IMMUTABLE;

1091 inode­>i_flags |= S_IMMUTABLE;

1092 }

1093 if (inode­>u.ext2_i.i_flags & EXT2_NOATIME_FL) {

1094 inode­>i_attr_flags |= ATTR_FLAG_NOATIME;

1095 inode­>i_flags |= S_NOATIME;

1096 }

1097 return;

1098

1099 bad_inode:

1100 make_bad_inode(inode);

1101 return;

1102 }

inode inode_operations
file_operations VFS

VFS

2.4 Linux ACL Access Control List
inode inode

S_ISREG S_ISDIR S_ISLNK Ext2
i_op i_fop ext2_dir_inode_operations

ext2_dir_operations i_op i_fop a_ops
address_space_operations
init_special_inode()

inode ext2_lookup() d_add()
inode dentry dentry d_add() inline

include/linux/dcache.h

==================== include/linux/dcache.h 191 204 ====================
[path_walk()>real_lookup()>ext2_lookup()>d_add()]
191 /**

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

465

192 * d_add ­ add dentry to hash queues

193 * @entry: dentry to add

194 * @inode: The inode to attach to this dentry

195 *

196 * This adds the entry to the hash queues and initializes @inode.

197 * The entry was actually filled in earlier during d_alloc().

198 */

199

200 static __inline__ void d_add(struct dentry * entry, struct inode * inode)

201 {

202 d_instantiate(entry, inode);

203 d_rehash(entry);

204 }

d_instantiate() dentry inode fs/dcache.c

==================== fs/dcache.c 648 670 ====================
[path_walk()>real_lookup()>ext2_lookup()>d_add()>d_instantiate()]
648 /**

649 * d_instantiate ­ fill in inode information for a dentry

650 * @entry: dentry to complete

651 * @inode: inode to attach to this dentry

652 *

653 * Fill in inode information in the entry.

654 *

655 * This turns negative dentries into productive full members

656 * of society.

657 *

658 * NOTE! This assumes that the inode count has been incremented

659 * (or otherwise set) by the caller to indicate that it is now

660 * in use by the dcache.

661 */

662

663 void d_instantiate(struct dentry *entry, struct inode * inode)

664 {

665 spin_lock(&dcache_lock);

666 if (inode)

667 list_add(&entry­>d_alias, &inode­>i_dentry);

668 entry­>d_inode = inode;

669 spin_unlock(&dcache_lock);

670 }

dentry d_inode inode

link() symlink()
inode dentry inode i_dentry

dentry d_alias inode
d_rehash() dentry

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

466

==================== fs/dcache.c 847 860 ====================
[path_walk()>real_lookup()>ext2_lookup()>d_add()>d_rehash()]
847 /**

848 * d_rehash ­ add an entry back to the hash

849 * @entry: dentry to add to the hash

850 *

851 * Adds a dentry to the hash according to its name.

852 */

853

854 void d_rehash(struct dentry * entry)

855 {

856 struct list_head *list = d_hash(entry­>d_parent, entry­>d_name.hash);

857 spin_lock(&dcache_lock);

858 list_add(&entry­>d_hash, list);

859 spin_unlock(&dcache_lock);

860 }

real_lookup() dentry path_walk()
fs/namei.c 497

dentry 503
d_mountpoint()

==================== include/linux/dcache.h 259 262 ====================
[path_walk()>d_mountpoint()]
259 static __inline__ int d_mountpoint(struct dentry *dentry)

260 {

261 return !list_empty(&dentry­>d_vfsmnt);

262 }

__follow_down()
include/linux/dcache.h fs/namei.c

dput() dentry
path_walk()

do_follow_link() fs/namei.c

==================== fs/namei.c 312 325 ====================
[path_walk()>do_follow_link()]
312 static inline int do_follow_link(struct dentry *dentry, struct nameidata *nd)

313 {

314 int err;

315 if (current­>link_count >= 8)

316 goto loop;

317 current­>link_count++;

318 UPDATE_ATIME(dentry­>d_inode);

319 err = dentry­>d_inode­>i_op­>follow_link(dentry, nd);

320 current­>link_count­­;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

467

321 return err;

322 loop:

323 path_release(nd);

324 return ­ELOOP;

325 }

8
inode_operations follow_link Ext2
ext2_follow_link() fs/ext2/symlink.c

==================== fs/ext2/symlink.c 35 38 ====================
35 struct inode_operations ext2_fast_symlink_inode_operations = {

36 readlink: ext2_readlink,

37 follow_link: ext2_follow_link,

38 };

ext2_follow_link()

==================== fs/ext2/symlink.c 29 33 ====================
[path_walk()>do_follow_link()>ext2_follow_link()]
29 static int ext2_follow_link(struct dentry *dentry, struct nameidata *nd)

30 {

31 char *s = (char *)dentry­>d_inode­>u.ext2_i.i_data;

32 return vfs_follow_link(nd, s);

33 }

Ext2 ext2_inode_info inode union i_data

ext2_read_inode()
ext2_inode_info inode union u

vfs_follow_link()
vfs_follow_link() fs/namei.c ext2_follow_link()

vfs_follow_link() Ext2 vfs
vfs_follow_link()

path_walk() dentry fs/namei.c

==================== fs/namei.c 1942 1945 ====================
[path_walk()>do_follow_link()>ext2_follow_link()>vfs_follow_link()]
1942 int vfs_follow_link(struct nameidata *nd, const char *link)

1943 {

1944 return __vfs_follow_link(nd, link);

1945 }

fs/namei.c

==================== fs/namei.c 1906 1940 ====================
[path_walk()>do_follow_link()>ext2_follow_link()>vfs_follow_link()>__vfs_follow_link()]
1906 static inline int

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

468

1907 __vfs_follow_link(struct nameidata *nd, const char *link)

1908 {

1909 int res = 0;

1910 char *name;

1911 if (IS_ERR(link))

1912 goto fail;

1913

1914 if (*link == '/') {

1915 path_release(nd);

1916 if (!walk_init_root(link, nd))

1917 /* weird __emul_prefix() stuff did it */

1918 goto out;

1919 }

1920 res = path_walk(link, nd);

1921 out:

1922 if (current­>link_count || res || nd­>last_type!=LAST_NORM)

1923 return res;

1924 /*

1925 * If it is an iterative symlinks resolution in open_namei() we

1926 * have to copy the last component. And all that crap because of

1927 * bloody create() on broken symlinks. Furrfu...

1928 */

1929 name = __getname();

1930 if (IS_ERR(name))

1931 goto fail_name;

1932 strcpy(name, nd­>last.name);

1933 nd­>last.name = name;

1934 return 0;

1935 fail_name:

1936 link = name;

1937 fail:

1938 path_release(nd);

1939 return PTR_ERR(link);

1940 }

path_walk() 533
continue 439 for

last_component last_with_slashes path_walk()
fs/namei.c

==================== fs/namei.c 536 611 ====================
[path_walk()]
536 last_with_slashes:

537 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;

538 last_component:

539 if (lookup_flags & LOOKUP_PARENT)

540 goto lookup_parent;

541 if (this.name[0] == '.') switch (this.len) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

469

542 default:

543 break;

544 case 2:

545 if (this.name[1] != '.')

546 break;

547 follow_dotdot(nd);

548 inode = nd­>dentry­>d_inode;

549 /* fallthrough */

550 case 1:

551 goto return_base;

552 }

553 if (nd­>dentry­>d_op && nd­>dentry­>d_op­>d_hash) {

554 err = nd­>dentry­>d_op­>d_hash(nd­>dentry, &this);

555 if (err < 0)

556 break;

557 }

558 dentry = cached_lookup(nd­>dentry, &this, 0);

559 if (!dentry) {

560 dentry = real_lookup(nd­>dentry, &this, 0);

561 err = PTR_ERR(dentry);

562 if (IS_ERR(dentry))

563 break;

564 }

565 while (d_mountpoint(dentry) && __follow_down(&nd­>mnt, &dentry))

566 ;

567 inode = dentry­>d_inode;

568 if ((lookup_flags & LOOKUP_FOLLOW)

569 && inode && inode­>i_op && inode­>i_op­>follow_link) {

570 err = do_follow_link(dentry, nd);

571 dput(dentry);

572 if (err)

573 goto return_err;

574 inode = nd­>dentry­>d_inode;

575 } else {

576 dput(nd­>dentry);

577 nd­>dentry = dentry;

578 }

579 err = ­ENOENT;

580 if (!inode)

581 goto no_inode;

582 if (lookup_flags & LOOKUP_DIRECTORY) {

583 err = ­ENOTDIR;

584 if (!inode­>i_op || !inode­>i_op­>lookup)

585 break;

586 }

587 goto return_base;

588 no_inode:

589 err = ­ENOENT;

590 if (lookup_flags & (LOOKUP_POSITIVE|LOOKUP_DIRECTORY))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

470

591 break;

592 goto return_base;

593 lookup_parent:

594 nd­>last = this;

595 nd­>last_type = LAST_NORM;

596 if (this.name[0] != '.')

597 goto return_base;

598 if (this.len == 1)

599 nd­>last_type = LAST_DOT;

600 else if (this.len == 2 && this.name[1] == '.')

601 nd­>last_type = LAST_DOTDOT;

602 return_base:

603 return 0;

604 out_dput:

605 dput(dentry);

606 break;

607 }

608 path_release(nd);

609 return_err:

610 return err;

611 }

“/
LOOKUP_FOLLOW

LOOKUP_DIRECTORY 1
LOOKUP_PARENT 1

593 lookup_parent nameidata last_type
LAST_NORM LAST_DOT LAST_DOTDOT nameidata dentry

dentry
LOOKUP_PARENT 0 541

581 473 509
(1) cached_lookup() real_lookup() LOOKUP_CONTINUE 1

0
dentry_operations d_revalidate Ext2

dentry
(2) do_follow_link()

inode_operations
LOOKUP_FOLLOW 1

(3) dentry inode
path_walk() ­ENOENT

dentry inode
dentry “negative “positive

LOOKUP_POSITIVE inode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

471

inode 584 no_inode LOOKUP_POSITIVE
LOOKUP_DIRECTORY

(4) inode_operations lookup
NULL

531
LOOKUP_DIRECTORY 1 582 587

path_walk() 0 nameidata dentry
dentry mnt

last_type qstr last
nameidata

dentry inode

path_init() path_walk() user_walk()
open.c

==================== fs/open.c 340 368 ====================
340 asmlinkage long sys_chdir(const char * filename)

341 {

342 int error;

343 struct nameidata nd;

344 char *name;

345

346 name = getname(filename);

347 error = PTR_ERR(name);

348 if (IS_ERR(name))

349 goto out;

350

351 error = 0;

352 if (path_init(name,LOOKUP_POSITIVE|LOOKUP_FOLLOW|LOOKUP_DIRECTORY,&nd))

353 error = path_walk(name, &nd);

354 putname(name);

355 if (error)

356 goto out;

357

358 error = permission(nd.dentry­>d_inode,MAY_EXEC);

359 if (error)

360 goto dput_and_out;

361

362 set_fs_pwd(current­>fs, nd.mnt, nd.dentry);

363

364 dput_and_out:

365 path_release(&nd);

366 out:

367 return error;

368 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

472

chdir() permission()
set_fs_pwd() fs_struct pwd pwdmnt

nameidata dentry vfsmount

==================== fs/open.c 368 498 ====================
468 asmlinkage long sys_chmod(const char * filename, mode_t mode)

469 {

470 struct nameidata nd;

471 struct inode * inode;

472 int error;

473 struct iattr newattrs;

474

475 error = user_path_walk(filename, &nd);

476 if (error)

477 goto out;

478 inode = nd.dentry­>d_inode;

479

480 error = ­EROFS;

481 if (IS_RDONLY(inode))

482 goto dput_and_out;

483

484 error = ­EPERM;

485 if (IS_IMMUTABLE(inode) || IS_APPEND(inode))

486 goto dput_and_out;

487

488 if (mode == (mode_t) ­1)

489 mode = inode­>i_mode;

490 newattrs.ia_mode = (mode & S_IALLUGO) | (inode­>i_mode & ~S_IALLUGO);

491 newattrs.ia_valid = ATTR_MODE | ATTR_CTIME;

492 error = notify_change(nd.dentry, &newattrs);

493

494 dput_and_out:

495 path_release(&nd);

496 out:

497 return error;

498 }

notify_change()

==================== fs/open.c 560 571 ====================
560 asmlinkage long sys_chown(const char * filename, uid_t user, gid_t group)

561 {

562 struct nameidata nd;

563 int error;

564

565 error = user_path_walk(filename, &nd);

566 if (!error) {

567 error = chown_common(nd.dentry, user, group);

568 path_release(&nd);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

473

569 }

570 return error;

571 }

==================== fs/open.c 38 52 ====================
38 asmlinkage long sys_statfs(const char * path, struct statfs * buf)

39 {

40 struct nameidata nd;

41 int error;

42

43 error = user_path_walk(path, &nd);

44 if (!error) {

45 struct statfs tmp;

46 error = vfs_statfs(nd.dentry­>d_inode­>i_sb, &tmp);

47 if (!error && copy_to_user(buf, &tmp, sizeof(struct statfs)))

48 error = ­EFAULT;

49 path_release(&nd);

50 }

51 return error;

52 }

5.3

Unix

Unix
Unix Linux

Unix
Unix

Unix

other 9
9 Unix 16 PDP­11

16 9
9 u

g o
“chomd 644 file1 644

8
“Discretionary Access Control DAC

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

474

uid gid
/etc/passwd uid gid

task_stuct uid gid
shell /etc/passwd uid gid

shell task_struct
uid gid
task_struct euid egid suid sgid

fsuid fsgid uid 0

”

task_stuct euid
“effective uid egid setuid() seteuid()

task_struct
suid “saved uid sgid task_struct

uid euid suid gid egid sgid NFS

fsuid fsgid fsuid euid fsgid egid

“set_uid

setuid() seteuid() shell
“su su “set_uid

root su

/etc/passwd

0
/etc/passwd

/etc/passwd Unix

/bin/passwd

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

475

/etc/passwd
“set_uid

S_ISUID SISGID S_ISUID
S_ISUID “s “ls ­l
“x “s AT&T

“set_uid Unix Linux

Unix sticky
1

Unix
Linux

16 9
3 4 4

4
include/linux/stat.h include/linux/sysv_fs.h

==================== include/linux/sysv_fs.h 255 266 ====================
255 /* The admissible values for i_mode are listed in <linux/stat.h> :

256 * #define S_IFMT 00170000 mask for type

257 * #define S_IFREG 0100000 type = regular file

258 * #define S_IFBLK 0060000 type = block device

259 * #define S_IFDIR 0040000 type = directory

260 * #define S_IFCHR 0020000 type = character device

261 * #define S_IFIFO 0010000 type = named pipe

262 * #define S_ISUID 0004000 set user id

263 * #define S_ISGID 0002000 set group id

264 * #define S_ISVTX 0001000 save swapped text even after use

265 * Additionally for SystemV:

266 * #define S_IFLNK 0120000 type = symbolic link

S_IFMT
9

==================== include/linux/stat.h 32 45 ====================
32 #define S_IRWXU 00700

33 #define S_IRUSR 00400

34 #define S_IWUSR 00200

35 #define S_IXUSR 00100

36

37 #define S_IRWXG 00070

38 #define S_IRGRP 00040

39 #define S_IWGRP 00020

40 #define S_IXGRP 00010

41

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

476

42 #define S_IRWXO 00007

43 #define S_IROTH 00004

44 #define S_IWOTH 00002

45 #define S_IXOTH 00001

16 task_struct uid
euid

permission() path_walk() for
fs/namei.c

==================== fs/namei.c 183 193 ====================
183 int permission(struct inode * inode,int mask)

184 {

185 if (inode­>i_op && inode­>i_op­>permission) {

186 int retval;

187 lock_kernel();

188 retval = inode­>i_op­>permission(inode, mask);

189 unlock_kernel();

190 return retval;

191 }

192 return vfs_permission(inode, mask);

193 }

mask include/linux/fs.h

==================== include/linux/fs.h 63 65 ====================
63 #define MAY_EXEC 1

64 #define MAY_WRITE 2

65 #define MAY_READ 4

NFS
MAY_TRUNC MAY_LOCK NFS

inode_operations permisson
vfs_permission()

Ext2 inode_operations ext2_file_inode_operations
ext2_dir_inode_operations ext2_fast_symlink_inode_operations inode

ext2_read_inode() i_op
permisson permission NULL vfs_permission() fs/namei.c

==================== fs/namei.c 147 181 ====================
[permission()>vfs_permission()]
147 /*

148 * permission()

149 *

150 * is used to check for read/write/execute permissions on a file.

151 * We use "fsuid" for this, letting us set arbitrary permissions

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

477

152 * for filesystem access without changing the "normal" uids which

153 * are used for other things..

154 */

155 int vfs_permission(struct inode * inode,int mask)

156 {

157 int mode = inode­>i_mode;

158

159 if ((mask & S_IWOTH) && IS_RDONLY(inode) &&

160 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))

161 return ­EROFS; /* Nobody gets write access to a read­only fs */

162

163 if ((mask & S_IWOTH) && IS_IMMUTABLE(inode))

164 return ­EACCES; /* Nobody gets write access to an immutable file */

165

166 if (current­>fsuid == inode­>i_uid)

167 mode >>= 6;

168 else if (in_group_p(inode­>i_gid))

169 mode >>= 3;

170

171 if (((mode & mask & S_IRWXO) == mask) || capable(CAP_DAC_OVERRIDE))

172 return 0;

173

174 /* read and search access */

175 if ((mask == S_IROTH) ||

176 (S_ISDIR(inode­>i_mode) && !(mask & ~(S_IROTH | S_IXOTH))))

177 if (capable(CAP_DAC_READ_SEARCH))

178 return 0;

179

180 return ­EACCES;

181 }

include/linux/fs.h include/linux/stat.h

==================== include/linux/fs.h 146 146 ====================
146 #define IS_RDONLY(inode) ((inode)­>i_sb­>s_flags & MS_RDONLY)

==================== include/linux/stat.h 24 30 ====================
24 #define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK)

25 #define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

26 #define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)

27 #define S_ISCHR(m) (((m) & S_IFMT) == S_IFCHR)

28 #define S_ISBLK(m) (((m) & S_IFMT) == S_IFBLK)

29 #define S_ISFIFO(m) (((m) & S_IFMT) == S_IFIFO)

30 #define S_ISSOCK(m) (((m) & S_IFMT) == S_IFSOCK)

IS_RDONLY

FIFO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

478

IS_IMMUTABLE

==================== include/linux/fs.h 155 155 ====================
155 #define IS_IMMUTABLE(inode) ((inode)­>i_flags & S_IMMUTABLE)

Linux Unix

chmod()
include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 183 205 ====================
183 /*

184 * Inode flags

185 */

186 #define EXT2_SECRM_FL 0x00000001 /* Secure deletion */

187 #define EXT2_UNRM_FL 0x00000002 /* Undelete */

188 #define EXT2_COMPR_FL 0x00000004 /* Compress file */

189 #define EXT2_SYNC_FL 0x00000008 /* Synchronous updates */

190 #define EXT2_IMMUTABLE_FL 0x00000010 /* Immutable file */

191 #define EXT2_APPEND_FL 0x00000020 /* writes to file may only append */

192 #define EXT2_NODUMP_FL 0x00000040 /* do not dump file */

193 #define EXT2_NOATIME_FL 0x00000080 /* do not update atime */

194 /* Reserved for compression usage... */

195 #define EXT2_DIRTY_FL 0x00000100

196 #define EXT2_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */

197 #define EXT2_NOCOMP_FL 0x00000400 /* Don't compress */

198 #define EXT2_ECOMPR_FL 0x00000800 /* Compression error */

199 /* End compression flags ­­­ maybe not all used */

200 #define EXT2_BTREE_FL 0x00001000 /* btree format dir */

201 #define EXT2_RESERVED_FL 0x80000000 /* reserved for ext2 lib */

202

203 #define EXT2_FL_USER_VISIBLE 0x00001FFF /* User visible flags */

204 #define EXT2_FL_USER_MODIFIABLE 0x000000FF /* User modifiable flags */

205

EXT2_APPEND_FL

inode i_flag S_IMMUTABLE 1
163

EXT2_NODUMP_FL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

479

“dump Unix
“core

gdb

dump task_struct dumpable seteuid()
0 prctl() dumpable

1 0
dump EXT2_NODUMP_FL

EXT2_NOATIME_FL Unix

permission() mode inode
16 mask MAY_EXEC MAY_WRITE

MAY_READ 3 fsuid
uid euid fsuid

uid mode mode 6
3 fsuid uid

mode
3 in_group_p()
kernel/sys.c

==================== kernel/sys.c 939 948 ====================
[permission()>vfs_permission()>in_group_p()]
939 /*

940 * Check whether we're fsgid/egid or in the supplemental group..

941 */

942 int in_group_p(gid_t grp)

943 {

944 int retval = 1;

945 if (grp != current­>fsgid)

946 retval = supplemental_group_member(grp);

947 return retval;

948 }

fsgid
sched.h

task_struct task_struct groups[] NGROUPS
include/asm­i386/param.h 32 task_struct

ngroups get_groups() set_groups()
set_groups() fsgid

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

480

supplemental_group_member() sys.c

==================== kernel/sys.c 923 937 ====================
[permission()>vfs_permission()>in_group_p()>supplemental_group_member()]
923 static int supplemental_group_member(gid_t grp)

924 {

925 int i = current­>ngroups;

926

927 if (i) {

928 gid_t *groups = current­>groups;

929 do {

930 if (*groups == grp)

931 return 1;

932 groups++;

933 i­­;

934 } while (i);

935 }

936 return 0;

937 }

mode
3

S_IRWXO 7 mode 3 permission()
0

CAP_DAC_OVERRIDE DAC
159 163 IS_IMMUTABLE

CAP_LINUX_IMMUTABLE
uid

0
CAP_DAC_OVERRIDE

CAP_DAC_READ_SEARCH
177

path_walk() for
permission() MAY_EXEC MAY_READ

setuid()
setfsuid() seteuid() setreuid() setuid()

sys_setuid() sys.c

==================== kernel/sys.c 548 583 ====================
548 /*

549 * setuid() is implemented like SysV with SAVED_IDS

550 *

551 * Note that SAVED_ID's is deficient in that a setuid root program

552 * like sendmail, for example, cannot set its uid to be a normal

553 * user and then switch back, because if you're root, setuid() sets

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

481

554 * the saved uid too. If you don't like this, blame the bright people

555 * in the POSIX committee and/or USG. Note that the BSD­style setreuid()

556 * will allow a root program to temporarily drop privileges and be able to

557 * regain them by swapping the real and effective uid.

558 */

559 asmlinkage long sys_setuid(uid_t uid)

560 {

561 int old_euid = current­>euid;

562 int old_ruid, old_suid, new_ruid;

563

564 old_ruid = new_ruid = current­>uid;

565 old_suid = current­>suid;

566 if (capable(CAP_SETUID)) {

567 if (uid != old_ruid && set_user(uid) < 0)

568 return ­EAGAIN;

569 current­>suid = uid;

570 } else if ((uid != current­>uid) && (uid != current­>suid))

571 return ­EPERM;

572

573 current­>fsuid = current­>euid = uid;

574

575 if (old_euid != uid)

576 current­>dumpable = 0;

577

578 if (!issecure(SECURE_NO_SETUID_FIXUP)) {

579 cap_emulate_setxuid(old_ruid, old_euid, old_suid);

580 }

581

582 return 0;

583 }

euid 0 CAP_SETUID 569 573 euid
suid fsuid uid suid uid task struct

suid “save uid euid euid
suid “uid

setuid() suid uid POSIX
BSD Linux seteuid() setreuid()

CAP_SETUID euid fsuid uid
uid suid

euid task_struct dumpable 0
dump

CAP_SETUID uid
set_user() kernel/sys.c

==================== kernel/sys.c 466 486 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

482

[sys_setuid()>set user()]
466 static int set_user(uid_t new_ruid)

467 {

468 struct user_struct *new_user, *old_user;

469

470 /* What if a process setreuid()'s and this brings the

471 * new uid over his NPROC rlimit? We can check this now

472 * cheaply with the new uid cache, so if it matters

473 * we should be checking for it. ­DaveM

474 */

475 new_user = alloc_uid(new_ruid);

476 if (!new_user)

477 return ­EAGAIN;

478 old_user = current­>user;

479 atomic_dec(&old_user­>processes);

480 atomic_inc(&new_user­>processes);

481

482 current­>uid = new_ruid;

483 current­>user = new_user;

484 free_uid(old_user);

485 return 0;

486 }

uidhash task_struct
uid uid

task_struct user user_struct
task_struct task_struct

user_sturct
user_strct free_uid() kernel/fork.c

==================== kernel/user.c 76 83 ====================
[sys_setuid()>set_user()>free_uid()]
76 void free_uid(struct user_struct *up)

77 {

78 if (up && atomic_dec_and_lock(&up­>__count, &uidhash_lock)) {

79 uid_hash_remove(up);

80 kmem_cache_free(uid_cachep, up);

81 spin_unlock(&uidhash_lock);

82 }

83 }

alloc_uid() free_uid()

DAC
IS_IMMUTABLE DAC

uid

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

483

task_strucl cap_effctive cap_inheritable cap_permitted kernel_capt_t
32 capability 29

32 include/linux/capability.h

==================== include/linux/capability.h 65 278 ====================
65 /**

66 ** POSIX­draft defined capabilities.

67 **/

68

69 /* In a system with the [_POSIX_CHOWN_RESTRICTED] option defined, this

70 overrides the restriction of changing file ownership and group

71 ownership. */

72

73 #define CAP_CHOWN 0

74

75 /* Override all DAC access, including ACL execute access if

76 [_POSIX_ACL] is defined. Excluding DAC access covered by

77 CAP_LINUX_IMMUTABLE. */

78

79 #define CAP_DAC_OVERRIDE 1

80

81 /* Overrides all DAC restrictions regarding read and search on files

82 and directories, including ACL restrictions if [_POSIX_ACL] is

83 defined. Excluding DAC access covered by CAP_LINUX_IMMUTABLE. */

84

85 #define CAP_DAC_READ_SEARCH 2

86

87 /* Overrides all restrictions about allowed operations on files, where

88 file owner ID must be equal to the user ID, except where CAP_FSETID

89 is applicable. It doesn't override MAC and DAC restrictions. */

90

91 #define CAP_FOWNER 3

92

93 /* Overrides the following restrictions that the effective user ID

94 shall match the file owner ID when setting the S_ISUID and S_ISGID

95 bits on that file; that the effective group ID (or one of the

96 supplementary group IDs) shall match the file owner ID when setting

97 the S_ISGID bit on that file; that the S_ISUID and S_ISGID bits are

98 cleared on successful return from chown(2) (not implemented). */

99

100 #define CAP_FSETID 4

101

102 /* Used to decide between falling back on the old suser() or fsuser(). */

103

104 #define CAP_FS_MASK 0x1f

105

106 /* Overrides the restriction that the real or effective user ID of a

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

484

107 process sending a signal must match the real or effective user ID

108 of the process receiving the signal. */

109

110 #define CAP_KILL 5

111

112 /* Allows setgid(2) manipulation */

113 /* Allows setgroups(2) */

114 /* Allows forged gids on socket credentials passing. */

115

116 #define CAP_SETGID 6

117

118 /* Allows set*uid(2) manipulation (including fsuid). */

119 /* Allows forged pids on socket credentials passing. */

120

121 #define CAP_SETUID 7

122

123

124 /**

125 ** Linux­specific capabilities

126 **/

127

128 /* Transfer any capability in your permitted set to any pid,

129 remove any capability in your permitted set from any pid */

130

131 #define CAP_SETPCAP 8

132

133 /* Allow modification of S_IMMUTABLE and S_APPEND file attributes */

134

135 #define CAP_LINUX_IMMUTABLE 9

136

137 /* Allows binding to TCP/UDP sockets below 1024 */

138 /* Allows binding to ATM VCIs below 32 */

139

140 #define CAP_NET_BIND_SERVICE 10

141

142 /* Allow broadcasting, listen to multicast */

143

144 #define CAP_NET_BROADCAST 11

145

146 /* Allow interface configuration */

147 /* Allow administration of IP firewall, masquerading and accounting */

148 /* Allow setting debug option on sockets */

149 /* Allow modification of routing tables */

150 /* Allow setting arbitrary process / process group ownership on

151 sockets */

152 /* Allow binding to any address for transparent proxying */

153 /* Allow setting TOS (type of service) */

154 /* Allow setting promiscuous mode */

155 /* Allow clearing driver statistics */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

485

156 /* Allow multicasting */

157 /* Allow read/write of device­specific registers */

158 /* Allow activation of ATM control sockets */

159

160 #define CAP_NET_ADMIN 12

161

162 /* Allow use of RAW sockets */

163 /* Allow use of PACKET sockets */

164

165 #define CAP_NET_RAW 13

166

167 /* Allow locking of shared memory segments */

168 /* Allow mlock and mlockall (which doesn't really have anything to do

169 with IPC) */

170

171 #define CAP_IPC_LOCK 14

172

173 /* Override IPC ownership checks */

174

175 #define CAP_IPC_OWNER 15

176

177 /* Insert and remove kernel modules ­ modify kernel without limit */

178 /* Modify cap_bset */

179 #define CAP_SYS_MODULE 16

180

181 /* Allow ioperm/iopl access */

182 /* Allow sending USB messages to any device via /proc/bus/usb */

183

184 #define CAP_SYS_RAWIO 17

185

186 /* Allow use of chroot() */

187

188 #define CAP_SYS_CHROOT 18

189

190 /* Allow ptrace() of any process */

191

192 #define CAP_SYS_PTRACE 19

193

194 /* Allow configuration of process accounting */

195

196 #define CAP_SYS_PACCT 20

197

198 /* Allow configuration of the secure attention key */

199 /* Allow administration of the random device */

200 /* Allow examination and configuration of disk quotas */

201 /* Allow configuring the kernel's syslog (printk behaviour) */

202 /* Allow setting the domainname */

203 /* Allow setting the hostname */

204 /* Allow calling bdflush() */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

486

205 /* Allow mount() and umount(), setting up new smb connection */

206 /* Allow some autofs root ioctls */

207 /* Allow nfsservctl */

208 /* Allow VM86_REQUEST_IRQ */

209 /* Allow to read/write pci config on alpha */

210 /* Allow irix_prctl on mips (setstacksize) */

211 /* Allow flushing all cache on m68k (sys_cacheflush) */

212 /* Allow removing semaphores */

213 /* Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores

214 and shared memory */

215 /* Allow locking/unlocking of shared memory segment */

216 /* Allow turning swap on/off */

217 /* Allow forged pids on socket credentials passing */

218 /* Allow setting readahead and flushing buffers on block devices */

219 /* Allow setting geometry in floppy driver */

220 /* Allow turning DMA on/off in xd driver */

221 /* Allow administration of md devices (mostly the above, but some

222 extra ioctls) */

223 /* Allow tuning the ide driver */

224 /* Allow access to the nvram device */

225 /* Allow administration of apm_bios, serial and bttv (TV) device */

226 /* Allow manufacturer commands in isdn CAPI support driver */

227 /* Allow reading non­standardized portions of pci configuration space */

228 /* Allow DDI debug ioctl on sbpcd driver */

229 /* Allow setting up serial ports */

230 /* Allow sending raw qic­117 commands */

231 /* Allow enabling/disabling tagged queuing on SCSI controllers and sending

232 arbitrary SCSI commands */

233 /* Allow setting encryption key on loopback filesystem */

234

235 #define CAP_SYS_ADMIN 21

236

237 /* Allow use of reboot() */

238

239 #define CAP_SYS_BOOT 22

240

241 /* Allow raising priority and setting priority on other (different

242 UID) processes */

243 /* Allow use of FIFO and round­robin (realtime) scheduling on own

244 processes and setting the scheduling algorithm used by another

245 process. */

246

247 #define CAP_SYS_NICE 23

248

249 /* Override resource limits. Set resource limits. */

250 /* Override quota limits. */

251 /* Override reserved space on ext2 filesystem */

252 /* NOTE: ext2 honors fsuid when checking for resource overrides, so

253 you can override using fsuid too */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

487

254 /* Override size restrictions on IPC message queues */

255 /* Allow more than 64hz interrupts from the real­time clock */

256 /* Override max number of consoles on console allocation */

257 /* Override max number of keymaps */

258

259 #define CAP_SYS_RESOURCE 24

260

261 /* Allow manipulation of system clock */

262 /* Allow irix_stime on mips */

263 /* Allow setting the real­time clock */

264

265 #define CAP_SYS_TIME 25

266

267 /* Allow configuration of tty devices */

268 /* Allow vhangup() of tty */

269

270 #define CAP_SYS_TTY_CONFIG 26

271

272 /* Allow the privileged aspects of mknod() */

273

274 #define CAP_MKNOD 27

275

276 /* Allow taking of leases on files */

277

278 #define CAP_LEASE 28

CAP_CHOWN 0 0 capable() inline
sched.h

==================== include/linux/sched.h 681 699 ====================
681 /*

682 * capable() checks for a particular capability.

683 * New privilege checks should use this interface, rather than suser() or

684 * fsuser(). See include/linux/capability.h for defined capabilities.

685 */

686

687 static inline int capable(int cap)

688 {

689 #if 1 /* ok now */

690 if (cap_raised(current­>cap_effective, cap))

691 #else

692 if (cap_is_fs_cap(cap) ? current­>fsuid == 0 : current­>euid == 0)

693 #endif

694 {

695 current­>flags |= PF_SUPERPRIV;

696 return 1;

697 }

698 return 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

488

699 }

cap_raised() capability.h

==================== include/linux/capability.h 298 298 ====================
298 #define cap_t(x) (x)

==================== include/linux/capability.h 307 307 ====================
307 #define CAP_TO_MASK(x) (1 << (x))

==================== include/linux/capability.h 310 310 ====================
310 #define cap_raised(c, flag) (cap_t(c) & CAP_TO_MASK(flag))

cap_bset CAP_FULL_SET 1
uid cap_emulate_setxuid()

SECUREBITS_DEFAULT SECURE_NO_SETUID_FIXUP 1
cap_emulate_setxuid() sys.c

==================== kernel/sys.c 420 464 ====================
[sys_setuid()>cap_emulate_setxuid()]
420 /*

421 * cap_emulate_setxuid() fixes the effective / permitted capabilities of

422 * a process after a call to setuid, setreuid, or setresuid.

423 *

424 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of

425 * {r,e,s}uid != 0, the permitted and effective capabilities are

426 * cleared.

427 *

428 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective

429 * capabilities of the process are cleared.

430 *

431 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective

432 * capabilities are set to the permitted capabilities.

433 *

434 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should

435 * never happen.

436 *

437 * ­astor

438 *

439 * cevans ­ New behaviour, Oct '99

440 * A process may, via prctl(), elect to keep its capabilities when it

441 * calls setuid() and switches away from uid==0. Both permitted and

442 * effective sets will be retained.

443 * Without this change, it was impossible for a daemon to drop only some

444 * of its privilege. The call to setuid(!=0) would drop all privileges!

445 * Keeping uid 0 is not an option because uid 0 owns too many vital

446 * files..

447 * Thanks to Olaf Kirch and Peter Benie for spotting this.

448 */

449 extern inline void cap_emulate_setxuid(int old_ruid, int old_euid,

450 int old_suid)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

489

451 {

452 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&

453 (current­>uid != 0 && current­>euid != 0 && current­>suid != 0) &&

454 !current­>keep_capabilities) {

455 cap_clear(current­>cap_permitted);

456 cap_clear(current­>cap_effective);

457 }

458 if (old_euid == 0 && current­>euid != 0) {

459 cap_clear(current­>cap_effective);

460 }

461 if (old_euid != 0 && current­>euid == 0) {

462 current­>cap_effective = current­>cap_permitted;

463 }

464 }

cap_clear() capability.h

==================== include/linux/capability.h 343 343 ====================
343 #define cap_clear(c) do { cap_t(c) = 0; } while(0)

seteuid() euid 0 0 ”

cap_effective 0 cap_permitted euid
cap_permitted cap_effective setuid() uid euid suid

cap_permitted cap_effective 0
task_struct keep_capabilities prctl()

1 cap_permitted 0 458 if else cap_effective
0

shell “su
setuid() 0 /bin/su

“set uid
fork() shell shell

shell su shell exit()
shell shell
shell

DAC Unix AIX Solaris
Access Control List ACL ACL

Access Control Entry
A g1

B
Linux ACL

ACL ext2_inode i_file_acl i_dir_acl ext2_acl_entry
permission() ACL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

490

exec()
Iogin fork() /bin/bash csh

shell do_execve()
prepare_binprm() linux_binprm cap_effective

cap_permitted cap_inheritable task_struct
prepare_binprm() fs/exec.c

==================== fs/exec.c 600 601 ====================
[sys_execve()>do_execve()>prepare_binprm()]
600 int prepare_binprm(struct linux_binprm *bprm)

601 {

==================== fs/exec.c 612 654 ====================
612 bprm­>e_uid = current­>euid;

613 bprm­>e_gid = current­>egid;

614

615 if(!IS_NOSUID(inode)) {

616 /* Set­uid? */

617 if (mode & S_ISUID)

618 bprm­>e_uid = inode­>i_uid;

619

620 /* Set­gid? */

621 /*

622 * If setgid is set but no group execute bit then this

623 * is a candidate for mandatory locking, not a setgid

624 * executable.

625 */

626 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))

627 bprm­>e_gid = inode­>i_gid;

628 }

629

630 /* We don't have VFS support for capabilities yet */

631 cap_clear(bprm­>cap_inheritable);

632 cap_clear(bprm­>cap_permitted);

633 cap_clear(bprm­>cap_effective);

634

635 /* To support inheritance of root­permissions and suid­root

636 * executables under compatibility mode, we raise all three

637 * capability sets for the file.

638 *

639 * If only the real uid is 0, we only raise the inheritable

640 * and permitted sets of the executable file.

641 */

642

643 if (!issecure(SECURE_NOROOT)) {

644 if (bprm­>e_uid == 0 || current­>uid == 0) {

645 cap_set_full(bprm­>cap_inheritable);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

491

646 cap_set_full(bprm­>cap_permitted);

647 }

648 if (bprm­>e_uid == 0)

649 cap_set_full(bprm­>cap_effective);

650 }

651

652 memset(bprm­>buf,0,BINPRM_BUF_SIZE);

653 return kernel_read(bprm­>file,0,bprm­>buf,BINPRM_BUF_SIZE);

654 }

631 0
0 linux_binprm

cap_inheritable cap_effective 1 0 0
cap_inheritabte 1

capset() 0
capset()

615 628 mode S_ISGID
linux_binprm e_uid e_gid

linux_binprm
compute_creds() linux_binprm task_struct

exec.c

==================== fs/exec.c 656 720 ====================
[load_aout_binary()>compute_creds()] [load_elf_binary()>compute_creds()]
656 /*

657 * This function is used to produce the new IDs and capabilities

658 * from the old ones and the file's capabilities.

659 *

660 * The formula used for evolving capabilities is:

661 *

662 * pI' = pI

663 * (***) pP' = (fP & X) | (fI & pI)

664 * pE' = pP' & fE [NB. fE is 0 or ~0]

665 *

666 * I=Inheritable, P=Permitted, E=Effective // p=process, f=file

667 * ' indicates post­exec(), and X is the global 'cap_bset'.

668 *

669 */

670

671 void compute_creds(struct linux_binprm *bprm)

672 {

673 kernel_cap_t new_permitted, working;

674 int do_unlock = 0;

675

676 new_permitted = cap_intersect(bprm­>cap_permitted, cap_bset);

677 working = cap_intersect(bprm­>cap_inheritable,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

492

678 current­>cap_inheritable);

679 new_permitted = cap_combine(new_permitted, working);

680

681 if (bprm­>e_uid != current­>uid || bprm­>e_gid != current­>gid ||

682 !cap_issubset(new_permitted, current­>cap_permitted)) {

683 current­>dumpable = 0;

684

685 lock_kernel();

686 if (must_not_trace_exec(current)

687 || atomic_read(¤t­>fs­>count) > 1

688 || atomic_read(¤t­>files­>count) > 1

689 || atomic_read(¤t­>sig­>count) > 1) {

690 if(!capable(CAP_SETUID)) {

691 bprm­>e_uid = current­>uid;

692 bprm­>e_gid = current­>gid;

693 }

694 if(!capable(CAP_SETPCAP)) {

695 new_permitted = cap_intersect(new_permitted,

696 current­>cap_permitted);

697 }

698 }

699 do_unlock = 1;

700 }

701

702

703 /* For init, we want to retain the capabilities set

704 * in the init_task struct. Thus we skip the usual

705 * capability rules */

706 if (current­>pid != 1) {

707 current­>cap_permitted = new_permitted;

708 current­>cap_effective =

709 cap_intersect(new_permitted, bprm­>cap_effective);

710 }

711

712 /* AUD: Audit candidate if current­>cap_effective is set */

713

714 current­>suid = current­>euid = current­>fsuid = bprm­>e_uid;

715 current­>sgid = current­>egid = current­>fsgid = bprm­>e_gid;

716

717 if(do_unlock)

718 unlock_kernel();

719 current­>keep_capabilities = 0;

720 }

prepare_binprm() linux_binprm
cap_intersect() cap_combine() inline cap_issubset

capability.h

==================== include/linux/capability.h 312 324 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

493

312 static inline kernel_cap_t cap_combine(kernel_cap_t a, kernel_cap_t b)

313 {

314 kernel_cap_t dest;

315 cap_t(dest) = cap_t(a) | cap_t(b);

316 return dest;

317 }

318

319 static inline kernel_cap_t cap_intersect(kernel_cap_t a, kernel_cap_t b)

320 {

321 kernel_cap_t dest;

322 cap_t(dest) = cap_t(a) & cap_t(b);

323 return dest;

324 }

==================== include/linux/capability.h 341 341 ====================
341 #define cap_issubset(a,set) (!(cap_t(a) & ~cap_t(set)))

0 cap_permitted
cap_inheritable cap_permitted

cap_raised 1
capset() cap_inheritable 0

674 cap_permitted
CAP_SETPCAP IS_NOSUID inode

super_block MS_NOSUID 1 “set_uid”

1 init() INIT_TASK cap_effective
cap_inheritable cap_permitted CAP_INIT_EFF_SET CAP_INIT_INH_SET
CAP_FULL_SET CAP_FULL_SET CAP_INIT_EFF_SET CAP_INIT_INH_SET

CAP_SETPCAP init() init()
capset() cap_effective CAP_SETPCAP fork()

CAP_LINUX_IMMUTABLE S_IMMUTABLE
S_APPEND init() /etc/inetd.conf /var/log/messages

S_APPEND CAP_LINUX_IMMUTABLE fork()

“set uid euid
uid

Unix Unix

main(int argc, char **agtv)

{

 char options[128];

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

494

 if (argv > 1) {

 strcpy(options, argv[1]);

 }

}

128
128

150 strcpy()
options main()

main()
main()

strcpy() main()

“system "/bin/bash" main() fork()
shell

shell “set uid
shell shell shell

fork() “set uid
shell “find / ­perm 00400 ­uid 0 ­type f ­print

“set uid
shell /etc/passwd

0 uid 0

“set uid
“set uid

“set uid
/etc/passwd

Unix
Client/Server

passwd_d passwd_d
/etc/passwd

/etc/passwd /etc/passwd

Linux
Linux

Simon Garfinkel Gene Spafford Practical Unix & Internet Security

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

495

Linux

Microsoft
Windows

2000 10 Microsoft
Microsoft Microsoft

Windows
Windows

Windows

5.4

“/
“/

mount()
umount()

mount()
Unix Linux

“/dev
IDE /dev/hda1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

496

raw device

mount()
“/

mount()
sys_mount() mount_root() kem_mount() sys_mount()

mount() fs/super.c

==================== fs/super.c 1421 1460 ====================
1421 asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type,

1422 unsigned long flags, void * data)

1423 {

1424 int retval;

1425 unsigned long data_page;

1426 unsigned long type_page;

1427 unsigned long dev_page;

1428 char *dir_page;

1429

1430 retval = copy_mount_options (type, &type_page);

1431 if (retval < 0)

1432 return retval;

1433

1434 dir_page = getname(dir_name);

1435 retval = PTR_ERR(dir_page);

1436 if (IS_ERR(dir_page))

1437 goto out1;

1438

1439 retval = copy_mount_options (dev_name, &dev_page);

1440 if (retval < 0)

1441 goto out2;

1442

1443 retval = copy_mount_options (data, &data_page);

1444 if (retval < 0)

1445 goto out3;

1446

1447 lock_kernel();

1448 retval = do_mount((char*)dev_page, dir_page, (char*)type_page,

1449 flags, (void*)data_page);

1450 unlock_kernel();

1451 free_page(data_page);

1452

1453 out3:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

497

1454 free_page(dev_page);

1455 out2:

1456 putname(dir_page);

1457 out1:

1458 free_page(type_page);

1459 return retval;

1460 }

dev_name dir_name type
“ext2 “iso9660 flags

include/1inux/fs.h

==================== include/linux/fs.h 96 120 ====================
96 /*

97 * These are the fs­independent mount­flags: up to 32 flags are supported

98 */

99 #define MS_RDONLY 1 /* Mount read­only */

100 #define MS_NOSUID 2 /* Ignore suid and sgid bits */

101 #define MS_NODEV 4 /* Disallow access to device special files */

102 #define MS_NOEXEC 8 /* Disallow program execution */

103 #define MS_SYNCHRONOUS 16 /* Writes are synced at once */

104 #define MS_REMOUNT 32 /* Alter flags of a mounted FS */

105 #define MS_MANDLOCK 64 /* Allow mandatory locks on an FS */

106 #define MS_NOATIME 1024 /* Do not update access times. */

107 #define MS_NODIRATIME 2048 /* Do not update directory access times */

108 #define MS_BIND 4096

109

110 /*

111 * Flags that can be altered by MS_REMOUNT

112 */

113 #define MS_RMT_MASK (MS_RDONLY|MS_NOSUID|MS_NODEV|MS_NOEXEC|\

114 MS_SYNCHRONOUS|MS_MANDLOCK|MS_NOATIME|MS_NODIRATIME)

115

116 /*

117 * Magic mount flag number. Has to be or­ed to the flag values.

118 */

119 #define MS_MGC_VAL 0xC0ED0000 /* magic flag number to indicate "new" flags */

120 #define MS_MGC_MSK 0xffff0000 /* magic flag number mask */

MS_NOSUID 1 suid
16

16 “magic_number
data

void
getname() copy_mount_options()

getname() “\0”
copy_mount_options()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

498

PAGE_SIZE­1 do_mount()
super.c

==================== fs/super.c 1300 1343 ====================
[sys_mount()>do_mount()]
1300 /*

1301 * Flags is a 16­bit value that allows up to 16 non­fs dependent flags to

1302 * be given to the mount() call (ie: read­only, no­dev, no­suid etc).

1303 *

1304 * data is a (void *) that can point to any structure up to

1305 * PAGE_SIZE­1 bytes, which can contain arbitrary fs­dependent

1306 * information (or be NULL).

1307 *

1308 * NOTE! As pre­0.97 versions of mount() didn't use this setup, the

1309 * flags used to have a special 16­bit magic number in the high word:

1310 * 0xC0ED. If this magic number is present, the high word is discarded.

1311 */

1312 long do_mount(char * dev_name, char * dir_name, char *type_page,

1313 unsigned long flags, void *data_page)

1314 {

1315 struct file_system_type * fstype;

1316 struct nameidata nd;

1317 struct vfsmount *mnt = NULL;

1318 struct super_block *sb;

1319 int retval = 0;

1320

1321 /* Discard magic */

1322 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)

1323 flags &= ~MS_MGC_MSK;

1324

1325 /* Basic sanity checks */

1326

1327 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))

1328 return ­EINVAL;

1329 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))

1330 return ­EINVAL;

1331

1332 /* OK, looks good, now let's see what do they want */

1333

1334 /* just change the flags? ­ capabilities are checked in do_remount() */

1335 if (flags & MS_REMOUNT)

1336 return do_remount(dir_name, flags & ~MS_REMOUNT,

1337 (char *) data_page);

1338

1339 /* "mount ­­bind"? Equivalent to older "mount ­t bind" */

1340 /* No capabilities? What if users do thousands of these? */

1341 if (flags & MS_BIND)

1342 return do_loopback(dev_name, dir_name);

1343

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

499

dir_name 0
0 memchr()

0 0 dev_name
dev_name 0 copy_mount_options()

PAGE_SIZE­1 dev_name 0

MS_REMOUNT 1
MS_NOSUID

0 1 do_remount()
super.c do_mount()

/dev/loopback

“loopback
losetup ioctl() /dev/loop0 /blkfile

/dev/loop0 /blkfile
losetup ­e des /dev/loop0 /blkfile

­e des /dev/loop0 /blkfile
DES XOR “­e

xor ­e /dev/loop0 /blkfile ”

mkfs ­t ext2 /dev/loop0 100
­t ext2 Ext2 100

100 /blkfile

dd if=/dev/zero of=/blkfile bs=1k count=100
/dev/hda2

mount ­t ext2 /dev/loop0 /nmt

/dev/hda1 /
/dev/loop0

/dev /dev/loop0 /dev/loop1 mknod
7

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

500

mount “­o loop
“bind “­t bind

flags MS_BIND 1 1341 do_loopback()
super.c

==================== fs/super.c 1344 1384 ====================
[sys_mount()>do_mount()]
1344 /* For the rest we need the type */

1345

1346 if (!type_page || !memchr(type_page, 0, PAGE_SIZE))

1347 return ­EINVAL;

1348

1349 #if 0 /* Can be deleted again. Introduced in patch­2.3.99­pre6 */

1350 /* loopback mount? This is special ­ requires fewer capabilities */

1351 if (strcmp(type_page, "bind")==0)

1352 return do_loopback(dev_name, dir_name);

1353 #endif

1354

1355 /* for the rest we _really_ need capabilities... */

1356 if (!capable(CAP_SYS_ADMIN))

1357 return ­EPERM;

1358

1359 /* ... filesystem driver... */

1360 fstype = get_fs_type(type_page);

1361 if (!fstype)

1362 return ­ENODEV;

1363

1364 /* ... and mountpoint. Do the lookup first to force automounting. */

1365 if (path_init(dir_name,

1366 LOOKUP_FOLLOW|LOOKUP_POSITIVE|LOOKUP_DIRECTORY, &nd))

1367 retval = path_walk(dir_name, &nd);

1368 if (retval)

1369 goto fs_out;

1370

1371 /* get superblock, locks mount_sem on success */

1372 if (fstype­>fs_flags & FS_NOMOUNT)

1373 sb = ERR_PTR(­EINVAL);

1374 else if (fstype­>fs_flags & FS_REQUIRES_DEV)

1375 sb = get_sb_bdev(fstype, dev_name, flags, data_page);

1376 else if (fstype­>fs_flags & FS_SINGLE)

1377 sb = get_sb_single(fstype, flags, data_page);

1378 else

1379 sb = get_sb_nodev(fstype, flags, data_page);

1380

1381 retval = PTR_ERR(sb);

1382 if (IS_ERR(sb))

1383 goto dput_out;

1384

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

501

file_system_type include/linux/fs.h

==================== include/linux/fs.h 839 846 ====================
839 struct file_system_type {

840 const char *name;

841 int fs_flags;

842 struct super_block *(*read_super) (struct super_block *, void *, int);

843 struct module *owner;

844 struct vfsmount *kern_mnt; /* For kernel mount, if it's FS_SINGLE fs */

845 struct file_system_type * next;

846 };

fs_flags fs.h

==================== include/linux/fs.h 79 95 ====================
79 /* public flags for file_system_type */

80 #define FS_REQUIRES_DEV 1

81 #define FS_NO_DCACHE 2 /* Only dcache the necessary things. */

82 #define FS_NO_PRELIM 4 /* prevent preloading of dentries, even if

83 * FS_NO_DCACHE is not set.

84 */

85 #define FS_SINGLE 8 /*

86 * Filesystem that can have only one superblock;

87 * kernel­wide vfsmnt is placed in ­>kern_mnt by

88 * kern_mount() which must be called _after_

89 * register_filesystem().

90 */

91 #define FS_NOMOUNT 16 /* Never mount from userland */

92 #define FS_LITTER 32 /* Keeps the tree in dcache */

93 #define FS_ODD_RENAME 32768 /* Temporary stuff; will go away as soon

94 * as nfs_rename() will be cleaned up

95 */

read_super
VFS

mount “­t
type_page file_system_type

get_fs_type() file_system_type
super.c

==================== fs/super.c 262 279 ====================
[sys_mount()>do_mount()>get_fs_type()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

502

262 struct file_system_type *get_fs_type(const char *name)

263 {

264 struct file_system_type *fs;

265

266 read_lock(&file_systems_lock);

267 fs = *(find_filesystem(name));

268 if (fs && !try_inc_mod_count(fs­>owner))

269 fs = NULL;

270 read_unlock(&file_systems_lock);

271 if (!fs && (request_module(name) == 0)) {

272 read_lock(&file_systems_lock);

273 fs = *(find_filesystem(name));

274 if (fs && !try_inc_mod_count(fs­>owner))

275 fs = NULL;

276 read_unlock(&file_systems_lock);

277 }

278 return fs;

279 }

==================== fs/super.c 94 101 ====================
[sys_mount()>do_mount()>get_fs_type()>find_filesystem()]
94 static struct file_system_type **find_filesystem(const char *name)

95 {

96 struct file_system_type **p;

97 for (p=&file_systems; *p; p=&(*p)­>next)

98 if (strcmp((*p)­>name,name) == 0)

99 break;

100 return p;

101 }

file_system_type file_systems
file_system_type

register_filesystem()

find_filesystem() file_systems
file_system_type owner

module file_system_type
try_inc_mod_count() module

file_systems request_module()

file_systems
file_system_type Linux

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

503

do_mount()
dentry path_init() path_walk()

dentry nameidata nd dentry
super_block

(1) pipe kern_mount()
mount() fs_flag

FS_NOMOUNT 1
super_block mount()

(2) fs_flags
FS_REQUIRES_DEV 1 ext2 minix ufs

get_sb_bdev()
(3) super_block

super_block
file_system_type fs_flags FS_SINGLE 1

(4) fs_flags FS_NOMOUNT FS_REQUIRE_DEV
FS_SINGLE 0 ”

get_sb_nodev() super_block
file_system_type fs_flags

file_system_type fs.h

==================== include/linux/fs.h 848 857 ====================
848 #define DECLARE_FSTYPE(var,type,read,flags) \

849 struct file_system_type var = { \

850 name: type, \

851 read_super: read, \

852 fs_flags: flags, \

853 owner: THIS_MODULE, \

854 }

855

856 #define DECLARE_FSTYPE_DEV(var,type,read) \

857 DECLARE_FSTYPE(var,type,read,FS_REQUIRES_DEV)

DECLARE_FSTYPE_DEV
FS_REQUIRE_DEV 1 0 fs/ext2/super.c ext2_fs_type

==================== fs/ext2/super.c 786 786 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

504

786 static DECLARE_FSTYPE_DEV(ext2_fs_type, "ext2", ext2_read_super);

fs/msdos/msdosfs_syms.c msdos_fs_type

==================== fs/msdos/msdosfs_syms.c 29 29 ====================
29 static DECLARE_FSTYPE_DEV(msdos_fs_type, "msdos", msdos_read_super);

DECLARE_FSTYPE
fs_flags fs/pipe.c pipe_fs_type

==================== fs/pipe.c 632 633 ====================
632 static DECLARE_FSTYPE(pipe_fs_type, "pipefs", pipefs_read_super,

633 FS_NOMOUNT|FS_SINGLE);

fs/ramfs/inode.c ramfs_fs_type

==================== fs/ramfs/inode.c 336 336 ====================
336 static DECLARE_FSTYPE(ramfs_fs_type, "ramfs", ramfs_read_super, FS_LITTER);

flags FS_SINGLE
get_sb_bdev()

get_sb_single() get_sb_single() get_sb_nodev()
dev_name NULL fs/super.c

==================== fs/super.c 785 808 ====================
[sys_mount()>do_mount()>get_sb_bdev()]
785 static struct super_block *get_sb_bdev(struct file_system_type *fs_type,

786 char *dev_name, int flags, void * data)

787 {

788 struct inode *inode;

789 struct block_device *bdev;

790 struct block_device_operations *bdops;

791 struct super_block * sb;

792 struct nameidata nd;

793 kdev_t dev;

794 int error = 0;

795 /* What device it is? */

796 if (!dev_name || !*dev_name)

797 return ERR_PTR(­EINVAL);

798 if (path_init(dev_name, LOOKUP_FOLLOW|LOOKUP_POSITIVE, &nd))

799 error = path_walk(dev_name, &nd);

800 if (error)

801 return ERR_PTR(error);

802 inode = nd.dentry­>d_inode;

803 error = ­ENOTBLK;

804 if (!S_ISBLK(inode­>i_mode))

805 goto out;

806 error = ­EACCES;

807 if (IS_NODEV(inode))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

505

808 goto out;

dev_name path_init()
path_walk() dentry inode inode

i_mode S_IFBLK 1 S_ISBLK()
include/linux/stat.h

==================== include/linux/stat.h 28 28 ====================
28 #define S_ISBLK(m) (((m) & S_IFMT) == S_IFBLK)

inode path_walk()
Ext2 path_walk()
ext2_read_inode()

==================== fs/ext2/inode.c 1059 1078 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()>ext2_read_inode()]
1059 if (inode­>i_ino == EXT2_ACL_IDX_INO ||

1060 inode­>i_ino == EXT2_ACL_DATA_INO)

1061 /* Nothing to do */ ;

1062 else if (S_ISREG(inode­>i_mode)) {

1063 inode­>i_op = &ext2_file_inode_operations;

1064 inode­>i_fop = &ext2_file_operations;

1065 inode­>i_mapping­>a_ops = &ext2_aops;

1066 } else if (S_ISDIR(inode­>i_mode)) {

1067 inode­>i_op = &ext2_dir_inode_operations;

1068 inode­>i_fop = &ext2_dir_operations;

1069 } else if (S_ISLNK(inode­>i_mode)) {

1070 if (!inode­>i_blocks)

1071 inode­>i_op = &ext2_fast_symlink_inode_operations;

1072 else {

1073 inode­>i_op = &page_symlink_inode_operations;

1074 inode­>i_mapping­>a_ops = &ext2_aops;

1075 }

1076 } else

1077 init_special_inode(inode, inode­>i_mode,

1078 le32_to_cpu(raw_inode­>i_block[0]));

init_special_inode()
fs/devices.c

==================== fs/devices.c 200 216 ====================
[path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()>ext2_read_inode()>init_special_inode()]
200 void init_special_inode(struct inode *inode, umode_t mode, int rdev)

201 {

202 inode­>i_mode = mode;

203 if (S_ISCHR(mode)) {

204 inode­>i_fop = &def_chr_fops;

205 inode­>i_rdev = to_kdev_t(rdev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

506

206 } else if (S_ISBLK(mode)) {

207 inode­>i_fop = &def_blk_fops;

208 inode­>i_rdev = to_kdev_t(rdev);

209 inode­>i_bdev = bdget(rdev);

210 } else if (S_ISFIFO(mode))

211 inode­>i_fop = &def_fifo_fops;

212 else if (S_ISSOCK(mode))

213 inode­>i_fop = &bad_sock_fops;

214 else

215 printk(KERN_DEBUG "init_special_inode: bogus imode (%o)\n", mode);

216 }

inode i_dev
i_rdev ext2_inode

ext2_inode i_block[] i_block[0]
init_special_node() to_kdev_t() inode

i_rdev inode i_bdev block_device
bdget()

get_sb_bdev() fs/super.c

==================== fs/super.c 809 847 ====================
[sys_mount()>do_mount()>get_sb_bdev()]
809 bdev = inode­>i_bdev;

810 bdops = devfs_get_ops (devfs_get_handle_from_inode (inode));

811 if (bdops) bdev­>bd_op = bdops;

812 /* Done with lookups, semaphore down */

813 down(&mount_sem);

814 dev = to_kdev_t(bdev­>bd_dev);

815 sb = get_super(dev);

816 if (sb) {

817 if (fs_type == sb­>s_type &&

818 ((flags ^ sb­>s_flags) & MS_RDONLY) == 0) {

819 path_release(&nd);

820 return sb;

821 }

822 } else {

823 mode_t mode = FMODE_READ; /* we always need it ;­) */

824 if (!(flags & MS_RDONLY))

825 mode |= FMODE_WRITE;

826 error = blkdev_get(bdev, mode, 0, BDEV_FS);

827 if (error)

828 goto out;

829 check_disk_change(dev);

830 error = ­EACCES;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

507

831 if (!(flags & MS_RDONLY) && is_read_only(dev))

832 goto out1;

833 error = ­EINVAL;

834 sb = read_super(dev, bdev, fs_type, flags, data, 0);

835 if (sb) {

836 get_filesystem(fs_type);

837 path_release(&nd);

838 return sb;

839 }

840 out1:

841 blkdev_put(bdev, BDEV_FS);

842 }

843 out:

844 path_release(&nd);

845 up(&mount_sem);

846 return ERR_PTR(error);

847 }

block_device bd_op block_device_operations
block_device

bd_op block_device_operations
VFS

Linux
“devfs /dev

/dev
mknod()

8 255
Linux 16 /dev

/dev
/dev/hda/1

devfs
devfs_get_handle_from_inode() devfs

devfs NULL
devfs

16 8 to_kdev_t()

super_block
super_block super_blocks

super_block s_list
get_super() fs/super.c

==================== fs/super.c 631 656 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

508

[sys_mount()>do_mount()>get_sb_bdev()>get_super()]
631 /**

632 * get_super ­ get the superblock of a device

633 * @dev: device to get the superblock for

634 *

635 * Scans the superblock list and finds the superblock of the file system

636 * mounted on the device given. %NULL is returned if no match is found.

637 */

638

639 struct super_block * get_super(kdev_t dev)

640 {

641 struct super_block * s;

642

643 if (!dev)

644 return NULL;

645 restart:

646 s = sb_entry(super_blocks.next);

647 while (s != sb_entry(&super_blocks))

648 if (s­>s_dev == dev) {

649 wait_on_super(s);

650 if (s­>s_dev == dev)

651 return s;

652 goto restart;

653 } else

654 s = sb_entry(s­>s_list.next);

655 return NULL;

656 }

sb_entry() include/linux/fs.h

==================== include/linux/fs.h 664 664 ====================
664 #define sb_entry(list) list_entry((list), struct super_block, s_list)

get_super()
super_block blkdev_get()

fs/block_dev.c

==================== fs/block_dev.c 606 642 ====================
[sys_mount()>do_mount()>get_sb_bdev()>blkdev_get()]
606 int blkdev_get(struct block_device *bdev, mode_t mode, unsigned flags, int kind)

607 {

608 int ret = ­ENODEV;

609 kdev_t rdev = to_kdev_t(bdev­>bd_dev); /* this should become bdev */

610 down(&bdev­>bd_sem);

611 if (!bdev­>bd_op)

612 bdev­>bd_op = get_blkfops(MAJOR(rdev));

613 if (bdev­>bd_op) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

509

614 /*

615 * This crockload is due to bad choice of ­>open() type.

616 * It will go away.

617 * For now, block device ­>open() routine must _not_

618 * examine anything in 'inode' argument except ­>i_rdev.

619 */

620 struct file fake_file = {};

621 struct dentry fake_dentry = {};

622 struct inode *fake_inode = get_empty_inode();

623 ret = ­ENOMEM;

624 if (fake_inode) {

625 fake_file.f_mode = mode;

626 fake_file.f_flags = flags;

627 fake_file.f_dentry = &fake_dentry;

628 fake_dentry.d_inode = fake_inode;

629 fake_inode­>i_rdev = rdev;

630 ret = 0;

631 if (bdev­>bd_op­>open)

632 ret = bdev­>bd_op­>open(fake_inode, &fake_file);

633 if (!ret)

634 atomic_inc(&bdev­>bd_openers);

635 else if (!atomic_read(&bdev­>bd_openers))

636 bdev­>bd_op = NULL;

637 iput(fake_inode);

638 }

639 }

640 up(&bdev­>bd_sem);

641 return ret;

642 }

block_device bd_dev 8 16
to_kdev_t() 16 32 block_device

bd_op blocK_device_operations devfs
get_blkfops()

get_blkfops() fs/block_dev.c

==================== fs/block_dev.c 487 507 ====================
[sys_mount()>do_mount()>get_sb_bdev()>blkdev_get()>get_blkfops()]
487 /*

488 Return the function table of a device.

489 Load the driver if needed.

490 */

491 const struct block_device_operations * get_blkfops(unsigned int major)

492 {

493 const struct block_device_operations *ret = NULL;

494

495 /* major 0 is used for non­device mounts */

496 if (major && major < MAX_BLKDEV) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

510

497 #ifdef CONFIG_KMOD

498 if (!blkdevs[major].bdops) {

499 char name[20];

500 sprintf(name, "block­major­%d", major);

501 request_module(name);

502 }

503 #endif

504 ret = blkdevs[major].bdops;

505 }

506 return ret;

507 }

blkdevs[]
block_device_operations

==================== fs/block_dev.c 468 471 ====================
468 static struct {

469 const char *name;

470 struct block_device_operations *bdops;

471 } blkdevs[MAX_BLKDEV];

block_device_operations

bdops 0 request_module()
get_blkfops() bdev­>bd­>op

file dentry inode

“/dev/hda1
block_device_operations open ide

bd_fops bd_open()

blkdev_get() get_sb_bdev()

check_disk_change()

read_super() super_block
fs/super.c

==================== fs/super.c 721 755 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()]
721 static struct super_block * read_super(kdev_t dev, struct block_device *bdev,

722 struct file_system_type *type, int flags,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

511

723 void *data, int silent)

724 {

725 struct super_block * s;

726 s = get_empty_super();

727 if (!s)

728 goto out;

729 s­>s_dev = dev;

730 s­>s_bdev = bdev;

731 s­>s_flags = flags;

732 s­>s_dirt = 0;

733 sema_init(&s­>s_vfs_rename_sem,1);

734 sema_init(&s­>s_nfsd_free_path_sem,1);

735 s­>s_type = type;

736 sema_init(&s­>s_dquot.dqio_sem, 1);

737 sema_init(&s­>s_dquot.dqoff_sem, 1);

738 s­>s_dquot.flags = 0;

739 lock_super(s);

740 if (!type­>read_super(s, data, silent))

741 goto out_fail;

742 unlock_super(s);

743 /* tell bdcache that we are going to keep this one */

744 if (bdev)

745 atomic_inc(&bdev­>bd_count);

746 out:

747 return s;

748

749 out_fail:

750 s­>s_dev = 0;

751 s­>s_bdev = 0;

752 s­>s_type = NULL;

753 unlock_super(s);

754 return NULL;

755 }

super_blocks super_block
file_system_type

read_super() Ext2 ext2_fs_type
ext2_read_super() ext2_read_super() 250

super_block get_sb_bdev()

==================== fs/super.c 81 86 ====================
[sys_mount()>do_mount()>get_sb_bdev()>get_filesystem()]
81 /* WARNING: This can be used only if we _already_ own a reference */

82 static void get_filesystem(struct file_system_type *fs)

83 {

84 if (fs­>owner)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

512

85 __MOD_INC_USE_COUNT(fs­>owner);

86 }

path_release() path_walk() dentry
vfsmount

do_mount() fs/super.c

==================== fs/super.c 1385 1419 ====================
[sys_mount()>do_mount()]
1385 /* Something was mounted here while we slept */

1386 while(d_mountpoint(nd.dentry) && follow_down(&nd.mnt, &nd.dentry))

1387 ;

1388

1389 /* Refuse the same filesystem on the same mount point */

1390 retval = ­EBUSY;

1391 if (nd.mnt && nd.mnt­>mnt_sb == sb

1392 && nd.mnt­>mnt_root == nd.dentry)

1393 goto fail;

1394

1395 retval = ­ENOENT;

1396 if (!nd.dentry­>d_inode)

1397 goto fail;

1398 down(&nd.dentry­>d_inode­>i_zombie);

1399 if (!IS_DEADDIR(nd.dentry­>d_inode)) {

1400 retval = ­ENOMEM;

1401 mnt = add_vfsmnt(&nd, sb­>s_root, dev_name);

1402 }

1403 up(&nd.dentry­>d_inode­>i_zombie);

1404 if (!mnt)

1405 goto fail;

1406 retval = 0;

1407 unlock_out:

1408 up(&mount_sem);

1409 dput_out:

1410 path_release(&nd);

1411 fs_out:

1412 put_filesystem(fstype);

1413 return retval;

1414

1415 fail:

1416 if (list_empty(&sb­>s_mounts))

1417 kill_super(sb, 0);

1418 goto unlock_out;

1419 }

super_block
path_init() path_walk()

dentry inode vfsmount nameidata nd

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

513

d_mountpoint() dcache.h

==================== include/linux/dcache.h 259 262 ====================
[sys_mount()>do_mount()>d_mountpoint()]
259 static __inline__ int d_mountpoint(struct dentry *dentry)

260 {

261 return !list_empty(&dentry­>d_vfsmnt);

262 }

dentry d_vfsmnt
follow_down()

while

==================== fs/namei.c 375 378 ====================
[sys_mount()>do_mount()>follow_down()]
375 int follow_down(struct vfsmount **mnt, struct dentry **dentry)

376 {

377 return __follow_down(mnt,dentry);

378 }

inline __follow_down()
path_walk() inline fs/namei.c

==================== fs/namei.c 352 373 ====================
352 static inline int __follow_down(struct vfsmount **mnt, struct dentry **dentry)

353 {

354 struct list_head *p;

355 spin_lock(&dcache_lock);

356 p = (*dentry)­>d_vfsmnt.next;

357 while (p != &(*dentry)­>d_vfsmnt) {

358 struct vfsmount *tmp;

359 tmp = list_entry(p, struct vfsmount, mnt_clash);

360 if (tmp­>mnt_parent == *mnt) {

361 *mnt = mntget(tmp);

362 spin_unlock(&dcache_lock);

363 mntput(tmp­>mnt_parent);

364 /* tmp holds the mountpoint, so... */

365 dput(*dentry);

366 *dentry = dget(tmp­>mnt_root);

367 return 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

514

368 }

369 p = p­>next;

370 }

371 spin_unlock(&dcache_lock);

372 return 0;

373 }

vfsmount
include/linux/mount.h

==================== include/linux/mount.h 17 33 ====================
17 struct vfsmount

18 {

19 struct dentry *mnt_mountpoint; /* dentry of mountpoint */

20 struct dentry *mnt_root; /* root of the mounted tree */

21 struct vfsmount *mnt_parent; /* fs we are mounted on */

22 struct list_head mnt_instances; /* other vfsmounts of the same fs */

23 struct list_head mnt_clash; /* those who are mounted on (other */

24 /* instances) of the same dentry */

25 struct super_block *mnt_sb; /* pointer to superblock */

26 struct list_head mnt_mounts; /* list of children, anchored here */

27 struct list_head mnt_child; /* and going through their mnt_child */

28 atomic_t mnt_count;

29 int mnt_flags;

30 char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */

31 struct list_head mnt_list;

32 uid_t mnt_owner;

33 };

• mnt_mountpoint dentry mount_root
dentry

• dentry vfsmount d_vfsmount

vfsmount mnt_clash d_vfsmount
dentry vfsmount

super_block
• mnt_sb super_block

super_block vfsmount
s_mounts

vfsmount mnt_instances s_mounts
• mnt_parent vfsmount vfsmount

vfsmount
vfsmount mnt_child mnt_mounts

vfsmount mnt_child vfsmount mnt_mounts

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

515

vfsmount mnt_mounts

• vfsmount vfsmntlist vfsmount
mnt_list vfsmount mnt_list vfsmntlist

super_block vfsmount

dentry vfsmount

/dev/hda1 /dev/hda2 /dev/hda3 /dev/hda4
/dev/hda1 /dev/hda1 /dev

/dev/hda1 /d11 /d12 /dev/hda2
d2 /dev/hda2 /d11 /d12

/d11/d2 /d12/d2 /dev/hda3 /d11/d2
/d11/d2 /dev/hda3 /d12/d2 /d12

/dev/hda4 /d12/d2 /dev/hda2 d2
vfsmount dentry d_vfsmount

d2
/dev/hda3 /dev/hda4

/dev/hda2 /d11/d2 /d12/d2 vfsmount
__follow_down() while dentry

d_vfsrnount vfsmount vfsmount

do_mount() super_block
dentry add_vfsmnt()

fs/super.c

==================== fs/super.c 281 360 ====================
[sys_mount()>do_mount()>add_vfsmnt()]
281 static LIST_HEAD(vfsmntlist);

282

283 /**

284 * add_vfsmnt ­ add a new mount node

285 * @nd: location of mountpoint or %NULL if we want a root node

286 * @root: root of (sub)tree to be mounted

287 * @dev_name: device name to show in /proc/mounts or %NULL (for "none").

288 *

289 * This is VFS idea of mount. New node is allocated, bound to a tree

290 * we are mounting and optionally (OK, usually) registered as mounted

291 * on a given mountpoint. Returns a pointer to new node or %NULL in

292 * case of failure.

293 *

294 * Potential reason for failure (aside of trivial lack of memory) is a

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

516

295 * deleted mountpoint. Caller must hold ­>i_zombie on mountpoint

296 * dentry (if any).

297 *

298 * Node is marked as MNT_VISIBLE (visible in /proc/mounts) unless both

299 * @nd and @devname are %NULL. It works since we pass non­%NULL @devname

300 * when we are mounting root and kern_mount() filesystems are deviceless.

301 * If we will get a kern_mount() filesystem with nontrivial @devname we

302 * will have to pass the visibility flag explicitly, so if we will add

303 * support for such beasts we'll have to change prototype.

304 */

305

306 static struct vfsmount *add_vfsmnt(struct nameidata *nd,

307 struct dentry *root,

308 const char *dev_name)

309 {

310 struct vfsmount *mnt;

311 struct super_block *sb = root­>d_inode­>i_sb;

312 char *name;

313

314 mnt = kmalloc(sizeof(struct vfsmount), GFP_KERNEL);

315 if (!mnt)

316 goto out;

317 memset(mnt, 0, sizeof(struct vfsmount));

318

319 if (nd || dev_name)

320 mnt­>mnt_flags = MNT_VISIBLE;

321

322 /* It may be NULL, but who cares? */

323 if (dev_name) {

324 name = kmalloc(strlen(dev_name)+1, GFP_KERNEL);

325 if (name) {

326 strcpy(name, dev_name);

327 mnt­>mnt_devname = name;

328 }

329 }

330 mnt­>mnt_owner = current­>uid;

331 atomic_set(&mnt­>mnt_count,1);

332 mnt­>mnt_sb = sb;

333

334 spin_lock(&dcache_lock);

335 if (nd && !IS_ROOT(nd­>dentry) && d_unhashed(nd­>dentry))

336 goto fail;

337 mnt­>mnt_root = dget(root);

338 mnt­>mnt_mountpoint = nd ? dget(nd­>dentry) : dget(root);

339 mnt­>mnt_parent = nd ? mntget(nd­>mnt) : mnt;

340

341 if (nd) {

342 list_add(&mnt­>mnt_child, &nd­>mnt­>mnt_mounts);

343 list_add(&mnt­>mnt_clash, &nd­>dentry­>d_vfsmnt);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

517

344 } else {

345 INIT_LIST_HEAD(&mnt­>mnt_child);

346 INIT_LIST_HEAD(&mnt­>mnt_clash);

347 }

348 INIT_LIST_HEAD(&mnt­>mnt_mounts);

349 list_add(&mnt­>mnt_instances, &sb­>s_mounts);

350 list_add(&mnt­>mnt_list, vfsmntlist.prev);

351 spin_unlock(&dcache_lock);

352 out:

353 return mnt;

354 fail:

355 spin_unlock(&dcache_lock);

356 if (mnt­>mnt_devname)

357 kfree(mnt­>mnt_devname);

358 kfree(mnt);

359 return NULL;

360 }

do_mount() do_loopback()
do_loopback() fs/super.c

==================== fs/super.c 1182 1228 ====================
[sys_mount()>do_mount()>do_loopback()]
1182 /*

1183 * do loopback mount.

1184 */

1185 static int do_loopback(char *old_name, char *new_name)

1186 {

1187 struct nameidata old_nd, new_nd;

1188 int err = 0;

1189 if (!old_name || !*old_name)

1190 return ­EINVAL;

1191 if (path_init(old_name, LOOKUP_POSITIVE, &old_nd))

1192 err = path_walk(old_name, &old_nd);

1193 if (err)

1194 goto out;

1195 if (path_init(new_name, LOOKUP_POSITIVE, &new_nd))

1196 err = path_walk(new_name, &new_nd);

1197 if (err)

1198 goto out1;

1199 err = mount_is_safe(&new_nd);

1200 if (err)

1201 goto out2;

1202 err = ­EINVAL;

1203 if (S_ISDIR(new_nd.dentry­>d_inode­>i_mode) !=

1204 S_ISDIR(old_nd.dentry­>d_inode­>i_mode))

1205 goto out2;

1206

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

518

1207 err = ­ENOMEM;

1208 if (old_nd.mnt­>mnt_sb­>s_type­>fs_flags & FS_SINGLE)

1209 get_filesystem(old_nd.mnt­>mnt_sb­>s_type);

1210

1211 down(&mount_sem);

1212 /* there we go */

1213 down(&new_nd.dentry­>d_inode­>i_zombie);

1214 if (IS_DEADDIR(new_nd.dentry­>d_inode))

1215 err = ­ENOENT;

1216 else if (add_vfsmnt(&new_nd, old_nd.dentry, old_nd.mnt­>mnt_devname))

1217 err = 0;

1218 up(&new_nd.dentry­>d_inode­>i_zombie);

1219 up(&mount_sem);

1220 if (err && old_nd.mnt­>mnt_sb­>s_type­>fs_flags & FS_SINGLE)

1221 put_filesystem(old_nd.mnt­>mnt_sb­>s_type);

1222 out2:

1223 path_release(&new_nd);

1224 out1:

1225 path_release(&old_nd);

1226 out:

1227 return err;

1228 }

old_name new_name do_mount()

ioctl() LOOP_SET_FD

drivers/block/loop.c loop_set_fd()
add_vfsmt() do_mount()

add_vfsmt() nameidata
/dev/loop0 nameidata dentry

dentry
dentry

path_walk() dentry follow_down()
dentry dentry

dentry inode
dentry

”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

519

sys_umount() fs/super.c

==================== fs/super.c 1109 1153 ====================
1109 /*

1110 * Now umount can handle mount points as well as block devices.

1111 * This is important for filesystems which use unnamed block devices.

1112 *

1113 * We now support a flag for forced unmount like the other 'big iron'

1114 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD

1115 */

1116

1117 asmlinkage long sys_umount(char * name, int flags)

1118 {

1119 struct nameidata nd;

1120 char *kname;

1121 int retval;

1122

1123 lock_kernel();

1124 kname = getname(name);

1125 retval = PTR_ERR(kname);

1126 if (IS_ERR(kname))

1127 goto out;

1128 retval = 0;

1129 if (path_init(kname, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &nd))

1130 retval = path_walk(kname, &nd);

1131 putname(kname);

1132 if (retval)

1133 goto out;

1134 retval = ­EINVAL;

1135 if (nd.dentry != nd.mnt­>mnt_root)

1136 goto dput_and_out;

1137

1138 retval = ­EPERM;

1139 if (!capable(CAP_SYS_ADMIN) && current­>uid!=nd.mnt­>mnt_owner)

1140 goto dput_and_out;

1141

1142 dput(nd.dentry);

1143 /* puts nd.mnt */

1144 down(&mount_sem);

1145 retval = do_umount(nd.mnt, 0, flags);

1146 up(&mount_sem);

1147 goto out;

1148 dput_and_out:

1149 path_release(&nd);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

520

1150 out:

1151 unlock_kernel();

1152 return retval;

1153 }

path_init() LOOKUP_FOLLOW 1
path_walk() nd.dentry dentry

nd.mnt vfsmount
nd_dentry

nd.mnt­>mnt_root dentry
nameidata nd

nd.mnt vfsmount do_umount()
do_umount() do_umount() fs/super.c

==================== fs/super.c 1013 1055 ====================
[sys_umount()>do_umount()]
1013 static int do_umount(struct vfsmount *mnt, int umount_root, int flags)

1014 {

1015 struct super_block * sb = mnt­>mnt_sb;

1016

1017 /*

1018 * No sense to grab the lock for this test, but test itself looks

1019 * somewhat bogus. Suggestions for better replacement?

1020 * Ho­hum... In principle, we might treat that as umount + switch

1021 * to rootfs. GC would eventually take care of the old vfsmount.

1022 * The problem being: we have to implement rootfs and GC for that ;­)

1023 * Actually it makes sense, especially if rootfs would contain a

1024 * /reboot ­ static binary that would close all descriptors and

1025 * call reboot(9). Then init(8) could umount root and exec /reboot.

1026 */

1027 if (mnt == current­>fs­>rootmnt && !umount_root) {

1028 int retval = 0;

1029 /*

1030 * Special case for "unmounting" root ...

1031 * we just try to remount it readonly.

1032 */

1033 mntput(mnt);

1034 if (!(sb­>s_flags & MS_RDONLY))

1035 retval = do_remount_sb(sb, MS_RDONLY, 0);

1036 return retval;

1037 }

1038

1039 spin_lock(&dcache_lock);

1040

1041 if (mnt­>mnt_instances.next != mnt­>mnt_instances.prev) {

1042 if (atomic_read(&mnt­>mnt_count) > 2) {

1043 spin_unlock(&dcache_lock);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

521

1044 mntput(mnt);

1045 return ­EBUSY;

1046 }

1047 if (sb­>s_type­>fs_flags & FS_SINGLE)

1048 put_filesystem(sb­>s_type);

1049 /* We hold two references, so mntput() is safe */

1050 mntput(mnt);

1051 remove_vfsmnt(mnt);

1052 return 0;

1053 }

1054 spin_unlock(&dcache_lock);

1055

umount_root sys_umount()
0 umount() umount()

vfsmount mnt_count add_vfsmnt() 1
mntget() mntput()

path_init() mntget() path_release() mntput() follow_up()
follow_down() mntget() mntput() do_umount() vfsmount

2
mntput()

vfsmount mnt_instances super_block
s_mounts super_block s_mounts
vfsmount vfsmount mnt_instances next prev

super_block s_mounts
vfsmount vfsmount mnt_instances

remove_vfsmnt()
remove_vfsmnt()

fs/super.c

==================== fs/super.c 408 428 ====================
[sys_umount()>do_umount()>remove_vfsmnt()]
408 /*

409 * Called with spinlock held, releases it.

410 */

411 static void remove_vfsmnt(struct vfsmount *mnt)

412 {

413 /* First of all, remove it from all lists */

414 list_del(&mnt­>mnt_instances);

415 list_del(&mnt­>mnt_clash);

416 list_del(&mnt­>mnt_list);

417 list_del(&mnt­>mnt_child);

418 spin_unlock(&dcache_lock);

419 /* Now we can work safely */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

522

420 if (mnt­>mnt_parent != mnt)

421 mntput(mnt­>mnt_parent);

422

423 dput(mnt­>mnt_mountpoint);

424 dput(mnt­>mnt_root);

425 if (mnt­>mnt_devname)

426 kfree(mnt­>mnt_devname);

427 kfree(mnt);

428 }

dput() dentry
0 dentry_unused

do_umount() vfsmount
DQUOT_OFF()

acct_auto_close()

==================== fs/super.c 1056 1107 ====================
[sys_umount()>do_umount()]
1056 /*

1057 * Before checking whether the filesystem is still busy,

1058 * make sure the kernel doesn't hold any quota files open

1059 * on the device. If the umount fails, too bad ­­ there

1060 * are no quotas running any more. Just turn them on again.

1061 */

1062 DQUOT_OFF(sb);

1063 acct_auto_close(sb­>s_dev);

1064

1065 /*

1066 * If we may have to abort operations to get out of this

1067 * mount, and they will themselves hold resources we must

1068 * allow the fs to do things. In the Unix tradition of

1069 * 'Gee thats tricky lets do it in userspace' the umount_begin

1070 * might fail to complete on the first run through as other tasks

1071 * must return, and the like. Thats for the mount program to worry

1072 * about for the moment.

1073 */

1074

1075 if((flags&MNT_FORCE) && sb­>s_op­>umount_begin)

1076 sb­>s_op­>umount_begin(sb);

1077

1078 /*

1079 * Shrink dcache, then fsync. This guarantees that if the

1080 * filesystem is quiescent at this point, then (a) only the

1081 * root entry should be in use and (b) that root entry is

1082 * clean.

1083 */

1084 shrink_dcache_sb(sb);

1085 fsync_dev(sb­>s_dev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

523

1086

1087 if (sb­>s_root­>d_inode­>i_state) {

1088 mntput(mnt);

1089 return ­EBUSY;

1090 }

1091

1092 /* Something might grab it again ­ redo checks */

1093

1094 spin_lock(&dcache_lock);

1095 if (atomic_read(&mnt­>mnt_count) > 2) {

1096 spin_unlock(&dcache_lock);

1097 mntput(mnt);

1098 return ­EBUSY;

1099 }

1100

1101 /* OK, that's the point of no return */

1102 mntput(mnt);

1103 remove_vfsmnt(mnt);

1104

1105 kill_super(sb, umount_root);

1106 return 0;

1107 }

super_operations
umount_begin

dentry degt()
dentry 1

dentry dput() 0
dentry_unused dentry

dentry dentry_unused
dentry shrink_dcache_sb() fs/dcache.c

==================== fs/dcache.c 378 428 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()]
378 /**

379 * shrink_dcache_sb ­ shrink dcache for a superblock

380 * @sb: superblock

381 *

382 * Shrink the dcache for the specified super block. This

383 * is used to free the dcache before unmounting a file

384 * system

385 */

386

387 void shrink_dcache_sb(struct super_block * sb)

388 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

524

389 struct list_head *tmp, *next;

390 struct dentry *dentry;

391

392 /*

393 * Pass one ... move the dentries for the specified

394 * superblock to the most recent end of the unused list.

395 */

396 spin_lock(&dcache_lock);

397 next = dentry_unused.next;

398 while (next != &dentry_unused) {

399 tmp = next;

400 next = tmp­>next;

401 dentry = list_entry(tmp, struct dentry, d_lru);

402 if (dentry­>d_sb != sb)

403 continue;

404 list_del(tmp);

405 list_add(tmp, &dentry_unused);

406 }

407

408 /*

409 * Pass two ... free the dentries for this superblock.

410 */

411 repeat:

412 next = dentry_unused.next;

413 while (next != &dentry_unused) {

414 tmp = next;

415 next = tmp­>next;

416 dentry = list_entry(tmp, struct dentry, d_lru);

417 if (dentry­>d_sb != sb)

418 continue;

419 if (atomic_read(&dentry­>d_count))

420 continue;

421 dentry_stat.nr_unused­­;

422 list_del(tmp);

423 INIT_LIST_HEAD(tmp);

424 prune_one_dentry(dentry);

425 goto repeat;

426 }

427 spin_unlock(&dcache_lock);

428 }

dentry prune_one_dentry()
dcache.c

==================== fs/dcache.c 298 316 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>prune_one_dentry()]
298 /*

299 * Throw away a dentry ­ free the inode, dput the parent.

300 * This requires that the LRU list has already been

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

525

301 * removed.

302 * Called with dcache_lock, drops it and then regains.

303 */

304 static inline void prune_one_dentry(struct dentry * dentry)

305 {

306 struct dentry * parent;

307

308 list_del_init(&dentry­>d_hash);

309 list_del(&dentry­>d_child);

310 dentry_iput(dentry);

311 parent = dentry­>d_parent;

312 d_free(dentry);

313 if (parent != dentry)

314 dput(parent);

315 spin_lock(&dcache_lock);

316 }

do_umount() fsync_dev()

fsync_dev() fs/buffer.c

==================== fs/buffer.c 304 315 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>fsync_dev()]
304 int fsync_dev(kdev_t dev)

305 {

306 sync_buffers(dev, 0);

307

308 lock_kernel();

309 sync_supers(dev);

310 sync_inodes(dev);

311 DQUOT_SYNC(dev);

312 unlock_kernel();

313

314 return sync_buffers(dev, 1);

315 }

sync_supers() fs/super.c

==================== fs/super.c 605 629 ====================
605 /*

606 * Note: check the dirty flag before waiting, so we don't

607 * hold up the sync while mounting a device. (The newly

608 * mounted device won't need syncing.)

609 */

610 void sync_supers(kdev_t dev)

611 {

612 struct super_block * sb;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

526

613

614 for (sb = sb_entry(super_blocks.next);

615 sb != sb_entry(&super_blocks);

616 sb = sb_entry(sb­>s_list.next)) {

617 if (!sb­>s_dev)

618 continue;

619 if (dev && sb­>s_dev != dev)

620 continue;

621 if (!sb­>s_dirt)

622 continue;

623 lock_super(sb);

624 if (sb­>s_dev && sb­>s_dirt && (!dev || dev == sb­>s_dev))

625 if (sb­>s_op && sb­>s_op­>write_super)

626 sb­>s_op­>write_super(sb);

627 unlock_super(sb);

628 }

629 }

super_block s_dirt 1
0

super_block s_dirt 0
super_block

s_op super_operations write_super
Ext2 ext2_write_super() ext2_read_super()

ext2_write_super()
sync_inodes() fs/inode.c

==================== fs/inode.c 237 265 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>fsync_dev()>sync_inodes()]
237 /**

238 * sync_inodes

239 * @dev: device to sync the inodes from.

240 *

241 * sync_inodes goes through the super block's dirty list,

242 * writes them out, and puts them back on the normal list.

243 */

244

245 void sync_inodes(kdev_t dev)

246 {

247 struct super_block * sb = sb_entry(super_blocks.next);

248

249 /*

250 * Search the super_blocks array for the device(s) to sync.

251 */

252 spin_lock(&inode_lock);

253 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb­>s_list.next)) {

254 if (!sb­>s_dev)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

527

255 continue;

256 if (dev && sb­>s_dev != dev)

257 continue;

258

259 sync_list(&sb­>s_dirty);

260

261 if (dev)

262 break;

263 }

264 spin_unlock(&inode_lock);

265 }

super_block s_dirty inode i_list
super_block s_dirty sync_list

fs/inode.c

==================== fs/inode.c 229 235 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>fsync_dev()>sync_inodes()>sync_list()]
229 static inline void sync_list(struct list_head *head)

230 {

231 struct list_head * tmp;

232

233 while ((tmp = head­>prev) != head)

234 sync_one(list_entry(tmp, struct inode, i_list), 0);

235 }

==================== fs/inode.c 194 227 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>fsync_dev()>sync_inodes()>sync_list()>sync_one()]
194 static inline void sync_one(struct inode *inode, int sync)

195 {

196 if (inode­>i_state & I_LOCK) {

197 __iget(inode);

198 spin_unlock(&inode_lock);

199 __wait_on_inode(inode);

200 iput(inode);

201 spin_lock(&inode_lock);

202 } else {

203 unsigned dirty;

204

205 list_del(&inode­>i_list);

206 list_add(&inode­>i_list, atomic_read(&inode­>i_count)

207 ? &inode_in_use

208 : &inode_unused);

209 /* Set I_LOCK, reset I_DIRTY */

210 dirty = inode­>i_state & I_DIRTY;

211 inode­>i_state |= I_LOCK;

212 inode­>i_state &= ~I_DIRTY;

213 spin_unlock(&inode_lock);

214

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

528

215 filemap_fdatasync(inode­>i_mapping);

216

217 /* Don't write the inode if only I_DIRTY_PAGES was set */

218 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC))

219 write_inode(inode, sync);

220

221 filemap_fdatawait(inode­>i_mapping);

222

223 spin_lock(&inode_lock);

224 inode­>i_state &= ~I_LOCK;

225 wake_up(&inode­>i_wait);

226 }

227 }

==================== fs/inode.c 174 178 ====================
[sys_umount()>do_umount()>shrink_dcache_sb()>fsync_dev()>sync_inodes()>sync_list()>sync_one()>write_inode()]
174 static inline void write_inode(struct inode *inode, int sync)

175 {

176 if (inode­>i_sb && inode­>i_sb­>s_op && inode­>i_sb­>s_op­>write_inode)

177 inode­>i_sb­>s_op­>write_inode(inode, sync);

178 }

Ext2 write_inode ext2_write_inode()
ext2_read_inode()

sync_buffers()

super_block
includc/linux/fs.h

==================== include/linux/fs.h 665 725 ====================
665 struct super_block {

666 struct list_head s_list; /* Keep this first */

667 kdev_t s_dev;

668 unsigned long s_blocksize;

669 unsigned char s_blocksize_bits;

670 unsigned char s_lock;

671 unsigned char s_dirt;

672 struct file_system_type *s_type;

673 struct super_operations *s_op;

674 struct dquot_operations *dq_op;

675 unsigned long s_flags;

676 unsigned long s_magic;

677 struct dentry *s_root;

678 wait_queue_head_t s_wait;

679

680 struct list_head s_dirty; /* dirty inodes */

681 struct list_head s_files;

682

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

529

683 struct block_device *s_bdev;

684 struct list_head s_mounts; /* vfsmount(s) of this one */

685 struct quota_mount_options s_dquot; /* Diskquota specific options */

686

687 union {

688 struct minix_sb_info minix_sb;

689 struct ext2_sb_info ext2_sb;

690 struct hpfs_sb_info hpfs_sb;

691 struct ntfs_sb_info ntfs_sb;

692 struct msdos_sb_info msdos_sb;

693 struct isofs_sb_info isofs_sb;

694 struct nfs_sb_info nfs_sb;

695 struct sysv_sb_info sysv_sb;

696 struct affs_sb_info affs_sb;

697 struct ufs_sb_info ufs_sb;

698 struct efs_sb_info efs_sb;

699 struct shmem_sb_info shmem_sb;

700 struct romfs_sb_info romfs_sb;

701 struct smb_sb_info smbfs_sb;

702 struct hfs_sb_info hfs_sb;

703 struct adfs_sb_info adfs_sb;

704 struct qnx4_sb_info qnx4_sb;

705 struct bfs_sb_info bfs_sb;

706 struct udf_sb_info udf_sb;

707 struct ncp_sb_info ncpfs_sb;

708 struct usbdev_sb_info usbdevfs_sb;

709 void *generic_sbp;

710 } u;

711 /*

712 * The next field is for VFS *only*. No filesystems have any business

713 * even looking at it. You had been warned.

714 */

715 struct semaphore s_vfs_rename_sem; /* Kludge */

716

717 /* The next field is used by knfsd when converting a (inode number based)

718 * file handle into a dentry. As it builds a path in the dcache tree from

719 * the bottom up, there may for a time be a subpath of dentrys which is not

720 * connected to the main tree. This semaphore ensure that there is only ever

721 * one such free path per filesystem. Note that unconnected files (or other

722 * non­directories) are allowed, but not unconnected diretories.

723 */

724 struct semaphore s_nfsd_free_path_sem;

725 };

Ext2 super_block union ext2_sb_info
includ/linux/ext2_fs_sb.h

==================== include/linux/ext2_fs_sb.h 27 59 ====================
27 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

530

28 * second extended­fs super­block data in memory

29 */

30 struct ext2_sb_info {

31 unsigned long s_frag_size; /* Size of a fragment in bytes */

32 unsigned long s_frags_per_block;/* Number of fragments per block */

33 unsigned long s_inodes_per_block;/* Number of inodes per block */

34 unsigned long s_frags_per_group;/* Number of fragments in a group */

35 unsigned long s_blocks_per_group;/* Number of blocks in a group */

36 unsigned long s_inodes_per_group;/* Number of inodes in a group */

37 unsigned long s_itb_per_group; /* Number of inode table blocks per group */

38 unsigned long s_gdb_count; /* Number of group descriptor blocks */

39 unsigned long s_desc_per_block; /* Number of group descriptors per block */

40 unsigned long s_groups_count; /* Number of groups in the fs */

41 struct buffer_head * s_sbh; /* Buffer containing the super block */

42 struct ext2_super_block * s_es; /* Pointer to the super block in the buffer */

43 struct buffer_head ** s_group_desc;

44 unsigned short s_loaded_inode_bitmaps;

45 unsigned short s_loaded_block_bitmaps;

46 unsigned long s_inode_bitmap_number[EXT2_MAX_GROUP_LOADED];

47 struct buffer_head * s_inode_bitmap[EXT2_MAX_GROUP_LOADED];

48 unsigned long s_block_bitmap_number[EXT2_MAX_GROUP_LOADED];

49 struct buffer_head * s_block_bitmap[EXT2_MAX_GROUP_LOADED];

50 unsigned long s_mount_opt;

51 uid_t s_resuid;

52 gid_t s_resgid;

53 unsigned short s_mount_state;

54 unsigned short s_pad;

55 int s_addr_per_block_bits;

56 int s_desc_per_block_bits;

57 int s_inode_size;

58 int s_first_ino;

59 };

super_block
Ext2 ext2_super_block

include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 336 396 ====================
336 /*

337 * Structure of the super block

338 */

339 struct ext2_super_block {

340 __u32 s_inodes_count; /* Inodes count */

341 __u32 s_blocks_count; /* Blocks count */

342 __u32 s_r_blocks_count; /* Reserved blocks count */

343 __u32 s_free_blocks_count; /* Free blocks count */

344 __u32 s_free_inodes_count; /* Free inodes count */

345 __u32 s_first_data_block; /* First Data Block */

346 __u32 s_log_block_size; /* Block size */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

531

347 __s32 s_log_frag_size; /* Fragment size */

348 __u32 s_blocks_per_group; /* # Blocks per group */

349 __u32 s_frags_per_group; /* # Fragments per group */

350 __u32 s_inodes_per_group; /* # Inodes per group */

351 __u32 s_mtime; /* Mount time */

352 __u32 s_wtime; /* Write time */

353 __u16 s_mnt_count; /* Mount count */

354 __s16 s_max_mnt_count; /* Maximal mount count */

355 __u16 s_magic; /* Magic signature */

356 __u16 s_state; /* File system state */

357 __u16 s_errors; /* Behaviour when detecting errors */

358 __u16 s_minor_rev_level; /* minor revision level */

359 __u32 s_lastcheck; /* time of last check */

360 __u32 s_checkinterval; /* max. time between checks */

361 __u32 s_creator_os; /* OS */

362 __u32 s_rev_level; /* Revision level */

363 __u16 s_def_resuid; /* Default uid for reserved blocks */

364 __u16 s_def_resgid; /* Default gid for reserved blocks */

365 /*

366 * These fields are for EXT2_DYNAMIC_REV superblocks only.

367 *

368 * Note: the difference between the compatible feature set and

369 * the incompatible feature set is that if there is a bit set

370 * in the incompatible feature set that the kernel doesn't

371 * know about, it should refuse to mount the filesystem.

372 *

373 * e2fsck's requirements are more strict; if it doesn't know

374 * about a feature in either the compatible or incompatible

375 * feature set, it must abort and not try to meddle with

376 * things it doesn't understand...

377 */

378 __u32 s_first_ino; /* First non­reserved inode */

379 __u16 s_inode_size; /* size of inode structure */

380 __u16 s_block_group_nr; /* block group # of this superblock */

381 __u32 s_feature_compat; /* compatible feature set */

382 __u32 s_feature_incompat; /* incompatible feature set */

383 __u32 s_feature_ro_compat; /* readonly­compatible feature set */

384 __u8 s_uuid[16]; /* 128­bit uuid for volume */

385 char s_volume_name[16]; /* volume name */

386 char s_last_mounted[64]; /* directory where last mounted */

387 __u32 s_algorithm_usage_bitmap; /* For compression */

388 /*

389 * Performance hints. Directory preallocation should only

390 * happen if the EXT2_COMPAT_PREALLOC flag is on.

391 */

392 __u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/

393 __u8 s_prealloc_dir_blocks; /* Nr to preallocate for dirs */

394 __u16 s_padding1;

395 __u32 s_reserved[204]; /* Padding to the end of the block */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

532

396 };

Ext2
ext2_read_super()

ext2_read_super() fs/ext2/super.c

==================== fs/ext2/super.c 384 434 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()>ext2_read_super()]
384 struct super_block * ext2_read_super (struct super_block * sb, void * data,

385 int silent)

386 {

387 struct buffer_head * bh;

388 struct ext2_super_block * es;

389 unsigned long sb_block = 1;

390 unsigned short resuid = EXT2_DEF_RESUID;

391 unsigned short resgid = EXT2_DEF_RESGID;

392 unsigned long logic_sb_block = 1;

393 unsigned long offset = 0;

394 kdev_t dev = sb­>s_dev;

395 int blocksize = BLOCK_SIZE;

396 int hblock;

397 int db_count;

398 int i, j;

399

400 /*

401 * See what the current blocksize for the device is, and

402 * use that as the blocksize. Otherwise (or if the blocksize

403 * is smaller than the default) use the default.

404 * This is important for devices that have a hardware

405 * sectorsize that is larger than the default.

406 */

407 blocksize = get_hardblocksize(dev);

408 if(blocksize == 0 || blocksize < BLOCK_SIZE)

409 {

410 blocksize = BLOCK_SIZE;

411 }

412

413 sb­>u.ext2_sb.s_mount_opt = 0;

414 if (!parse_options ((char *) data, &sb_block, &resuid, &resgid,

415 &sb­>u.ext2_sb.s_mount_opt)) {

416 return NULL;

417 }

418

419 set_blocksize (dev, blocksize);

420

421 /*

422 * If the superblock doesn't start on a sector boundary,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

533

423 * calculate the offset. FIXME(eric) this doesn't make sense

424 * that we would have to do this.

425 */

426 if (blocksize != BLOCK_SIZE) {

427 logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;

428 offset = (sb_block*BLOCK_SIZE) % blocksize;

429 }

430

431 if (!(bh = bread (dev, logic_sb_block, blocksize))) {

432 printk ("EXT2­fs: unable to read superblock\n");

433 return NULL;

434 }

sb super_block
s_dev

super_block data
Ext2 silent

Ext2 1K
2K 4K blocksize BLOCK_SIZE 1K

hardsect_size[]
BLOCK_SIZE

BLOCK_SIZE
hardsect_size[] get_handblocksize()

set_blocksize()

BLOCK_SIZE
parse_optioms()

parse_options() static Ext2
parse_options() fs/ext2/super.c parse_options()

1 2 sb_block_size 1
BLOCK_SIZE logic_sb_block 1 BLOCK_SIZE

BLOCK_SIZE

bread() bread()
fs/ext2/super.c

==================== fs/ext2/super.c 435 509 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()>ext2_read_super()]
435 /*

436 * Note: s_es must be initialized s_es as soon as possible because

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

534

437 * some ext2 macro­instructions depend on its value

438 */

439 es = (struct ext2_super_block *) (((char *)bh­>b_data) + offset);

440 sb­>u.ext2_sb.s_es = es;

441 sb­>s_magic = le16_to_cpu(es­>s_magic);

442 if (sb­>s_magic != EXT2_SUPER_MAGIC) {

443 if (!silent)

444 printk ("VFS: Can't find an ext2 filesystem on dev "

445 "%s.\n", bdevname(dev));

446 failed_mount:

447 if (bh)

448 brelse(bh);

449 return NULL;

450 }

451 if (le32_to_cpu(es­>s_rev_level) == EXT2_GOOD_OLD_REV &&

452 (EXT2_HAS_COMPAT_FEATURE(sb, ~0U) ||

453 EXT2_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||

454 EXT2_HAS_INCOMPAT_FEATURE(sb, ~0U)))

455 printk("EXT2­fs warning: feature flags set on rev 0 fs, "

456 "running e2fsck is recommended\n");

457 /*

458 * Check feature flags regardless of the revision level, since we

459 * previously didn't change the revision level when setting the flags,

460 * so there is a chance incompat flags are set on a rev 0 filesystem.

461 */

462 if ((i = EXT2_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))) {

463 printk("EXT2­fs: %s: couldn't mount because of "

464 "unsupported optional features (%x).\n",

465 bdevname(dev), i);

466 goto failed_mount;

467 }

468 if (!(sb­>s_flags & MS_RDONLY) &&

469 (i = EXT2_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))){

470 printk("EXT2­fs: %s: couldn't mount RDWR because of "

471 "unsupported optional features (%x).\n",

472 bdevname(dev), i);

473 goto failed_mount;

474 }

475 sb­>s_blocksize_bits =

476 le32_to_cpu(EXT2_SB(sb)­>s_es­>s_log_block_size) + 10;

477 sb­>s_blocksize = 1 << sb­>s_blocksize_bits;

478 if (sb­>s_blocksize != BLOCK_SIZE &&

479 (sb­>s_blocksize == 1024 || sb­>s_blocksize == 2048 ||

480 sb­>s_blocksize == 4096)) {

481 /*

482 * Make sure the blocksize for the filesystem is larger

483 * than the hardware sectorsize for the machine.

484 */

485 hblock = get_hardblocksize(dev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

535

486 if((hblock != 0)

487 && (sb­>s_blocksize < hblock))

488 {

489 printk("EXT2­fs: blocksize too small for device.\n");

490 goto failed_mount;

491 }

492

493 brelse (bh);

494 set_blocksize (dev, sb­>s_blocksize);

495 logic_sb_block = (sb_block*BLOCK_SIZE) / sb­>s_blocksize;

496 offset = (sb_block*BLOCK_SIZE) % sb­>s_blocksize;

497 bh = bread (dev, logic_sb_block, sb­>s_blocksize);

498 if(!bh) {

499 printk("EXT2­fs: Couldn't read superblock on "

500 "2nd try.\n");

501 goto failed_mount;

502 }

503 es = (struct ext2_super_block *) (((char *)bh­>b_data) + offset);

504 sb­>u.ext2_sb.s_es = es;

505 if (es­>s_magic != le16_to_cpu(EXT2_SUPER_MAGIC)) {

506 printk ("EXT2­fs: Magic mismatch, very weird !\n");

507 goto failed_mount;

508 }

509 }

bread() buffer_head bh bh­>data offset
Ext2 ext2_super_block

439 es Ext2 “little ending
le32_to_cpu() le16_to_cpu() CPU

i386 “little ending

475 508

hardsect_size[] buffer_head 497
bread()

sb_block 1 logic_sb_block offset sb­>s_blocksize
BLOCK_SIZE logic_sb_block 0 offset BLOCK_SIZE sb­>s_blocksize

sb­>s_blocksize BLOCK_SIZE logic_sb_block 1 offset 0
BLOCK_SIZE 1 BLOCK_SIZE

BLOCK_SIZE
super_block

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

536

440 504
538

Unix Linux
Ext2 1K

fragment
Ext2

Ext2
Ext2

”

cylinder

group descriptor

fsck
Ext2

Ext2
Ext2

5.5
5.5

1 1 0
1K 8192

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

537

5.5 Ext2

Ext2
include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 145 158 ====================
145 /*

146 * Structure of a blocks group descriptor

147 */

148 struct ext2_group_desc

149 {

150 __u32 bg_block_bitmap; /* Blocks bitmap block */

151 __u32 bg_inode_bitmap; /* Inodes bitmap block */

152 __u32 bg_inode_table; /* Inodes table block */

153 __u16 bg_free_blocks_count; /* Free blocks count */

154 __u16 bg_free_inodes_count; /* Free inodes count */

155 __u16 bg_used_dirs_count; /* Directories count */

156 __u16 bg_pad;

157 __u32 bg_reserved[3];

158 };

“/sbin/tune2fs ­l “/sbin/dumpe2fs
/dev/hda2 “tune2fs ­l

/dev/hda2

Inode count: 386528

Block count: 1540097

Reserved block count: 77011

Free blocks: 221060

First block: 1

Block size: 1024

Blocks per group: 8192

Inodes per group: 2056

Inode blocks per group: 257

1540097 1.5G
8192 1540097 / 8192 = 188 8192 × 188

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

538

= 1540096 1
2056 2056 × 188 = 386528

1K 128 8 2056
/ 8 = 257 221060 77011

5
“df 1490088 1K

1269028 144049 1490088
1490088 / 188 = 7926

257 8183 9
1 + 6 + 1 + 1 = 9

Ext2 32 1K 32
188 / 32 = 6

1490088 1269028 221060
144049 77011 221060 ­ 77011 = 144049

“dumpe2fs /dev/hda2
Ext2 ext2_read_super()

ext2_sb_info
s_inode_bitmap_number[] s_block_numer[]
EXT2_MAX_GROUP_LOADED EXT2_MAX_GROUP_LOADED include/linux/ext2_fs.h

8

ext2_read_super()

==================== fs/ext2/super.c 510 642 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()>ext2_read_super()]
510 if (le32_to_cpu(es­>s_rev_level) == EXT2_GOOD_OLD_REV) {

511 sb­>u.ext2_sb.s_inode_size = EXT2_GOOD_OLD_INODE_SIZE;

512 sb­>u.ext2_sb.s_first_ino = EXT2_GOOD_OLD_FIRST_INO;

513 } else {

514 sb­>u.ext2_sb.s_inode_size = le16_to_cpu(es­>s_inode_size);

515 sb­>u.ext2_sb.s_first_ino = le32_to_cpu(es­>s_first_ino);

516 if (sb­>u.ext2_sb.s_inode_size != EXT2_GOOD_OLD_INODE_SIZE) {

517 printk ("EXT2­fs: unsupported inode size: %d\n",

518 sb­>u.ext2_sb.s_inode_size);

519 goto failed_mount;

520 }

521 }

522 sb­>u.ext2_sb.s_frag_size = EXT2_MIN_FRAG_SIZE <<

523 le32_to_cpu(es­>s_log_frag_size);

524 if (sb­>u.ext2_sb.s_frag_size)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

539

525 sb­>u.ext2_sb.s_frags_per_block = sb­>s_blocksize /

526 sb­>u.ext2_sb.s_frag_size;

527 else

528 sb­>s_magic = 0;

529 sb­>u.ext2_sb.s_blocks_per_group = le32_to_cpu(es­>s_blocks_per_group);

530 sb­>u.ext2_sb.s_frags_per_group = le32_to_cpu(es­>s_frags_per_group);

531 sb­>u.ext2_sb.s_inodes_per_group = le32_to_cpu(es­>s_inodes_per_group);

532 sb­>u.ext2_sb.s_inodes_per_block = sb­>s_blocksize /

533 EXT2_INODE_SIZE(sb);

534 sb­>u.ext2_sb.s_itb_per_group = sb­>u.ext2_sb.s_inodes_per_group /

535 sb­>u.ext2_sb.s_inodes_per_block;

536 sb­>u.ext2_sb.s_desc_per_block = sb­>s_blocksize /

537 sizeof (struct ext2_group_desc);

538 sb­>u.ext2_sb.s_sbh = bh;

539 if (resuid != EXT2_DEF_RESUID)

540 sb­>u.ext2_sb.s_resuid = resuid;

541 else

542 sb­>u.ext2_sb.s_resuid = le16_to_cpu(es­>s_def_resuid);

543 if (resgid != EXT2_DEF_RESGID)

544 sb­>u.ext2_sb.s_resgid = resgid;

545 else

546 sb­>u.ext2_sb.s_resgid = le16_to_cpu(es­>s_def_resgid);

547 sb­>u.ext2_sb.s_mount_state = le16_to_cpu(es­>s_state);

548 sb­>u.ext2_sb.s_addr_per_block_bits =

549 log2 (EXT2_ADDR_PER_BLOCK(sb));

550 sb­>u.ext2_sb.s_desc_per_block_bits =

551 log2 (EXT2_DESC_PER_BLOCK(sb));

552 if (sb­>s_magic != EXT2_SUPER_MAGIC) {

553 if (!silent)

554 printk ("VFS: Can't find an ext2 filesystem on dev "

555 "%s.\n",

556 bdevname(dev));

557 goto failed_mount;

558 }

559 if (sb­>s_blocksize != bh­>b_size) {

560 if (!silent)

561 printk ("VFS: Unsupported blocksize on dev "

562 "%s.\n", bdevname(dev));

563 goto failed_mount;

564 }

565

566 if (sb­>s_blocksize != sb­>u.ext2_sb.s_frag_size) {

567 printk ("EXT2­fs: fragsize %lu != blocksize %lu (not supported yet)\n",

568 sb­>u.ext2_sb.s_frag_size, sb­>s_blocksize);

569 goto failed_mount;

570 }

571

572 if (sb­>u.ext2_sb.s_blocks_per_group > sb­>s_blocksize * 8) {

573 printk ("EXT2­fs: #blocks per group too big: %lu\n",

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

540

574 sb­>u.ext2_sb.s_blocks_per_group);

575 goto failed_mount;

576 }

577 if (sb­>u.ext2_sb.s_frags_per_group > sb­>s_blocksize * 8) {

578 printk ("EXT2­fs: #fragments per group too big: %lu\n",

579 sb­>u.ext2_sb.s_frags_per_group);

580 goto failed_mount;

581 }

582 if (sb­>u.ext2_sb.s_inodes_per_group > sb­>s_blocksize * 8) {

583 printk ("EXT2­fs: #inodes per group too big: %lu\n",

584 sb­>u.ext2_sb.s_inodes_per_group);

585 goto failed_mount;

586 }

587

588 sb­>u.ext2_sb.s_groups_count = (le32_to_cpu(es­>s_blocks_count) ­

589 le32_to_cpu(es­>s_first_data_block) +

590 EXT2_BLOCKS_PER_GROUP(sb) ­ 1) /

591 EXT2_BLOCKS_PER_GROUP(sb);

592 db_count = (sb­>u.ext2_sb.s_groups_count + EXT2_DESC_PER_BLOCK(sb) ­ 1) /

593 EXT2_DESC_PER_BLOCK(sb);

594 sb­>u.ext2_sb.s_group_desc = kmalloc (db_count * sizeof (struct buffer_head *), GFP_KERNEL);

595 if (sb­>u.ext2_sb.s_group_desc == NULL) {

596 printk ("EXT2­fs: not enough memory\n");

597 goto failed_mount;

598 }

599 for (i = 0; i < db_count; i++) {

600 sb­>u.ext2_sb.s_group_desc[i] = bread (dev, logic_sb_block + i + 1,

601 sb­>s_blocksize);

602 if (!sb­>u.ext2_sb.s_group_desc[i]) {

603 for (j = 0; j < i; j++)

604 brelse (sb­>u.ext2_sb.s_group_desc[j]);

605 kfree(sb­>u.ext2_sb.s_group_desc);

606 printk ("EXT2­fs: unable to read group descriptors\n");

607 goto failed_mount;

608 }

609 }

610 if (!ext2_check_descriptors (sb)) {

611 for (j = 0; j < db_count; j++)

612 brelse (sb­>u.ext2_sb.s_group_desc[j]);

613 kfree(sb­>u.ext2_sb.s_group_desc);

614 printk ("EXT2­fs: group descriptors corrupted !\n");

615 goto failed_mount;

616 }

617 for (i = 0; i < EXT2_MAX_GROUP_LOADED; i++) {

618 sb­>u.ext2_sb.s_inode_bitmap_number[i] = 0;

619 sb­>u.ext2_sb.s_inode_bitmap[i] = NULL;

620 sb­>u.ext2_sb.s_block_bitmap_number[i] = 0;

621 sb­>u.ext2_sb.s_block_bitmap[i] = NULL;

622 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

541

623 sb­>u.ext2_sb.s_loaded_inode_bitmaps = 0;

624 sb­>u.ext2_sb.s_loaded_block_bitmaps = 0;

625 sb­>u.ext2_sb.s_gdb_count = db_count;

626 /*

627 * set up enough so that it can read an inode

628 */

629 sb­>s_op = &ext2_sops;

630 sb­>s_root = d_alloc_root(iget(sb, EXT2_ROOT_INO));

631 if (!sb­>s_root) {

632 for (i = 0; i < db_count; i++)

633 if (sb­>u.ext2_sb.s_group_desc[i])

634 brelse (sb­>u.ext2_sb.s_group_desc[i]);

635 kfree(sb­>u.ext2_sb.s_group_desc);

636 brelse (bh);

637 printk ("EXT2­fs: get root inode failed\n");

638 return NULL;

639 }

640 ext2_setup_super (sb, es, sb­>s_flags & MS_RDONLY);

641 return sb;

642 }

EXT2_ROOT_INO 2 598 iget()
inode d_alloc_root() dentry

super_block s_root dentry
d_alloc_root()

==================== fs/dcache.c 672 694 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()>ext2_read_super()>d_alloc_root()]
672 /**

673 * d_alloc_root ­ allocate root dentry

674 * @root_inode: inode to allocate the root for

675 *

676 * Allocate a root ("/") dentry for the inode given. The inode is

677 * instantiated and returned. %NULL is returned if there is insufficient

678 * memory or the inode passed is %NULL.

679 */

680

681 struct dentry * d_alloc_root(struct inode * root_inode)

682 {

683 struct dentry *res = NULL;

684

685 if (root_inode) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

542

686 res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 });

687 if (res) {

688 res­>d_sb = root_inode­>i_sb;

689 res­>d_parent = res;

690 d_instantiate(res, root_inode);

691 }

692 }

693 return res;

694 }

dentry “/ &(const struct qstr){"/", 1, 0} qstr
qstr {"/", 1, 0} “/ 1

640 ext2_setup_super()
e2fsck

ext2_setup_super() fs/ext2/super.c

==================== fs/ext2/super.c 283 333 ====================
[sys_mount()>do_mount()>get_sb_bdev()>read_super()>ext2_read_super()>ext2_setup_super()]
283 static int ext2_setup_super (struct super_block * sb,

284 struct ext2_super_block * es,

285 int read_only)

286 {

287 int res = 0;

288 if (le32_to_cpu(es­>s_rev_level) > EXT2_MAX_SUPP_REV) {

289 printk ("EXT2­fs warning: revision level too high, "

290 "forcing read­only mode\n");

291 res = MS_RDONLY;

292 }

293 if (read_only)

294 return res;

295 if (!(sb­>u.ext2_sb.s_mount_state & EXT2_VALID_FS))

296 printk ("EXT2­fs warning: mounting unchecked fs, "

297 "running e2fsck is recommended\n");

298 else if ((sb­>u.ext2_sb.s_mount_state & EXT2_ERROR_FS))

299 printk ("EXT2­fs warning: mounting fs with errors, "

300 "running e2fsck is recommended\n");

301 else if ((__s16) le16_to_cpu(es­>s_max_mnt_count) >= 0 &&

302 le16_to_cpu(es­>s_mnt_count) >=

303 (unsigned short) (__s16) le16_to_cpu(es­>s_max_mnt_count))

304 printk ("EXT2­fs warning: maximal mount count reached, "

305 "running e2fsck is recommended\n");

306 else if (le32_to_cpu(es­>s_checkinterval) &&

307 (le32_to_cpu(es­>s_lastcheck) + le32_to_cpu(es­>s_checkinterval) <= CURRENT_TIME))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

543

308 printk ("EXT2­fs warning: checktime reached, "

309 "running e2fsck is recommended\n");

310 es­>s_state = cpu_to_le16(le16_to_cpu(es­>s_state) & ~EXT2_VALID_FS);

311 if (!(__s16) le16_to_cpu(es­>s_max_mnt_count))

312 es­>s_max_mnt_count = (__s16) cpu_to_le16(EXT2_DFL_MAX_MNT_COUNT);

313 es­>s_mnt_count=cpu_to_le16(le16_to_cpu(es­>s_mnt_count) + 1);

314 es­>s_mtime = cpu_to_le32(CURRENT_TIME);

315 mark_buffer_dirty(sb­>u.ext2_sb.s_sbh);

316 sb­>s_dirt = 1;

317 if (test_opt (sb, DEBUG))

318 printk ("[EXT II FS %s, %s, bs=%lu, fs=%lu, gc=%lu, "

319 "bpg=%lu, ipg=%lu, mo=%04lx]\n",

320 EXT2FS_VERSION, EXT2FS_DATE, sb­>s_blocksize,

321 sb­>u.ext2_sb.s_frag_size,

322 sb­>u.ext2_sb.s_groups_count,

323 EXT2_BLOCKS_PER_GROUP(sb),

324 EXT2_INODES_PER_GROUP(sb),

325 sb­>u.ext2_sb.s_mount_opt);

326 #ifdef CONFIG_EXT2_CHECK

327 if (test_opt (sb, CHECK)) {

328 ext2_check_blocks_bitmap (sb);

329 ext2_check_inodes_bitmap (sb);

330 }

331 #endif

332 return res;

333 }

ext2_read_super() super_block

5.5

file
file ”

dup() dup2() file ”

open() sys_open() fs/open.c

==================== fs/open.c 743 771 ====================
743 asmlinkage long sys_open(const char * filename, int flags, int mode)

744 {

745 char * tmp;

746 int fd, error;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

544

747

748 #if BITS_PER_LONG != 32

749 flags |= O_LARGEFILE;

750 #endif

751 tmp = getname(filename);

752 fd = PTR_ERR(tmp);

753 if (!IS_ERR(tmp)) {

754 fd = get_unused_fd();

755 if (fd >= 0) {

756 struct file *f = filp_open(tmp, flags, mode);

757 error = PTR_ERR(f);

758 if (IS_ERR(f))

759 goto out_error;

760 fd_install(fd, f);

761 }

762 out:

763 putname(tmp);

764 }

765 return fd;

766

767 out_error:

768 put_unused_fd(fd);

769 fd = error;

770 goto out;

771 }

filename mode
flag

getname() get_unused_fd()
file_open()

file
include/linux/fs.h

==================== include/linux/fs.h 498 516 ====================
498 struct file {

499 struct list_head f_list;

500 struct dentry *f_dentry;

501 struct vfsmount *f_vfsmnt;

502 struct file_operations *f_op;

503 atomic_t f_count;

504 unsigned int f_flags;

505 mode_t f_mode;

506 loff_t f_pos;

507 unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;

508 struct fown_struct f_owner;

509 unsigned int f_uid, f_gid;

510 int f_error;

511

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

545

512 unsigned long f_version;

513

514 /* needed for tty driver, and maybe others */

515 void *private_data;

516 };

dentry f_dentry
vfsmnt f_count f_pos

file fd_install()
task_sturct file files_struct

get_unused_fd() fs/open.c

==================== fs/open.c 681 741 ====================
[sys_open()>get_unused_fd()]
681 /*

682 * Find an empty file descriptor entry, and mark it busy.

683 */

684 int get_unused_fd(void)

685 {

686 struct files_struct * files = current­>files;

687 int fd, error;

688

689 error = ­EMFILE;

690 write_lock(&files­>file_lock);

691

692 repeat:

693 fd = find_next_zero_bit(files­>open_fds,

694 files­>max_fdset,

695 files­>next_fd);

696

697 /*

698 * N.B. For clone tasks sharing a files structure, this test

699 * will limit the total number of files that can be opened.

700 */

701 if (fd >= current­>rlim[RLIMIT_NOFILE].rlim_cur)

702 goto out;

703

704 /* Do we need to expand the fdset array? */

705 if (fd >= files­>max_fdset) {

706 error = expand_fdset(files, fd);

707 if (!error) {

708 error = ­EMFILE;

709 goto repeat;

710 }

711 goto out;

712 }

713

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

546

714 /*

715 * Check whether we need to expand the fd array.

716 */

717 if (fd >= files­>max_fds) {

718 error = expand_fd_array(files, fd);

719 if (!error) {

720 error = ­EMFILE;

721 goto repeat;

722 }

723 goto out;

724 }

725

726 FD_SET(fd, files­>open_fds);

727 FD_CLR(fd, files­>close_on_exec);

728 files­>next_fd = fd + 1;

729 #if 1

730 /* Sanity check */

731 if (files­>fd[fd] != NULL) {

732 printk("get_unused_fd: slot %d not NULL!\n", fd);

733 files­>fd[fd] = NULL;

734 }

735 #endif

736 error = fd;

737

738 out:

739 write_unlock(&files­>file_lock);

740 return error;

741 }

task_struct files files_struct
include/linux/sched.h

==================== include/linux/sched.h 159 180 ====================
159 /*

160 * The default fd array needs to be at least BITS_PER_LONG,

161 * as this is the granularity returned by copy_fdset().

162 */

163 #define NR_OPEN_DEFAULT BITS_PER_LONG

164

165 /*

166 * Open file table structure

167 */

168 struct files_struct {

169 atomic_t count;

170 rwlock_t file_lock;

171 int max_fds;

172 int max_fdset;

173 int next_fd;

174 struct file ** fd; /* current fd array */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

547

175 fd_set *close_on_exec;

176 fd_set *open_fds;

177 fd_set close_on_exec_init;

178 fd_set open_fds_init;

179 struct file * fd_array[NR_OPEN_DEFAULT];

180 };

file fd_array[]
32 fd fd_array[]

close_on_exec_init open_fds_init file
fd_array[] close_on_exec open_fds

open_fds 1
max_fds max_fdset file

task_struct
701 file expand_fd_array()

fd expand_fdset()
Unix file

FD_SET() open_fds
1

FD_CLR() close_on_exec 0
exec() ioctl()

sys_open() filp_open() fs/open.c

==================== fs/open.c 600 630 ====================
[sys_open()>filp_open()]
600 /*

601 * Note that while the flag value (low two bits) for sys_open means:

602 * 00 ­ read­only

603 * 01 ­ write­only

604 * 10 ­ read­write

605 * 11 ­ special

606 * it is changed into

607 * 00 ­ no permissions needed

608 * 01 ­ read­permission

609 * 10 ­ write­permission

610 * 11 ­ read­write

611 * for the internal routines (ie open_namei()/follow_link() etc). 00 is

612 * used by symlinks.

613 */

614 struct file *filp_open(const char * filename, int flags, int mode)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

548

615 {

616 int namei_flags, error;

617 struct nameidata nd;

618

619 namei_flags = flags;

620 if ((namei_flags+1) & O_ACCMODE)

621 namei_flags++;

622 if (namei_flags & O_TRUNC)

623 namei_flags |= 2;

624

625 error = open_namei(filename, namei_flags, mode, &nd);

626 if (!error)

627 return dentry_open(nd.dentry, nd.mnt, flags);

628

629 return ERR_PTR(error);

630 }

flags open() open() flags
open_namei() 600 613

open_namei() i386 open() include/asm­i386/fcntl.h

==================== include/asm­i386/fcntl.h 4 22 ====================
4 /* open/fcntl ­ O_SYNC is only implemented on blocks devices and on files

5 located on an ext2 file system */

6 #define O_ACCMODE 0003

7 #define O_RDONLY 00

8 #define O_WRONLY 01

9 #define O_RDWR 02

10 #define O_CREAT 0100 /* not fcntl */

11 #define O_EXCL 0200 /* not fcntl */

12 #define O_NOCTTY 0400 /* not fcntl */

13 #define O_TRUNC 01000 /* not fcntl */

14 #define O_APPEND 02000

15 #define O_NONBLOCK 04000

16 #define O_NDELAY O_NONBLOCK

17 #define O_SYNC 010000

18 #define FASYNC 020000 /* fcntl, for BSD compatibility */

19 #define O_DIRECT 040000 /* direct disk access hint ­ currently ignored */

20 #define O_LARGEFILE 0100000

21 #define O_DIRECTORY 0200000 /* must be a directory */

22 #define O_NOFOLLOW 0400000 /* don't follow links */

flags 620 621
00 ” 01
01 ” 10
10 ” 11

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

549

11 (O_RDWR | O_WRONLY) 11

O_TRUNC 1

open_namei() fs/namei.c

==================== fs/namei.c 925 977 ====================
[sys_open()>filp_open()>open_namei()]
925 /*

926 * open_namei()

927 *

928 * namei for open ­ this is in fact almost the whole open­routine.

929 *

930 * Note that the low bits of "flag" aren't the same as in the open

931 * system call ­ they are 00 ­ no permissions needed

932 * 01 ­ read permission needed

933 * 10 ­ write permission needed

934 * 11 ­ read/write permissions needed

935 * which is a lot more logical, and also allows the "no perm" needed

936 * for symlinks (where the permissions are checked later).

937 * SMP­safe

938 */

939 int open_namei(const char * pathname, int flag, int mode, struct nameidata *nd)

940 {

941 int acc_mode, error = 0;

942 struct inode *inode;

943 struct dentry *dentry;

944 struct dentry *dir;

945 int count = 0;

946

947 acc_mode = ACC_MODE(flag);

948

949 /*

950 * The simplest case ­ just a plain lookup.

951 */

952 if (!(flag & O_CREAT)) {

953 if (path_init(pathname, lookup_flags(flag), nd))

954 error = path_walk(pathname, nd);

955 if (error)

956 return error;

957 dentry = nd­>dentry;

958 goto ok;

959 }

960

961 /*

962 * Create ­ we need to know the parent.

963 */

964 if (path_init(pathname, LOOKUP_PARENT, nd))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

550

965 error = path_walk(pathname, nd);

966 if (error)

967 return error;

968

969 /*

970 * We have the parent and last component. First of all, check

971 * that we are not asked to creat(2) an obvious directory ­ that

972 * will not do.

973 */

974 error = ­EISDIR;

975 if (nd­>last_type != LAST_NORM || nd­>last.name[nd­>last.len])

976 goto exit;

977

flag O_CREAT
0 path_init() path_walk()

dentry inode
path_init() flag lookup_flags()

fs/namei.c

==================== fs/namei.c 876 896 ====================
[sys_open()>flip_open()>open_namei()>lo0kup_flags()]
876 /*

877 * Special case: O_CREAT|O_EXCL implies O_NOFOLLOW for security

878 * reasons.

879 *

880 * O_DIRECTORY translates into forcing a directory lookup.

881 */

882 static inline int lookup_flags(unsigned int f)

883 {

884 unsigned long retval = LOOKUP_FOLLOW;

885

886 if (f & O_NOFOLLOW)

887 retval &= ~LOOKUP_FOLLOW;

888

889 if ((f & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))

890 retval &= ~LOOKUP_FOLLOW;

891

892 if (f & O_DIRECTORY)

893 retval |= LOOKUP_DIRECTORY;

894

895 return retval;

896 }

953 path_init() flags
LOOKUP_FOLLOW LOOKUP_DIRECTORY 1 open_namei()

lookup_flags() flag O_CREAT

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

551

0 889 O_CREAT 0

dentry
O_CREAT 1 path_init() path_walk()

path_init() LOOKUP_PARENT

nameidata
last_type path_walk() LAST_NORM “. “..

path_walk() last_type LAST_DOT LAST_DOTDOT
­EISDIR

O_CREAT 1 open()
mkdir() “\0

“/
path_walk() nameidata qstr last

dentry inode
path_walk()

dentry
namei.c

==================== fs/namei.c 978 1029 ====================
[sys_open()>filp_open()>open_namei()]
978 dir = nd­>dentry;

979 down(&dir­>d_inode­>i_sem);

980 dentry = lookup_hash(&nd­>last, nd­>dentry);

981

982 do_last:

983 error = PTR_ERR(dentry);

984 if (IS_ERR(dentry)) {

985 up(&dir­>d_inode­>i_sem);

986 goto exit;

987 }

988

989 /* Negative dentry, just create the file */

990 if (!dentry­>d_inode) {

991 error = vfs_create(dir­>d_inode, dentry, mode);

992 up(&dir­>d_inode­>i_sem);

993 dput(nd­>dentry);

994 nd­>dentry = dentry;

995 if (error)

996 goto exit;

997 /* Don't check for write permission, don't truncate */

998 acc_mode = 0;

999 flag &= ~O_TRUNC;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

552

1000 goto ok;

1001 }

1002

1003 /*

1004 * It already exists.

1005 */

1006 up(&dir­>d_inode­>i_sem);

1007

1008 error = ­EEXIST;

1009 if (flag & O_EXCL)

1010 goto exit_dput;

1011

1012 if (d_mountpoint(dentry)) {

1013 error = ­ELOOP;

1014 if (flag & O_NOFOLLOW)

1015 goto exit_dput;

1016 do __follow_down(&nd­>mnt,&dentry); while(d_mountpoint(dentry));

1017 }

1018 error = ­ENOENT;

1019 if (!dentry­>d_inode)

1020 goto exit_dput;

1021 if (dentry­>d_inode­>i_op && dentry­>d_inode­>i_op­>follow_link)

1022 goto do_link;

1023

1024 dput(nd­>dentry);

1025 nd­>dentry = dentry;

1026 error = ­EISDIR;

1027 if (dentry­>d_inode && S_ISDIR(dentry­>d_inode­>i_mode))

1028 goto exit;

1029 ok:

dentry dir
lookup_hash() dentry 980 lookup_hash() fs/namei.c

==================== fs/namei.c 704 748 ====================
[sys_open()>filp_open()>open_namei()>lookup_hash()]
704 /*

705 * Restricted form of lookup. Doesn't follow links, single­component only,

706 * needs parent already locked. Doesn't follow mounts.

707 * SMP­safe.

708 */

709 struct dentry * lookup_hash(struct qstr *name, struct dentry * base)

710 {

711 struct dentry * dentry;

712 struct inode *inode;

713 int err;

714

715 inode = base­>d_inode;

716 err = permission(inode, MAY_EXEC);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

553

717 dentry = ERR_PTR(err);

718 if (err)

719 goto out;

720

721 /*

722 * See if the low­level filesystem might want

723 * to use its own hash..

724 */

725 if (base­>d_op && base­>d_op­>d_hash) {

726 err = base­>d_op­>d_hash(base, name);

727 dentry = ERR_PTR(err);

728 if (err < 0)

729 goto out;

730 }

731

732 dentry = cached_lookup(base, name, 0);

733 if (!dentry) {

734 struct dentry *new = d_alloc(base, name);

735 dentry = ERR_PTR(­ENOMEM);

736 if (!new)

737 goto out;

738 lock_kernel();

739 dentry = inode­>i_op­>lookup(inode, new);

740 unlock_kernel();

741 if (!dentry)

742 dentry = new;

743 else

744 dput(new);

745 }

746 out:

747 return dentry;

748 }

dentry dentry
dentry

d_alloc()
lookup_hash()

dentry
dentry d_inode inode

dentry d_inode NULL inode
990 vfs_create()

open() O_CREAT O_EXCL
1 ­EEXIST

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

554

__follow_down()
do­while

goto do_link
­ENOENT goto do_last

open_namei()

==================== fs/namei.c 1112 1152 ====================
[sys_open()>filp_open()>open_namei()]
1112 do_link:

1113 error = ­ELOOP;

1114 if (flag & O_NOFOLLOW)

1115 goto exit_dput;

1116 /*

1117 * This is subtle. Instead of calling do_follow_link() we do the

1118 * thing by hands. The reason is that this way we have zero link_count

1119 * and path_walk() (called from ­>follow_link) honoring LOOKUP_PARENT.

1120 * After that we have the parent and last component, i.e.

1121 * we are in the same situation as after the first path_walk().

1122 * Well, almost ­ if the last component is normal we get its copy

1123 * stored in nd­>last.name and we will have to putname() it when we

1124 * are done. Procfs­like symlinks just set LAST_BIND.

1125 */

1126 UPDATE_ATIME(dentry­>d_inode);

1127 error = dentry­>d_inode­>i_op­>follow_link(dentry, nd);

1128 dput(dentry);

1129 if (error)

1130 return error;

1131 if (nd­>last_type == LAST_BIND) {

1132 dentry = nd­>dentry;

1133 goto ok;

1134 }

1135 error = ­EISDIR;

1136 if (nd­>last_type != LAST_NORM)

1137 goto exit;

1138 if (nd­>last.name[nd­>last.len]) {

1139 putname(nd­>last.name);

1140 goto exit;

1141 }

1142 if (count++==32) {

1143 dentry = nd­>dentry;

1144 putname(nd­>last.name);

1145 goto ok;

1146 }

1147 dir = nd­>dentry;

1148 down(&dir­>d_inode­>i_sem);

1149 dentry = lookup_hash(&nd­>last, nd­>dentry);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

555

1150 putname(nd­>last.name);

1151 goto do_last;

1152 }

path_walk()
inode_operations follow_link Ext2 ext2_follow_link()

vfs_follow_link() path_walk()
path_init() nameidata LOOKUP_PARENT

follow_link
follow_link nd­>last nd­>dentry
dentry

1136
1138 LAST_BIND /proc

lookup_hash() dentry do_last

do_link
count 1142 32 ok

­ELOOP
path_walk() do_follow_link()
task_struct link_count path_walk()
LOOKUP_PARENT

namei.c

==================== fs/namei.c 1029 1110 ====================
[sys_open()>filp_open()>open_namei()]
1029 ok:

1030 error = ­ENOENT;

1031 inode = dentry­>d_inode;

1032 if (!inode)

1033 goto exit;

1034

1035 error = ­ELOOP;

1036 if (S_ISLNK(inode­>i_mode))

1037 goto exit;

1038

1039 error = ­EISDIR;

1040 if (S_ISDIR(inode­>i_mode) && (flag & FMODE_WRITE))

1041 goto exit;

1042

1043 error = permission(inode,acc_mode);

1044 if (error)

1045 goto exit;

1046

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

556

1047 /*

1048 * FIFO's, sockets and device files are special: they don't

1049 * actually live on the filesystem itself, and as such you

1050 * can write to them even if the filesystem is read­only.

1051 */

1052 if (S_ISFIFO(inode­>i_mode) || S_ISSOCK(inode­>i_mode)) {

1053 flag &= ~O_TRUNC;

1054 } else if (S_ISBLK(inode­>i_mode) || S_ISCHR(inode­>i_mode)) {

1055 error = ­EACCES;

1056 if (IS_NODEV(inode))

1057 goto exit;

1058

1059 flag &= ~O_TRUNC;

1060 } else {

1061 error = ­EROFS;

1062 if (IS_RDONLY(inode) && (flag & 2))

1063 goto exit;

1064 }

1065 /*

1066 * An append­only file must be opened in append mode for writing.

1067 */

1068 error = ­EPERM;

1069 if (IS_APPEND(inode)) {

1070 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))

1071 goto exit;

1072 if (flag & O_TRUNC)

1073 goto exit;

1074 }

1075

1076 /*

1077 * Ensure there are no outstanding leases on the file.

1078 */

1079 error = get_lease(inode, flag);

1080 if (error)

1081 goto exit;

1082

1083 if (flag & O_TRUNC) {

1084 error = get_write_access(inode);

1085 if (error)

1086 goto exit;

1087

1088 /*

1089 * Refuse to truncate files with mandatory locks held on them.

1090 */

1091 error = locks_verify_locked(inode);

1092 if (!error) {

1093 DQUOT_INIT(inode);

1094

1095 error = do_truncate(dentry, 0);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

557

1096 }

1097 put_write_access(inode);

1098 if (error)

1099 goto exit;

1100 } else

1101 if (flag & FMODE_WRITE)

1102 DQUOT_INIT(inode);

1103

1104 return 0;

1105

1106 exit_dput:

1107 dput(dentry);

1108 exit:

1109 path_release(nd);

1110 return error;

==================== fs/namei.c 1152 1152 ====================
1152 }

permission() acc_mode open_namei()
947 ACC_MODE fs/namei.c

include/asm­i386/fcntl.h

==================== include/asm­i386/fcntl.h 6 6 ====================
6 #define O_ACCMODE 0003

==================== fs/namei.c 34 34 ====================
34 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])

“\000\004\002\006 8 0
8 4 C

(flag & O_ACCMODE) O_ACCMODE 3
0 1 2 3 flag filp_open() open_namei()
flags open() open_namei()

filp_open() permission()

open() Unix
open_namei()

inode i_mode flag
FIFO

O_TRUNC 0 1093

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

558

O_TRUNC 1
1083 1100 get_lease()

inode i_writecount
mmap()

get_write_access() deny_write_access() fs/namei.c

==================== fs/namei.c 195 235 ====================
195 /*

196 * get_write_access() gets write permission for a file.

197 * put_write_access() releases this write permission.

198 * This is used for regular files.

199 * We cannot support write (and maybe mmap read­write shared) accesses and

200 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode

201 * can have the following values:

202 * 0: no writers, no VM_DENYWRITE mappings

203 * < 0: (­i_writecount) vm_area_structs with VM_DENYWRITE set exist

204 * > 0: (i_writecount) users are writing to the file.

205 *

206 * Normally we operate on that counter with atomic_{inc,dec} and it's safe

207 * except for the cases where we don't hold i_writecount yet. Then we need to

208 * use {get,deny}_write_access() ­ these functions check the sign and refuse

209 * to do the change if sign is wrong. Exclusion between them is provided by

210 * spinlock (arbitration_lock) and I'll rip the second arsehole to the first

211 * who will try to move it in struct inode ­ just leave it here.

212 */

213 static spinlock_t arbitration_lock = SPIN_LOCK_UNLOCKED;

214 int get_write_access(struct inode * inode)

215 {

216 spin_lock(&arbitration_lock);

217 if (atomic_read(&inode­>i_writecount) < 0) {

218 spin_unlock(&arbitration_lock);

219 return ­ETXTBSY;

220 }

221 atomic_inc(&inode­>i_writecount);

222 spin_unlock(&arbitration_lock);

223 return 0;

224 }

225 int deny_write_access(struct file * file)

226 {

227 spin_lock(&arbitration_lock);

228 if (atomic_read(&file­>f_dentry­>d_inode­>i_writecount) > 0) {

229 spin_unlock(&arbitration_lock);

230 return ­ETXTBSY;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

559

231 }

232 atomic_dec(&file­>f_dentry­>d_inode­>i_writecount);

233 spin_unlock(&arbitration_lock);

234 return 0;

235 }

“gets write permission permission()

get_write_access()

advisory lock cooperative
lock flock()

mandatory
lock

fcntl()

inode i_flag MS_MANDLOCK
inode super_block

1 0

inline locks_verify_locked()
include/linux/fs.h

==================== include/linux/fs.h 892 904 ====================
[sys_open()>filp_open()>open_namei()>locks_verify_locked()]
892 /*

893 * Candidates for mandatory locking have the setgid bit set

894 * but no group execute bit ­ an otherwise meaningless combination.

895 */

896 #define MANDATORY_LOCK(inode) \

897 (IS_MANDLOCK(inode) && ((inode)­>i_mode & (S_ISGID | S_IXGRP)) == S_ISGID)

898

899 static inline int locks_verify_locked(struct inode *inode)

900 {

901 if (MANDATORY_LOCK(inode))

902 return locks_mandatory_locked(inode);

903 return 0;

904 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

560

==================== include/linux/fs.h 131 151 ====================
131 /*

132 * Note that nosuid etc flags are inode­specific: setting some file­system

133 * flags just means all the inodes inherit those flags by default. It might be

134 * possible to override it selectively if you really wanted to with some

135 * ioctl() that is not currently implemented.

136 *

137 * Exception: MS_RDONLY is always applied to the entire file system.

138 *

139 * Unfortunately, it is possible to change a filesystems flags with it mounted

140 * with files in use. This means that all of the inodes will not have their

141 * i_flags updated. Hence, i_flags no longer inherit the superblock mount

142 * flags, so these have to be checked separately. ­­ rmk@arm.uk.linux.org

143 */

144 #define __IS_FLG(inode,flg) ((inode)­>i_sb­>s_flags & (flg))

145

146 #define IS_RDONLY(inode) ((inode)­>i_sb­>s_flags & MS_RDONLY)

147 #define IS_NOSUID(inode) __IS_FLG(inode, MS_NOSUID)

148 #define IS_NODEV(inode) __IS_FLG(inode, MS_NODEV)

149 #define IS_NOEXEC(inode) __IS_FLG(inode, MS_NOEXEC)

150 #define IS_SYNC(inode) (__IS_FLG(inode, MS_SYNCHRONOUS) || ((inode)­>i_flags & S_SYNC))

151 #define IS_MANDLOCK(inode) __IS_FLG(inode, MS_MANDLOCK)

Unix V inode mode S_ISGID S_IXGRP
MS_MANDLOCK S_ISGID S_ISUID

S_IXGRP S_ISGID S_ISGID
1 S_IXGRP 0 Unix V

inode super_block MS_MANDLOCK 1 inode
S_ISGID 1 S_IXGRP 0 901

locks_mandatory_locked() fs/locks.c

==================== fs/locks.c 675 692 ====================
[sys_open()>filp_open()>open_namei()>locks_verify_locked()>locks_mandatory_locked()]
675 int locks_mandatory_locked(struct inode *inode)

676 {

677 fl_owner_t owner = current­>files;

678 struct file_lock *fl;

679

680 /*

681 * Search the lock list for this inode for any POSIX locks.

682 */

683 lock_kernel();

684 for (fl = inode­>i_flock; fl != NULL; fl = fl­>fl_next) {

mailto:rmk@arm.uk.linux.org
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

561

685 if (!(fl­>fl_flags & FL_POSIX))

686 continue;

687 if (fl­>fl_owner != owner)

688 break;

689 }

690 unlock_kernel();

691 return fl ? ­EAGAIN : 0;

692 }

inode file_lock i_flock
file_lock inode file_lock

include/linux/fs.h

==================== include/linux/fs.h 533 564 ====================
533 /*

534 * The POSIX file lock owner is determined by

535 * the "struct files_struct" in the thread group

536 * (or NULL for no owner ­ BSD locks).

537 *

538 * Lockd stuffs a "host" pointer into this.

539 */

540 typedef struct files_struct *fl_owner_t;

541

542 struct file_lock {

543 struct file_lock *fl_next; /* singly linked list for this inode */

544 struct list_head fl_link; /* doubly linked list of all locks */

545 struct list_head fl_block; /* circular list of blocked processes */

546 fl_owner_t fl_owner;

547 unsigned int fl_pid;

548 wait_queue_head_t fl_wait;

549 struct file *fl_file;

550 unsigned char fl_flags;

551 unsigned char fl_type;

552 loff_t fl_start;

553 loff_t fl_end;

554

555 void (*fl_notify)(struct file_lock *); /* unblock callback */

556 void (*fl_insert)(struct file_lock *); /* lock insertion callback */

557 void (*fl_remove)(struct file_lock *); /* lock removal callback */

558

559 struct fasync_struct * fl_fasync; /* for lease break notifications */

560

561 union {

562 struct nfs_lock_info nfs_fl;

563 } fl_u;

564 };

file_lock fl_file file fl_start fl_end
fl_start 0 fl_end OFFSET_MAX

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

562

fl_type fl_flags fs.h

==================== include/linux/fs.h 526 531 ====================
526 #define FL_POSIX 1

527 #define FL_FLOCK 2

528 #define FL_BROKEN 4 /* broken flock() emulation */

529 #define FL_ACCESS 8 /* for processes suspended by mandatory locking */

530 #define FL_LOCKD 16 /* lock held by rpc.lockd */

531 #define FL_LEASE 32 /* lease held on this file */

FL_FLOCK 1 flock()
FL_POSIX fcntl()

POSIX POSIX
POSIX
locks_mandatory_locked() FL_POSIX 1

open_namei() do_truncate()
fs/open.c

==================== fs/open.c 72 88 ====================
[sys_open()>filp_open()>open_namei()>do_truncate()]
72 int do_truncate(struct dentry *dentry, loff_t length)

73 {

74 struct inode *inode = dentry­>d_inode;

75 int error;

76 struct iattr newattrs;

77

78 /* Not pretty: "inode­>i_size" shouldn't really be signed. But it is. */

79 if (length < 0)

80 return ­EINVAL;

81

82 down(&inode­>i_sem);

83 newattrs.ia_size = length;

84 newattrs.ia_valid = ATTR_SIZE | ATTR_CTIME;

85 error = notify_change(dentry, &newattrs);

86 up(&inode­>i_sem);

87 return error;

88 }

length open_namei() 0
iattr notify_change() notify_change() fs/attr.c

==================== fs/attr.c 106 137 ====================
[sys_open()>filp_open()>open_namei()>do_truncate()>notify_change()]
106 int notify_change(struct dentry * dentry, struct iattr * attr)

107 {

108 struct inode *inode = dentry­>d_inode;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

563

109 int error;

110 time_t now = CURRENT_TIME;

111 unsigned int ia_valid = attr­>ia_valid;

112

113 if (!inode)

114 BUG();

115

116 attr­>ia_ctime = now;

117 if (!(ia_valid & ATTR_ATIME_SET))

118 attr­>ia_atime = now;

119 if (!(ia_valid & ATTR_MTIME_SET))

120 attr­>ia_mtime = now;

121

122 lock_kernel();

123 if (inode­>i_op && inode­>i_op­>setattr)

124 error = inode­>i_op­>setattr(dentry, attr);

125 else {

126 error = inode_change_ok(inode, attr);

127 if (!error)

128 inode_setattr(inode, attr);

129 }

130 unlock_kernel();

131 if (!error) {

132 unsigned long dn_mask = setattr_mask(ia_valid);

133 if (dn_mask)

134 inode_dir_notify(dentry­>d_parent­>d_inode, dn_mask);

135 }

136 return error;

137 }

inode
inode_operations

Ext2 inode_change_ok() inode_setattr()
inode_change_ok() fs/attr.c

==================== fs/attr.c 17 58 ====================
[sys_open()>filp_open()>open_namei()>do_truncate()>notify_change()>inode_change_ok()]
17 /* POSIX UID/GID verification for setting inode attributes. */

18 int inode_change_ok(struct inode *inode, struct iattr *attr)

19 {

20 int retval = ­EPERM;

21 unsigned int ia_valid = attr­>ia_valid;

22

23 /* If force is set do it anyway. */

24 if (ia_valid & ATTR_FORCE)

25 goto fine;

26

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

564

27 /* Make sure a caller can chown. */

28 if ((ia_valid & ATTR_UID) &&

29 (current­>fsuid != inode­>i_uid ||

30 attr­>ia_uid != inode­>i_uid) && !capable(CAP_CHOWN))

31 goto error;

32

33 /* Make sure caller can chgrp. */

34 if ((ia_valid & ATTR_GID) &&

35 (!in_group_p(attr­>ia_gid) && attr­>ia_gid != inode­>i_gid) &&

36 !capable(CAP_CHOWN))

37 goto error;

38

39 /* Make sure a caller can chmod. */

40 if (ia_valid & ATTR_MODE) {

41 if ((current­>fsuid != inode­>i_uid) && !capable(CAP_FOWNER))

42 goto error;

43 /* Also check the setgid bit! */

44 if (!in_group_p((ia_valid & ATTR_GID) ? attr­>ia_gid :

45 inode­>i_gid) && !capable(CAP_FSETID))

46 attr­>ia_mode &= ~S_ISGID;

47 }

48

49 /* Check for setting the inode time. */

50 if (ia_valid & (ATTR_MTIME_SET | ATTR_ATIME_SET)) {

51 if (current­>fsuid != inode­>i_uid && !capable(CAP_FOWNER))

52 goto error;

53 }

54 fine:

55 retval = 0;

56 error:

57 return retval;

58 }

inode_setattr() attr.c

==================== fs/attr.c 60 82 ====================
[sys_open()>filp_open()>open_namei()>do_truncate()>notify_change()>inode_setattr()]
60 void inode_setattr(struct inode * inode, struct iattr * attr)

61 {

62 unsigned int ia_valid = attr­>ia_valid;

63

64 if (ia_valid & ATTR_UID)

65 inode­>i_uid = attr­>ia_uid;

66 if (ia_valid & ATTR_GID)

67 inode­>i_gid = attr­>ia_gid;

68 if (ia_valid & ATTR_SIZE)

69 vmtruncate(inode, attr­>ia_size);

70 if (ia_valid & ATTR_ATIME)

71 inode­>i_atime = attr­>ia_atime;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

565

72 if (ia_valid & ATTR_MTIME)

73 inode­>i_mtime = attr­>ia_mtime;

74 if (ia_valid & ATTR_CTIME)

75 inode­>i_ctime = attr­>ia_ctime;

76 if (ia_valid & ATTR_MODE) {

77 inode­>i_mode = attr­>ia_mode;

78 if (!in_group_p(inode­>i_gid) && !capable(CAP_FSETID))

79 inode­>i_mode &= ~S_ISGID;

80 }

81 mark_inode_dirty(inode);

82 }

vmtruncate()
vmtruncate()

inode mark_inode_dirty() super_block
s_dirty

file

filp_open() dentry_open()
file task_sturct

task_struct dentry_open() fs/open.c

==================== fs/open.c 632 679 ====================
[sys_open()>filp_open()>dentry_open()]
632 struct file *dentry_open(struct dentry *dentry, struct vfsmount *mnt, int flags)

633 {

634 struct file * f;

635 struct inode *inode;

636 int error;

637

638 error = ­ENFILE;

639 f = get_empty_filp();

640 if (!f)

641 goto cleanup_dentry;

642 f­>f_flags = flags;

643 f­>f_mode = (flags+1) & O_ACCMODE;

644 inode = dentry­>d_inode;

645 if (f­>f_mode & FMODE_WRITE) {

646 error = get_write_access(inode);

647 if (error)

648 goto cleanup_file;

649 }

650

651 f­>f_dentry = dentry;

652 f­>f_vfsmnt = mnt;

653 f­>f_pos = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

566

654 f­>f_reada = 0;

655 f­>f_op = fops_get(inode­>i_fop);

656 if (inode­>i_sb)

657 file_move(f, &inode­>i_sb­>s_files);

658 if (f­>f_op && f­>f_op­>open) {

659 error = f­>f_op­>open(inode,f);

660 if (error)

661 goto cleanup_all;

662 }

663 f­>f_flags &= ~(O_CREAT | O_EXCL | O_NOCTTY | O_TRUNC);

664

665 return f;

666

667 cleanup_all:

668 fops_put(f­>f_op);

669 if (f­>f_mode & FMODE_WRITE)

670 put_write_access(inode);

671 f­>f_dentry = NULL;

672 f­>f_vfsmnt = NULL;

673 cleanup_file:

674 put_filp(f);

675 cleanup_dentry:

676 dput(dentry);

677 mntput(mnt);

678 return ERR_PTR(error);

679 }

get_empty_filp() file file
free_list file anon_list

file file_move()
super_block file s_files

get_write_access()
inode i_writecount

file f_op file_operations
file_operations inode

fops_get()
include/linux/fs.h

==================== include/linux/fs.h 859 863 ====================
859 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */

860 #define fops_get(fops) \

861 (((fops) && (fops)­>owner) \

862 ? (try_inc_mod_count((fops)­>owner) ? (fops) : NULL) \

863 : (fops))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

567

file_operations
open Ext2 ext2_open_file() fs/ext2/file.c

==================== fs/ext2/file.c 82 94 ====================
[sys_open()>filp_open()>dentry_open()>ext2_open_file()]
82 /*

83 * Called when an inode is about to be open.

84 * We use this to disallow opening RW large files on 32bit systems if

85 * the caller didn't specify O_LARGEFILE. On 64bit systems we force

86 * on this flag in sys_open.

87 */

88 static int ext2_open_file (struct inode * inode, struct file * filp)

89 {

90 if (!(filp­>f_flags & O_LARGEFILE) &&

91 inode­>i_size > 0x7FFFFFFFLL)

92 return ­EFBIG;

93 return 0;

94 }

inode union Ext2 union ext2_inode_info
i_high_size 32 2GB

32 32 open()
O_LARGEFILE 1 64 inode

i_size loff_t long long 64 O_LARGEFILE 0
2GB

O_CREAT O_EXCL
0

dentry_open() file open()
file file

inode file
filp_open() sys_open() inline fd_install()

file file_struct
fd inline include/linux/file.h

==================== include/linux/file.h 74 96 ====================
[sys_open()>fd_install()]
74 /*

75 * Install a file pointer in the fd array.

76 *

77 * The VFS is full of places where we drop the files lock between

78 * setting the open_fds bitmap and installing the file in the file

79 * array. At any such point, we are vulnerable to a dup2() race

80 * installing a file in the array before us. We need to detect this and

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

568

81 * fput() the struct file we are about to overwrite in this case.

82 *

83 * It should never happen ­ if we allow dup2() do it, _really_ bad things

84 * will follow.

85 */

86

87 static inline void fd_install(unsigned int fd, struct file * file)

88 {

89 struct files_struct *files = current­>files;

90

91 write_lock(&files­>file_lock);

92 if (files­>fd[fd])

93 BUG();

94 files­>fd[fd] = file;

95 write_unlock(&files­>file_lock);

96 }

file xchg()
0 file

fput()

sys_open() vfs_create() open()
O_CREAT 1 fs/namei.c

==================== fs/namei.c 898 923 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()]
898 int vfs_create(struct inode *dir, struct dentry *dentry, int mode)

899 {

900 int error;

901

902 mode &= S_IALLUGO & ~current­>fs­>umask;

903 mode |= S_IFREG;

904

905 down(&dir­>i_zombie);

906 error = may_create(dir, dentry);

907 if (error)

908 goto exit_lock;

909

910 error = ­EACCES; /* shouldn't it be ENOSYS? */

911 if (!dir­>i_op || !dir­>i_op­>create)

912 goto exit_lock;

913

914 DQUOT_INIT(dir);

915 lock_kernel();

916 error = dir­>i_op­>create(dir, dentry, mode);

917 unlock_kernel();

918 exit_lock:

919 up(&dir­>i_zombie);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

569

920 if (!error)

921 inode_dir_notify(dir, DN_CREATE);

922 return error;

923 }

dir inode dentry dentry
inode dentry d_inode 0 dentry “negative”

dentry
”umask fs_struct task_struct

fs mode
umask 1

umask 077
umask umask()

902 903 mode umask
S_IALLUGO incluce/linux/stat.h

==================== include/linux/stat.h 20 22 ====================
20 #define S_ISUID 0004000

21 #define S_ISGID 0002000

22 #define S_ISVTX 0001000

==================== include/linux/stat.h 50 51 ====================
50 #define S_IRWXUGO (S_IRWXU|S_IRWXG|S_IRWXO)

51 #define S_IALLUGO (S_ISUID|S_ISGID|S_ISVTX|S_IRWXUGO)

inode i_zombie
may_create() inline

fs/namei.c

==================== fs/namei.c 860 874 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>may_create()]
860 /* Check whether we can create an object with dentry child in directory

861 * dir.

862 * 1. We can't do it if child already exists (open has special treatment for

863 * this case, but since we are inlined it's OK)

864 * 2. We can't do it if dir is read­only (done in permission())

865 * 3. We should have write and exec permissions on dir

866 * 4. We can't do it if dir is immutable (done in permission())

867 */

868 static inline int may_create(struct inode *dir, struct dentry *child) {

869 if (child­>d_inode)

870 return ­EEXIST;

871 if (IS_DEADDIR(dir))

872 return ­ENOENT;

873 return permission(dir,MAY_WRITE | MAY_EXEC);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

570

874 }

IS_DEADDIR()
include/linux/fs.h

==================== include/linux/fs.h 129 129 ====================
129 #define S_DEAD 32 /* removed, but still open directory */

==================== include/linux/fs.h 159 159 ====================
159 #define IS_DEADDIR(inode) ((inode)­>i_flags & S_DEAD)

inode i_flags S_DEAD 1
dentry inode 0

path_walk() dentry inode
i_zombie

inode_operations Ext2 ext2_create()
fs/ext2/namei.c

==================== fs/ext2/namei.c 354 384 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()]
354 /*

355 * By the time this is called, we already have created

356 * the directory cache entry for the new file, but it

357 * is so far negative ­ it has no inode.

358 *

359 * If the create succeeds, we fill in the inode information

360 * with d_instantiate().

361 */

362 static int ext2_create (struct inode * dir, struct dentry * dentry, int mode)

363 {

364 struct inode * inode = ext2_new_inode (dir, mode);

365 int err = PTR_ERR(inode);

366 if (IS_ERR(inode))

367 return err;

368

369 inode­>i_op = &ext2_file_inode_operations;

370 inode­>i_fop = &ext2_file_operations;

371 inode­>i_mapping­>a_ops = &ext2_aops;

372 inode­>i_mode = mode;

373 mark_inode_dirty(inode);

374 err = ext2_add_entry (dir, dentry­>d_name.name, dentry­>d_name.len,

375 inode);

376 if (err) {

377 inode­>i_nlink­­;

378 mark_inode_dirty(inode);

379 iput (inode);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

571

380 return err;

381 }

382 d_instantiate(dentry, inode);

383 return 0;

384 }

ext2_new_inode() inode
ext2_add_entry()

d_instantiate() dentry inode inode i_op
i_fop a_ops address_space a_ops

ext2_new_inode() fs/ext2/ialloc.c

==================== fs/ext2/ialloc.c 249 280 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()>ext2_new_inode()]
249 /*

250 * There are two policies for allocating an inode. If the new inode is

251 * a directory, then a forward search is made for a block group with both

252 * free space and a low directory­to­inode ratio; if that fails, then of

253 * the groups with above­average free space, that group with the fewest

254 * directories already is chosen.

255 *

256 * For other inodes, search forward from the parent directory\'s block

257 * group to find a free inode.

258 */

259 struct inode * ext2_new_inode (const struct inode * dir, int mode)

260 {

261 struct super_block * sb;

262 struct buffer_head * bh;

263 struct buffer_head * bh2;

264 int i, j, avefreei;

265 struct inode * inode;

266 int bitmap_nr;

267 struct ext2_group_desc * gdp;

268 struct ext2_group_desc * tmp;

269 struct ext2_super_block * es;

270 int err;

271

272 /* Cannot create files in a deleted directory */

273 if (!dir || !dir­>i_nlink)

274 return ERR_PTR(­EPERM);

275

276 sb = dir­>i_sb;

277 inode = new_inode(sb);

278 if (!inode)

279 return ERR_PTR(­ENOMEM);

280

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

572

dir inode i_nlink inode

inode J new_inode() inline
include/linux/fs.h

==================== include/linux/fs.h 1192 1200 ====================
1192 static inline struct inode * new_inode(struct super_block *sb)

1193 {

1194 struct inode *inode = get_empty_inode();

1195 if (inode) {

1196 inode­>i_sb = sb;

1197 inode­>i_dev = sb­>s_dev;

1198 }

1199 return inode;

1200 }

get_empty_inode() inode inode_in_use
fs/inode.c

ext2_new_inode

mkdir() ext2_create() ext2_mknod()
ext2_mkdir() ext2_symlink

282 es
ext2_new_inode() ialloc.c

==================== fs/ext2/ialloc.c 281 372 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()>ext2_new_inode()]
281 lock_super (sb);

282 es = sb­>u.ext2_sb.s_es;

283 repeat:

284 gdp = NULL; i=0;

285

286 if (S_ISDIR(mode)) {

287 avefreei = le32_to_cpu(es­>s_free_inodes_count) /

288 sb­>u.ext2_sb.s_groups_count;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

573

289 /* I am not yet convinced that this next bit is necessary.

290 i = dir­>u.ext2_i.i_block_group;

291 for (j = 0; j < sb­>u.ext2_sb.s_groups_count; j++) {

292 tmp = ext2_get_group_desc (sb, i, &bh2);

293 if (tmp &&

294 (le16_to_cpu(tmp­>bg_used_dirs_count) << 8) <

295 le16_to_cpu(tmp­>bg_free_inodes_count)) {

296 gdp = tmp;

297 break;

298 }

299 else

300 i = ++i % sb­>u.ext2_sb.s_groups_count;

301 }

302 */

303 if (!gdp) {

304 for (j = 0; j < sb­>u.ext2_sb.s_groups_count; j++) {

305 tmp = ext2_get_group_desc (sb, j, &bh2);

306 if (tmp &&

307 le16_to_cpu(tmp­>bg_free_inodes_count) &&

308 le16_to_cpu(tmp­>bg_free_inodes_count) >= avefreei) {

309 if (!gdp ||

310 (le16_to_cpu(tmp­>bg_free_blocks_count) >

311 le16_to_cpu(gdp­>bg_free_blocks_count))) {

312 i = j;

313 gdp = tmp;

314 }

315 }

316 }

317 }

318 }

319 else

320 {

321 /*

322 * Try to place the inode in its parent directory

323 */

324 i = dir­>u.ext2_i.i_block_group;

325 tmp = ext2_get_group_desc (sb, i, &bh2);

326 if (tmp && le16_to_cpu(tmp­>bg_free_inodes_count))

327 gdp = tmp;

328 else

329 {

330 /*

331 * Use a quadratic hash to find a group with a

332 * free inode

333 */

334 for (j = 1; j < sb­>u.ext2_sb.s_groups_count; j <<= 1) {

335 i += j;

336 if (i >= sb­>u.ext2_sb.s_groups_count)

337 i ­= sb­>u.ext2_sb.s_groups_count;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

574

338 tmp = ext2_get_group_desc (sb, i, &bh2);

339 if (tmp &&

340 le16_to_cpu(tmp­>bg_free_inodes_count)) {

341 gdp = tmp;

342 break;

343 }

344 }

345 }

346 if (!gdp) {

347 /*

348 * That failed: try linear search for a free inode

349 */

350 i = dir­>u.ext2_i.i_block_group + 1;

351 for (j = 2; j < sb­>u.ext2_sb.s_groups_count; j++) {

352 if (++i >= sb­>u.ext2_sb.s_groups_count)

353 i = 0;

354 tmp = ext2_get_group_desc (sb, i, &bh2);

355 if (tmp &&

356 le16_to_cpu(tmp­>bg_free_inodes_count)) {

357 gdp = tmp;

358 break;

359 }

360 }

361 }

362 }

363

364 err = ­ENOSPC;

365 if (!gdp)

366 goto fail;

367

368 err = ­EIO;

369 bitmap_nr = load_inode_bitmap (sb, i);

370 if (bitmap_nr < 0)

371 goto fail;

372

290 301

1/256 293

ialloc.c

==================== fs/ext2/ialloc.c 373 401 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()>ext2_new_inode()]
373 bh = sb­>u.ext2_sb.s_inode_bitmap[bitmap_nr];

374 if ((j = ext2_find_first_zero_bit ((unsigned long *) bh­>b_data,

375 EXT2_INODES_PER_GROUP(sb))) <

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

575

376 EXT2_INODES_PER_GROUP(sb)) {

377 if (ext2_set_bit (j, bh­>b_data)) {

378 ext2_error (sb, "ext2_new_inode",

379 "bit already set for inode %d", j);

380 goto repeat;

381 }

382 mark_buffer_dirty(bh);

383 if (sb­>s_flags & MS_SYNCHRONOUS) {

384 ll_rw_block (WRITE, 1, &bh);

385 wait_on_buffer (bh);

386 }

387 } else {

388 if (le16_to_cpu(gdp­>bg_free_inodes_count) != 0) {

389 ext2_error (sb, "ext2_new_inode",

390 "Free inodes count corrupted in group %d",

391 i);

392 /* Is it really ENOSPC? */

393 err = ­ENOSPC;

394 if (sb­>s_flags & MS_RDONLY)

395 goto fail;

396

397 gdp­>bg_free_inodes_count = 0;

398 mark_buffer_dirty(bh2);

399 }

400 goto repeat;

401 }

super_block ext2_sb_info

load_inode_bitmap() fs/ext2/ialloc.c
ext2_find_first_zero_bit() 0

ext2_set_bit() 1
include/asm­i386/bitops.h

==================== include/asm­i386/bitops.h 248 248 ====================
248 #define ext2_set_bit __test_and_set_bit

ext2_set_bit() 1 1
goto repeat

super_block
s_flags MS_SYNCHRONOUS 1 ll_rw_block()

ll_rw_block() drivers/block/ll_rw_blk.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

576

ext2_find_first_zero_bit()

fsck

400 goto repeat
i j

==================== fs/ext2/ialloc.c 402 466 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()>ext2_new_inode()]
402 j += i * EXT2_INODES_PER_GROUP(sb) + 1;

403 if (j < EXT2_FIRST_INO(sb) || j > le32_to_cpu(es­>s_inodes_count)) {

404 ext2_error (sb, "ext2_new_inode",

405 "reserved inode or inode > inodes count ­ "

406 "block_group = %d,inode=%d", i, j);

407 err = ­EIO;

408 goto fail;

409 }

410 gdp­>bg_free_inodes_count =

411 cpu_to_le16(le16_to_cpu(gdp­>bg_free_inodes_count) ­ 1);

412 if (S_ISDIR(mode))

413 gdp­>bg_used_dirs_count =

414 cpu_to_le16(le16_to_cpu(gdp­>bg_used_dirs_count) + 1);

415 mark_buffer_dirty(bh2);

416 es­>s_free_inodes_count =

417 cpu_to_le32(le32_to_cpu(es­>s_free_inodes_count) ­ 1);

418 mark_buffer_dirty(sb­>u.ext2_sb.s_sbh);

419 sb­>s_dirt = 1;

420 inode­>i_mode = mode;

421 inode­>i_uid = current­>fsuid;

422 if (test_opt (sb, GRPID))

423 inode­>i_gid = dir­>i_gid;

424 else if (dir­>i_mode & S_ISGID) {

425 inode­>i_gid = dir­>i_gid;

426 if (S_ISDIR(mode))

427 mode |= S_ISGID;

428 } else

429 inode­>i_gid = current­>fsgid;

430

431 inode­>i_ino = j;

432 inode­>i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size

*/

433 inode­>i_blocks = 0;

434 inode­>i_mtime = inode­>i_atime = inode­>i_ctime = CURRENT_TIME;

435 inode­>u.ext2_i.i_new_inode = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

577

436 inode­>u.ext2_i.i_flags = dir­>u.ext2_i.i_flags;

437 if (S_ISLNK(mode))

438 inode­>u.ext2_i.i_flags &= ~(EXT2_IMMUTABLE_FL | EXT2_APPEND_FL);

439 inode­>u.ext2_i.i_faddr = 0;

440 inode­>u.ext2_i.i_frag_no = 0;

441 inode­>u.ext2_i.i_frag_size = 0;

442 inode­>u.ext2_i.i_file_acl = 0;

443 inode­>u.ext2_i.i_dir_acl = 0;

444 inode­>u.ext2_i.i_dtime = 0;

445 inode­>u.ext2_i.i_block_group = i;

446 if (inode­>u.ext2_i.i_flags & EXT2_SYNC_FL)

447 inode­>i_flags |= S_SYNC;

448 insert_inode_hash(inode);

449 inode­>i_generation = event++;

450 mark_inode_dirty(inode);

451

452 unlock_super (sb);

453 if(DQUOT_ALLOC_INODE(sb, inode)) {

454 sb­>dq_op­>drop(inode);

455 inode­>i_nlink = 0;

456 iput(inode);

457 return ERR_PTR(­EDQUOT);

458 }

459 ext2_debug ("allocating inode %lu\n", inode­>i_ino);

460 return inode;

461

462 fail:

463 unlock_super(sb);

464 iput(inode);

465 return ERR_PTR(err);

466 }

Ext2
s_inodes_count

inode
uid gid uid

uid fsuid suid
uid 0

fsuid
GRPID

gid fsgid GRPID 0
S_ISGID 1 gid
inode inode_hashtable insert_ionde_hash()

fs/inode.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

578

==================== fs/inode.c 796 812 ====================
[sys_open()>filp_open()>open_namei()>vfs_create()>ext2_create()>ext2_new_inode()>insert_inode_hash()]
796 /**

797 * insert_inode_hash ­ hash an inode

798 * @inode: unhashed inode

799 *

800 * Add an inode to the inode hash for this superblock. If the inode

801 * has no superblock it is added to a separate anonymous chain.

802 */

803

804 void insert_inode_hash(struct inode *inode)

805 {

806 struct list_head *head = &anon_hash_chain;

807 if (inode­>i_sb)

808 head = inode_hashtable + hash(inode­>i_sb, inode­>i_ino);

809 spin_lock(&inode_lock);

810 list_add(&inode­>i_hash, head);

811 spin_unlock(&inode_lock);

812 }

super_block

ext2_new_inode()
ext2_create() inode inode_operations file

address_space_operations Ext2
VFS Ext2

Ext2
inode inode

mark_inode_dirty() super_block s_dirty
inode

ext2_create()
ext2_add_entry()

fs/ext2/namei.c

dentry open_namei() lookup_hash() inode
d_instantiate()

ext2_create() vfs_create()
close() sys_close()

fs/open.c

==================== fs/open.c 810 835 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

579

810 /*

811 * Careful here! We test whether the file pointer is NULL before

812 * releasing the fd. This ensures that one clone task can't release

813 * an fd while another clone is opening it.

814 */

815 asmlinkage long sys_close(unsigned int fd)

816 {

817 struct file * filp;

818 struct files_struct *files = current­>files;

819

820 write_lock(&files­>file_lock);

821 if (fd >= files­>max_fds)

822 goto out_unlock;

823 filp = files­>fd[fd];

824 if (!filp)

825 goto out_unlock;

826 files­>fd[fd] = NULL;

827 FD_CLR(fd, files­>close_on_exec);

828 __put_unused_fd(files, fd);

829 write_unlock(&files­>file_lock);

830 return filp_close(filp, files);

831

832 out_unlock:

833 write_unlock(&files­>file_lock);

834 return ­EBADF;

835 }

FD_CLR time.h include/asm­i386/posix_types.h

==================== include/linux/time.h 109 109 ====================
109 #define FD_CLR(fd,fdsetp) __FD_CLR(fd,fdsetp)

==================== include/asm­i386/posix_types.h 55 57 ====================
55 #define __FD_CLR(fd,fdsetp) \

56 __asm__ __volatile__("btrl %1,%0": \

57 "=m" (*(__kernel_fd_set *) (fdsetp)):"r" ((int) (fd)))

files­>close_on_exec fd 0
__put_unused_fd() fs/open.c

==================== include/linux/file.h 58 63 ====================
[sys_close()>__put_unused_fd()]
58 static inline void __put_unused_fd(struct files_struct *files, unsigned int fd)

59 {

60 FD_CLR(fd, files­>open_fds);

61 if (fd < files­>next_fd)

62 files­>next_fd = fd;

63 }

sys_close() file

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

580

filp 0 ”file
sys_open() fork

files_srtuct file_struct
file

sys_open() filp_open() sys_close() filp_close()
fs/open.c

==================== fs/open.c 786 808 ====================
[sys_close()>filp_close()]
786 /*

787 * "id" is the POSIX thread ID. We use the

788 * files pointer for this..

789 */

790 int filp_close(struct file *filp, fl_owner_t id)

791 {

792 int retval;

793

794 if (!file_count(filp)) {

795 printk("VFS: Close: file count is 0\n");

796 return 0;

797 }

798 retval = 0;

799 if (filp­>f_op && filp­>f_op­>flush) {

800 lock_kernel();

801 retval = filp­>f_op­>flush(filp);

802 unlock_kernel();

803 }

804 fcntl_dirnotify(0, filp, 0);

805 locks_remove_posix(filp, id);

806 fput(filp);

807 return retval;

808 }

file_operations flush Ext2
flush

POSIX locks_remove_posix()
fput() file 0 file

include/linux/fs.h fs/file_table.c sys_close() fput()
fget() get_empty_filp() 1

fput() 0
clone() clone()

1 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

581

==================== fs/file_table.c 99 123 ====================
[sys_close()>filp_close()>fput()]
99 void fput(struct file * file)

100 {

101 struct dentry * dentry = file­>f_dentry;

102 struct vfsmount * mnt = file­>f_vfsmnt;

103 struct inode * inode = dentry­>d_inode;

104

105 if (atomic_dec_and_test(&file­>f_count)) {

106 locks_remove_flock(file);

107 if (file­>f_op && file­>f_op­>release)

108 file­>f_op­>release(inode, file);

109 fops_put(file­>f_op);

110 file­>f_dentry = NULL;

111 file­>f_vfsmnt = NULL;

112 if (file­>f_mode & FMODE_WRITE)

113 put_write_access(inode);

114 dput(dentry);

115 if (mnt)

116 mntput(mnt);

117 file_list_lock();

118 list_del(&file­>f_list);

119 list_add(&file­>f_list, &free_list);

120 files_stat.nr_free_files++;

121 file_list_unlock();

122 }

123 }

fput()
FL_FLOCK POSIX

fops_put()

==================== include/linux/fs.h 865 869 ====================
865 #define fops_put(fops) \

866 do { \

867 if ((fops) && (fops)­>owner) \

868 __MOD_DEC_USE_COUNT((fops)­>owner); \

869 } while(0)

865

file file_operations
release 0 Ext2

ext2_release_file() fs/ext2/file.c

==================== fs/ext2/file.c 70 80 ====================
[sys_close()>filp_close()>fput()>ext2_release_file()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

582

70 /*

71 * Called when an inode is released. Note that this is different

72 * from ext2_file_open: open gets called at every open, but release

73 * gets called only when /all/ the files are closed.

74 */

75 static int ext2_release_file (struct inode * inode, struct file * filp)

76 {

77 if (filp­>f_mode & FMODE_WRITE)

78 ext2_discard_prealloc (inode);

79 return 0;

80 }

file dentry vfsmount
dput() mntput() 0

put_write_access() inode
i_writecount

”file inode_hashtabte free_list

5.6

read() write()

Linux
VFS Linux

5.3 5.1

VFS

Unix
VFS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

583

file dentry inode
file file

file

dentry
dentry

dentry

inode inode
inode

inode
inode i_mapping address_space

inode i_data

1K 4
2

mmap()

inode
read() write()

inode

read() write()

i_mapping address_space

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

584

2 page page
virtual page
buffer_head b_data buffer_head

buffer_head b_data
page inode

4KB 1KB buffer_head
5.6

inode file dentry dentry inode
page

inode page_hash_table

CPU kflushd
CPU

kflushd

sync() page
LRU

4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

585

5.6

Unix
K K

include/linux/blkdev.h MAX_READAHEAD

==================== include/linux/blkdev.h 184 186 ====================
184 /* read­ahead in pages.. */

185 #define MAX_READAHEAD 31

186 #define MIN_READAHEAD 3

31 31 124K

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

586

file
”f_pos file

f_reada f_ramax f_raend f_rawin
ra “read ahead

blocked

DMA CPU CPU

kflushd
sys_write() write()

fs/read_write.c

==================== fs/read_write.c 144 169 ====================
144 asmlinkage ssize_t sys_write(unsigned int fd, const char * buf, size_t count)

145 {

146 ssize_t ret;

147 struct file * file;

148

149 ret = ­EBADF;

150 file = fget(fd);

151 if (file) {

152 if (file­>f_mode & FMODE_WRITE) {

153 struct inode *inode = file­>f_dentry­>d_inode;

154 ret = locks_verify_area(FLOCK_VERIFY_WRITE, inode, file,

155 file­>f_pos, count);

156 if (!ret) {

157 ssize_t (*write)(struct file *, const char *, size_t, loff_t *);

158 ret = ­EINVAL;

159 if (file­>f_op && (write = file­>f_op­>write) != NULL)

160 ret = write(file, buf, count, &file­>f_pos);

161 }

162 }

163 if (ret > 0)

164 inode_dir_notify(file­>f_dentry­>d_parent­>d_inode,

165 DN_MODIFY);

166 fput(file);

167 }

168 return ret;

169 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

587

file
fget() fd file inline

include/linux/file.h

==================== fs/file_table.c 125 136 ====================
[sys_write()>fget()]
125 struct file * fget(unsigned int fd)

126 {

127 struct file * file;

128 struct files_struct *files = current­>files;

129

130 read_lock(&files­>file_lock);

131 file = fcheck(fd);

132 if (file)

133 get_file(file);

134 read_unlock(&files­>file_lock);

135 return file;

136 }

get_file() fput()
file

file get_file() include/linux/fs.h

==================== include/linux/fs.h 521 521 ====================
521 #define get_file(x) atomic_inc(&(x)­>f_count)

file fcheck() file.h

==================== include/linux/file.h 41 52 ====================
[sys_write()>fget()>fcheck()]
41 /*

42 * Check whether the specified fd has an open file.

43 */

44 static inline struct file * fcheck(unsigned int fd)

45 {

46 struct file * file = NULL;

47 struct files_struct *files = current­>files;

48

49 if (fd < files­>max_fds)

50 file = files­>fd[fd];

51 return file;

52 }

file f_mode
FMODE_WRITE 1 open()

flags filp_open() dentry_open() FMODE_WRITE
0 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

588

file
f_pos count locks_verify_area()

fs.h

==================== include/linux/fs.h 906 913 ====================
[sys_write()>locks_verify_area()]
906 static inline int locks_verify_area(int read_write, struct inode *inode,

907 struct file *filp, loff_t offset,

908 size_t count)

909 {

910 if (inode­>i_flock && MANDATORY_LOCK(inode))

911 return locks_mandatory_area(read_write, inode, filp, offset, count);

912 return 0;

913 }

locks_mandatory_area()
fs/lock.c inode i_flock

file_lock

file_operations Ext2
ext2_file_operations ext2_dir_operations

file
generic_file_write() mm/filemap.c

==================== mm/filemap.c 2426 2494 ====================
[sys_write()>generic_file_write()]
2426 /*

2427 * Write to a file through the page cache.

2428 *

2429 * We currently put everything into the page cache prior to writing it.

2430 * This is not a problem when writing full pages. With partial pages,

2431 * however, we first have to read the data into the cache, then

2432 * dirty the page, and finally schedule it for writing. Alternatively, we

2433 * could write­through just the portion of data that would go into that

2434 * page, but that would kill performance for applications that write data

2435 * line by line, and it's prone to race conditions.

2436 *

2437 * Note that this routine doesn't try to keep track of dirty pages. Each

2438 * file system has to do this all by itself, unfortunately.

2439 * okir@monad.swb.de

2440 */

2441 ssize_t

2442 generic_file_write(struct file *file,const char *buf,size_t count,loff_t *ppos)

mailto:okir@monad.swb.de
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

589

2443 {

2444 struct inode *inode = file­>f_dentry­>d_inode;

2445 struct address_space *mapping = inode­>i_mapping;

2446 unsigned long limit = current­>rlim[RLIMIT_FSIZE].rlim_cur;

2447 loff_t pos;

2448 struct page *page, *cached_page;

2449 unsigned long written;

2450 long status;

2451 int err;

2452

2453 cached_page = NULL;

2454

2455 down(&inode­>i_sem);

2456

2457 pos = *ppos;

2458 err = ­EINVAL;

2459 if (pos < 0)

2460 goto out;

2461

2462 err = file­>f_error;

2463 if (err) {

2464 file­>f_error = 0;

2465 goto out;

2466 }

2467

2468 written = 0;

2469

2470 if (file­>f_flags & O_APPEND)

2471 pos = inode­>i_size;

2472

2473 /*

2474 * Check whether we've reached the file size limit.

2475 */

2476 err = ­EFBIG;

2477 if (limit != RLIM_INFINITY) {

2478 if (pos >= limit) {

2479 send_sig(SIGXFSZ, current, 0);

2480 goto out;

2481 }

2482 if (count > limit ­ pos) {

2483 send_sig(SIGXFSZ, current, 0);

2484 count = limit ­ pos;

2485 }

2486 }

2487

2488 status = 0;

2489 if (count) {

2490 remove_suid(inode);

2491 inode­>i_ctime = inode­>i_mtime = CURRENT_TIME;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

590

2492 mark_inode_dirty_sync(inode);

2493 }

2494

inode i_mapping address_space
include/linux/fs.h

==================== include/linux/fs.h 365 375 ====================
365 struct address_space {

366 struct list_head clean_pages; /* list of clean pages */

367 struct list_head dirty_pages; /* list of dirty pages */

368 struct list_head locked_pages; /* list of locked pages */

369 unsigned long nrpages; /* number of total pages */

370 struct address_space_operations *a_ops; /* methods */

371 struct inode *host; /* owner: inode, block_device */

372 struct vm_area_struct *i_mmap; /* list of private mappings */

373 struct vm_area_struct *i_mmap_shared; /* list of shared mappings */

374 spinlock_t i_shared_lock; /* and spinlock protecting it */

375 };

inode inode i_data
ext2_inode_info i_data[] pages

i_mmap vm_area_struct
a_ops

address_space_operations
Ext2

ext2_aops fs/ext2/inode.c

==================== fs/ext2/inode.c 669 676 ====================
669 struct address_space_operations ext2_aops = {

670 readpage: ext2_readpage,

671 writepage: ext2_writepage,

672 sync_page: block_sync_page,

673 prepare_write: ext2_prepare_write,

674 commit_write: generic_commit_write,

675 bmap: ext2_bmap

676 };

file f_error
O_APPEND 1

pos
task_struct rlim

RLIMIT_FSIZE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

591

SIGXFSZ
­EFBIG

0 inode
inode remove_suid()

mm/filemap.c

==================== mm/filemap.c 2411 2424 ====================
[sys_write()>generic_file_write()>remove_suid()]
2411 static inline void remove_suid(struct inode *inode)

2412 {

2413 unsigned int mode;

2414

2415 /* set S_IGID if S_IXGRP is set, and always set S_ISUID */

2416 mode = (inode­>i_mode & S_IXGRP)*(S_ISGID/S_IXGRP) | S_ISUID;

2417

2418 /* was any of the uid bits set? */

2419 mode &= inode­>i_mode;

2420 if (mode && !capable(CAP_FSETID)) {

2421 inode­>i_mode &= ~mode;

2422 mark_inode_dirty(inode);

2423 }

2424 }

“set uid S_ISUID
set uid S_ISUID S_ISGID 1 inode 0

set uid set gid
mode

2416 i_mode S_IXGRP 0
0 mode S_ISUID i_mode 1 S_ISGID

mode (S_ISGID | S_ISUID)
S_ISUID set uid

set uid
generic_file_write()

==================== mm/filemap.c 2495 2581 ====================
[sys_write()>generic_file_write()]
2495 while (count) {

2496 unsigned long bytes, index, offset;

2497 char *kaddr;

2498 int deactivate = 1;

2499

2500 /*

2501 * Try to find the page in the cache. If it isn't there,

2502 * allocate a free page.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

592

2503 */

2504 offset = (pos & (PAGE_CACHE_SIZE ­1)); /* Within page */

2505 index = pos >> PAGE_CACHE_SHIFT;

2506 bytes = PAGE_CACHE_SIZE ­ offset;

2507 if (bytes > count) {

2508 bytes = count;

2509 deactivate = 0;

2510 }

2511

2512 /*

2513 * Bring in the user page that we will copy from _first_.

2514 * Otherwise there's a nasty deadlock on copying from the

2515 * same page as we're writing to, without it being marked

2516 * up­to­date.

2517 */

2518 { volatile unsigned char dummy;

2519 __get_user(dummy, buf);

2520 __get_user(dummy, buf+bytes­1);

2521 }

2522

2523 status = ­ENOMEM; /* we'll assign it later anyway */

2524 page = __grab_cache_page(mapping, index, &cached_page);

2525 if (!page)

2526 break;

2527

2528 /* We have exclusive IO access to the page.. */

2529 if (!PageLocked(page)) {

2530 PAGE_BUG(page);

2531 }

2532

2533 status = mapping­>a_ops­>prepare_write(file, page, offset, offset+bytes);

2534 if (status)

2535 goto unlock;

2536 kaddr = page_address(page);

2537 status = copy_from_user(kaddr+offset, buf, bytes);

2538 flush_dcache_page(page);

2539 if (status)

2540 goto fail_write;

2541 status = mapping­>a_ops­>commit_write(file, page, offset, offset+bytes);

2542 if (!status)

2543 status = bytes;

2544

2545 if (status >= 0) {

2546 written += status;

2547 count ­= status;

2548 pos += status;

2549 buf += status;

2550 }

2551 unlock:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

593

2552 /* Mark it unlocked again and drop the page.. */

2553 UnlockPage(page);

2554 if (deactivate)

2555 deactivate_page(page);

2556 page_cache_release(page);

2557

2558 if (status < 0)

2559 break;

2560 }

2561 *ppos = pos;

2562

2563 if (cached_page)

2564 page_cache_free(cached_page);

2565

2566 /* For now, when the user asks for O_SYNC, we'll actually

2567 * provide O_DSYNC. */

2568 if ((status >= 0) && (file­>f_flags & O_SYNC))

2569 status = generic_osync_inode(inode, 1); /* 1 means datasync */

2570

2571 err = written ? written : status;

2572 out:

2573

2574 up(&inode­>i_sem);

2575 return err;

2576 fail_write:

2577 status = ­EFAULT;

2578 ClearPageUptodate(page);

2579 kunmap(page);

2580 goto unlock;

2581 }

while
pos count

pos index offset
bytes pos

PAGE_CACHE_SHIFT pos
index __grab_cache_page()

filemap.c

==================== mm/filemap.c 2378 2396 ====================
[sys_write()>generic_file_write()>__grab_cache_page()]
2378 static inline struct page * __grab_cache_page(struct address_space *mapping,

2379 unsigned long index, struct page **cached_page)

2380 {

2381 struct page *page, **hash = page_hash(mapping, index);

2382 repeat:

2383 page = __find_lock_page(mapping, index, hash);

2384 if (!page) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

594

2385 if (!*cached_page) {

2386 *cached_page = page_cache_alloc();

2387 if (!*cached_page)

2388 return NULL;

2389 }

2390 page = *cached_page;

2391 if (add_to_page_cache_unique(page, mapping, index, hash))

2392 goto repeat;

2393 *cached_page = NULL;

2394 }

2395 return page;

2396 }

page_hash_table page_hash()
include/linux/pagemap.h

==================== include/linux/pagemap.h 68 68 ====================
68 #define page_hash(mapping,index) (page_hash_table+_page_hashfn(mapping,index))

==================== mm/filemap.c 46 46 ====================
46 extern struct page **page_hash_table;

==================== include/linux/pagemap.h 50 66 ====================
50 /*

51 * We use a power­of­two hash table to avoid a modulus,

52 * and get a reasonable hash by knowing roughly how the

53 * inode pointer and indexes are distributed (ie, we

54 * roughly know which bits are "significant")

55 *

56 * For the time being it will work for struct address_space too (most of

57 * them sitting inside the inodes). We might want to change it later.

58 */

59 extern inline unsigned long _page_hashfn(struct address_space * mapping, unsigned long index)

60 {

61 #define i (((unsigned long) mapping)/(sizeof(struct inode) & ~ (sizeof(struct inode) ­ 1)))

62 #define s(x) ((x)+((x)>>PAGE_HASH_BITS))

63 return s(i+index) & (PAGE_HASH_SIZE­1);

64 #undef i

65 #undef s

66 }

index mapping

page_hash() page_hash_table
page page

page
__flnd_lock_page() 2

page_cache_alloc()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

595

add_to_page_cache_unique()
__grab_cache_page()

__grab_cache_page() generic_file_write()

page buffer_head
buffer_head

buffer_head
“up_to_date

_block_commit_write()
address_space_operations

prepare_write Ext2 ext2_prepare_write()
fs/ext2/inode.c

==================== fs/ext2/inode.c 661 664 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()]
661 static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)

662 {

663 return block_prepare_write(page,from,to,ext2_get_block);

664 }

block_prepare_write() fs/buffer.c
ext2_get_block()

==================== fs/buffer.c 1832 1842 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()]
1832 int block_prepare_write(struct page *page, unsigned from, unsigned to,

1833 get_block_t *get_block)

1834 {

1835 struct inode *inode = page­>mapping­>host;

1836 int err = __block_prepare_write(inode, page, from, to, get_block);

1837 if (err) {

1838 ClearPageUptodate(page);

1839 kunmap(page);

1840 }

1841 return err;

1842 }

__block_prepare_write() fs/buffer.c

==================== fs/buffer.c 1557 1625 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()]
1557 static int __block_prepare_write(struct inode *inode, struct page *page,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

596

1558 unsigned from, unsigned to, get_block_t *get_block)

1559 {

1560 unsigned block_start, block_end;

1561 unsigned long block;

1562 int err = 0;

1563 unsigned blocksize, bbits;

1564 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;

1565 char *kaddr = kmap(page);

1566

1567 blocksize = inode­>i_sb­>s_blocksize;

1568 if (!page­>buffers)

1569 create_empty_buffers(page, inode­>i_dev, blocksize);

1570 head = page­>buffers;

1571

1572 bbits = inode­>i_sb­>s_blocksize_bits;

1573 block = page­>index << (PAGE_CACHE_SHIFT ­ bbits);

1574

1575 for(bh = head, block_start = 0; bh != head || !block_start;

1576 block++, block_start=block_end, bh = bh­>b_this_page) {

1577 if (!bh)

1578 BUG();

1579 block_end = block_start+blocksize;

1580 if (block_end <= from)

1581 continue;

1582 if (block_start >= to)

1583 break;

1584 if (!buffer_mapped(bh)) {

1585 err = get_block(inode, block, bh, 1);

1586 if (err)

1587 goto out;

1588 if (buffer_new(bh)) {

1589 unmap_underlying_metadata(bh);

1590 if (Page_Uptodate(page)) {

1591 set_bit(BH_Uptodate, &bh­>b_state);

1592 continue;

1593 }

1594 if (block_end > to)

1595 memset(kaddr+to, 0, block_end­to);

1596 if (block_start < from)

1597 memset(kaddr+block_start, 0, from­block_start);

1598 if (block_end > to || block_start < from)

1599 flush_dcache_page(page);

1600 continue;

1601 }

1602 }

1603 if (Page_Uptodate(page)) {

1604 set_bit(BH_Uptodate, &bh­>b_state);

1605 continue;

1606 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

597

1607 if (!buffer_uptodate(bh) &&

1608 (block_start < from || block_end > to)) {

1609 ll_rw_block(READ, 1, &bh);

1610 *wait_bh++=bh;

1611 }

1612 }

1613 /*

1614 * If we issued read requests ­ let them complete.

1615 */

1616 while(wait_bh > wait) {

1617 wait_on_buffer(*­­wait_bh);

1618 err = ­EIO;

1619 if (!buffer_uptodate(*wait_bh))

1620 goto out;

1621 }

1622 return 0;

1623 out:

1624 return err;

1625 }

get_block Ext2 ext2_get_block()

super_block
buffer_head b_this_page

buffer_head page buffers
create_empty_buffers() buffer_head

buffer.c

==================== fs/buffer.c 1426 1445 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()
>create_empty_buffers()]
1426 static void create_empty_buffers(struct page *page, kdev_t dev, unsigned long blocksize)

1427 {

1428 struct buffer_head *bh, *head, *tail;

1429

1430 head = create_buffers(page, blocksize, 1);

1431 if (page­>buffers)

1432 BUG();

1433

1434 bh = head;

1435 do {

1436 bh­>b_dev = dev;

1437 bh­>b_blocknr = 0;

1438 bh­>b_end_io = NULL;

1439 tail = bh;

1440 bh = bh­>b_this_page;

1441 } while (bh);

1442 tail­>b_this_page = head;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

598

1443 page­>buffers = head;

1444 page_cache_get(page);

1445 }

page_cache_get() page
__block_prepare_write()

1607 1608 ll_rw_block()

1585

__block_prepare_write() get_block Ext2
ext2_get_block() fs/ext2/inode.c

==================== fs/ext2/inode.c 506 575 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()]
506 static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create)

507 {

508 int err = ­EIO;

509 int offsets[4];

510 Indirect chain[4];

511 Indirect *partial;

512 unsigned long goal;

513 int left;

514 int depth = ext2_block_to_path(inode, iblock, offsets);

515

516 if (depth == 0)

517 goto out;

518

519 lock_kernel();

520 reread:

521 partial = ext2_get_branch(inode, depth, offsets, chain, &err);

522

523 /* Simplest case ­ block found, no allocation needed */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

599

524 if (!partial) {

525 got_it:

526 bh_result­>b_dev = inode­>i_dev;

527 bh_result­>b_blocknr = le32_to_cpu(chain[depth­1].key);

528 bh_result­>b_state |= (1UL << BH_Mapped);

529 /* Clean up and exit */

530 partial = chain+depth­1; /* the whole chain */

531 goto cleanup;

532 }

533

534 /* Next simple case ­ plain lookup or failed read of indirect block */

535 if (!create || err == ­EIO) {

536 cleanup:

537 while (partial > chain) {

538 brelse(partial­>bh);

539 partial­­;

540 }

541 unlock_kernel();

542 out:

543 return err;

544 }

545

546 /*

547 * Indirect block might be removed by truncate while we were

548 * reading it. Handling of that case (forget what we've got and

549 * reread) is taken out of the main path.

550 */

551 if (err == ­EAGAIN)

552 goto changed;

553

554 if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)

555 goto changed;

556

557 left = (chain + depth) ­ partial;

558 err = ext2_alloc_branch(inode, left, goal,

559 offsets+(partial­chain), partial);

560 if (err)

561 goto cleanup;

562

563 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)

564 goto changed;

565

566 bh_result­>b_state |= (1UL << BH_New);

567 goto got_it;

568

569 changed:

570 while (partial > chain) {

571 bforget(partial­>bh);

572 partial­­;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

600

573 }

574 goto reread;

575 }

iblock inode inode create
__block_prepare_write() 1 create

1
inode

inode

inode
inode

Unix

inode

Ext2 12 12 1K
12K Ext2 ext2_inode_info 15

i_data[] 12 13

1K 256 256 256K
12K + 256K = 268K

inode i_data[] 14

256 × 256 = 64K
64M i_data[] 15

256 × 256 × 256 = 16M 16G 32
1K 16G + 64M + 256K + 12K

5.7

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

601

5.7

i_data[]

inode i_data address_space inode
ext2_inode_info i_data

inode ext2_inode inode
ext2_inode ext2_inode_info

ext2_inode_info i_data[] ext2_inode
i_block[] ext2_inode_info i_data[]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

602

i_block[] inode

inode

i_sock i_pipe i_wait i_flock

inode
inode

ext2_get_block()
include/linux/ext2_fs.h

==================== include/linux/ext2_fs.h 85 85 ====================
85 # define EXT2_BLOCK_SIZE(s) ((s)­>s_blocksize)

==================== include/linux/ext2_fs.h 90 90 ====================
90 #define EXT2_ADDR_PER_BLOCK(s) (EXT2_BLOCK_SIZE(s) / sizeof (__u32))

==================== include/linux/ext2_fs.h 97 97 ====================
97 #define EXT2_ADDR_PER_BLOCK_BITS(s) ((s)­>u.ext2_sb.s_addr_per_block_bits)

==================== include/linux/ext2_fs.h 174 181 ====================
174 /*

175 * Constants relative to the data blocks

176 */

177 #define EXT2_NDIR_BLOCKS 12

178 #define EXT2_IND_BLOCK EXT2_NDIR_BLOCKS

179 #define EXT2_DIND_BLOCK (EXT2_IND_BLOCK + 1)

180 #define EXT2_TIND_BLOCK (EXT2_DIND_BLOCK + 1)

181 #define EXT2_N_BLOCKS (EXT2_TIND_BLOCK + 1)

EXT2_NDIR_BLOCKS 12 EXT2_IND_BLOCK
12 i_data[] EXT2_DIND_BLOCK

EXT2_TIND_BLOCK EXT2_N_BLOCKS
i_data[]

1
ext2_block_to_path() fs/ext2/inode.c

==================== fs/ext2/inode.c 144 202 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_block_to_path()]
144 /**

145 * ext2_block_to_path ­ parse the block number into array of offsets

146 * @inode: inode in question (we are only interested in its superblock)

147 * @i_block: block number to be parsed

148 * @offsets: array to store the offsets in

149 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

603

150 * To store the locations of file's data ext2 uses a data structure common

151 * for UNIX filesystems ­ tree of pointers anchored in the inode, with

152 * data blocks at leaves and indirect blocks in intermediate nodes.

153 * This function translates the block number into path in that tree ­

154 * return value is the path length and @offsets[n] is the offset of

155 * pointer to (n+1)th node in the nth one. If @block is out of range

156 * (negative or too large) warning is printed and zero returned.

157 *

158 * Note: function doesn't find node addresses, so no IO is needed. All

159 * we need to know is the capacity of indirect blocks (taken from the

160 * inode­>i_sb).

161 */

162

163 /*

164 * Portability note: the last comparison (check that we fit into triple

165 * indirect block) is spelled differently, because otherwise on an

166 * architecture with 32­bit longs and 8Kb pages we might get into trouble

167 * if our filesystem had 8Kb blocks. We might use long long, but that would

168 * kill us on x86. Oh, well, at least the sign propagation does not matter ­

169 * i_block would have to be negative in the very beginning, so we would not

170 * get there at all.

171 */

172

173 static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])

174 {

175 int ptrs = EXT2_ADDR_PER_BLOCK(inode­>i_sb);

176 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode­>i_sb);

177 const long direct_blocks = EXT2_NDIR_BLOCKS,

178 indirect_blocks = ptrs,

179 double_blocks = (1 << (ptrs_bits * 2));

180 int n = 0;

181

182 if (i_block < 0) {

183 ext2_warning (inode­>i_sb, "ext2_block_to_path", "block < 0");

184 } else if (i_block < direct_blocks) {

185 offsets[n++] = i_block;

186 } else if ((i_block ­= direct_blocks) < indirect_blocks) {

187 offsets[n++] = EXT2_IND_BLOCK;

188 offsets[n++] = i_block;

189 } else if ((i_block ­= indirect_blocks) < double_blocks) {

190 offsets[n++] = EXT2_DIND_BLOCK;

191 offsets[n++] = i_block >> ptrs_bits;

192 offsets[n++] = i_block & (ptrs ­ 1);

193 } else if (((i_block ­= double_blocks) >> (ptrs_bits * 2)) < ptrs) {

194 offsets[n++] = EXT2_TIND_BLOCK;

195 offsets[n++] = i_block >> (ptrs_bits * 2);

196 offsets[n++] = (i_block >> ptrs_bits) & (ptrs ­ 1);

197 offsets[n++] = i_block & (ptrs ­ 1);

198 } else {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

604

199 ext2_warning (inode­>i_sb, "ext2_block_to_path", "block > big");

200 }

201 return n;

202 }

1K ptrs 256
indirect_blocks 256 ptrs ptrs_bits 8 256 1 8

double_blocks 1 16 64K 1 24
16M

offset[] 10 1
offset[0] i_data[] 10 20

2 offset[0] 12 offset[1] 8 offset[]
4 offset C

ext2_block_to_path() 0

ext2_get_branch()

==================== fs/ext2/inode.c 204 270 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_get_branch()]
204 /**

205 * ext2_get_branch ­ read the chain of indirect blocks leading to data

206 * @inode: inode in question

207 * @depth: depth of the chain (1 ­ direct pointer, etc.)

208 * @offsets: offsets of pointers in inode/indirect blocks

209 * @chain: place to store the result

210 * @err: here we store the error value

211 *

212 * Function fills the array of triples <key, p, bh> and returns %NULL

213 * if everything went OK or the pointer to the last filled triple

214 * (incomplete one) otherwise. Upon the return chain[i].key contains

215 * the number of (i+1)­th block in the chain (as it is stored in memory,

216 * i.e. little­endian 32­bit), chain[i].p contains the address of that

217 * number (it points into struct inode for i==0 and into the bh­>b_data

218 * for i>0) and chain[i].bh points to the buffer_head of i­th indirect

219 * block for i>0 and NULL for i==0. In other words, it holds the block

220 * numbers of the chain, addresses they were taken from (and where we can

221 * verify that chain did not change) and buffer_heads hosting these

222 * numbers.

223 *

224 * Function stops when it stumbles upon zero pointer (absent block)

225 * (pointer to last triple returned, *@err == 0)

226 * or when it gets an IO error reading an indirect block

227 * (ditto, *@err == ­EIO)

228 * or when it notices that chain had been changed while it was reading

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

605

229 * (ditto, *@err == ­EAGAIN)

230 * or when it reads all @depth­1 indirect blocks successfully and finds

231 * the whole chain, all way to the data (returns %NULL, *err == 0).

232 */

233 static inline Indirect *ext2_get_branch(struct inode *inode,

234 int depth,

235 int *offsets,

236 Indirect chain[4],

237 int *err)

238 {

239 kdev_t dev = inode­>i_dev;

240 int size = inode­>i_sb­>s_blocksize;

241 Indirect *p = chain;

242 struct buffer_head *bh;

243

244 *err = 0;

245 /* i_data is not going away, no lock needed */

246 add_chain (chain, NULL, inode­>u.ext2_i.i_data + *offsets);

247 if (!p­>key)

248 goto no_block;

249 while (­­depth) {

250 bh = bread(dev, le32_to_cpu(p­>key), size);

251 if (!bh)

252 goto failure;

253 /* Reader: pointers */

254 if (!verify_chain(chain, p))

255 goto changed;

256 add_chain(++p, bh, (u32*)bh­>b_data + *++offsets);

257 /* Reader: end */

258 if (!p­>key)

259 goto no_block;

260 }

261 return NULL;

262

263 changed:

264 *err = ­EAGAIN;

265 goto no_block;

266 failure:

267 *err = ­EIO;

268 no_block:

269 return p;

270 }

offset[] chain[] Indirect
fs/ext2/inode.c

==================== fs/ext2/inode.c 125 129 ====================
125 typedef struct {

126 u32 *p;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

606

127 u32 key;

128 struct buffer_head *bh;

129 } Indirect;

offset[] offsets
chain[] Indirect

Indirect p key
Indirect add_chain()

==================== fs/ext2/inode.c 131 135 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_get_branch()>add_chain()]
131 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)

132 {

133 p­>key = *(p­>p = v);

134 p­>bh = bh;

135 }

10 chain[0] Indirect
bh NULL p

10 &inode­>u.ext2_i.i_data[10] key
20 chain[0] chain[1] chain[0]

bh NULL p 12
&inode­>u.ext2_i.i_data[12] key

chain[1] bh
chain[1] p 8

key depth
chain[] chain[depth­1].key
chain[] chain[0] chain[depth­1]

chain
ext2_get_branch()

chain[] Indirect verify_chain()
fs/ext2/inode.c

==================== fs/ext2/inode.c 137 142 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_get_branch()>verify_chain()]
137 static inline int verify_chain(Indirect *from, Indirect *to)

138 {

139 while (from <= to && from­>key == *from­>p)

140 from++;

141 return (from > to);

142 }

ext2_get_branch() bread()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

607

verify_chain()
from­>key==*from­>p

ext2_get_branch() ­EAGAIN
bread()

ext2_get_branch() ext2_block_to_path()

ext2_get_branch() NULL
0

Indirect
err

ext2_get_block()
bh_result

ext2_get_branch() 0 partial

ext2_find_goal()
fs/ext2/inode.c

==================== fs/ext2/inode.c 309 348 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_find_goal()]
309 /**

310 * ext2_find_goal ­ find a prefered place for allocation.

311 * @inode: owner

312 * @block: block we want

313 * @chain: chain of indirect blocks

314 * @partial: pointer to the last triple within a chain

315 * @goal: place to store the result.

316 *

317 * Normally this function find the prefered place for block allocation,

318 * stores it in *@goal and returns zero. If the branch had been changed

319 * under us we return ­EAGAIN.

320 */

321

322 static inline int ext2_find_goal(struct inode *inode,

323 long block,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

608

324 Indirect chain[4],

325 Indirect *partial,

326 unsigned long *goal)

327 {

328 /* Writer: ­>i_next_alloc* */

329 if (block == inode­>u.ext2_i.i_next_alloc_block + 1) {

330 inode­>u.ext2_i.i_next_alloc_block++;

331 inode­>u.ext2_i.i_next_alloc_goal++;

332 }

333 /* Writer: end */

334 /* Reader: pointers, ­>i_next_alloc* */

335 if (verify_chain(chain, partial)) {

336 /*

337 * try the heuristic for sequential allocation,

338 * failing that at least try to get decent locality.

339 */

340 if (block == inode­>u.ext2_i.i_next_alloc_block)

341 *goal = inode­>u.ext2_i.i_next_alloc_goal;

342 if (!*goal)

343 *goal = ext2_find_near(inode, partial);

344 return 0;

345 }

346 /* Reader: end */

347 return ­EAGAIN;

348 }

block goal
ext2_inode_info

i_next_alloc_block i_next_alloc_goal

lseek()
lseek()

ext2_find_near()

==================== fs/ext2/inode.c 272 307 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_find_goal()>ext2_find_near()]
272 /**

273 * ext2_find_near ­ find a place for allocation with sufficient locality

274 * @inode: owner

275 * @ind: descriptor of indirect block.

276 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

609

277 * This function returns the prefered place for block allocation.

278 * It is used when heuristic for sequential allocation fails.

279 * Rules are:

280 * + if there is a block to the left of our position ­ allocate near it.

281 * + if pointer will live in indirect block ­ allocate near that block.

282 * + if pointer will live in inode ­ allocate in the same cylinder group.

283 * Caller must make sure that @ind is valid and will stay that way.

284 */

285

286 static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind)

287 {

288 u32 *start = ind­>bh ? (u32*) ind­>bh­>b_data : inode­>u.ext2_i.i_data;

289 u32 *p;

290

291 /* Try to find previous block */

292 for (p = ind­>p ­ 1; p >= start; p­­)

293 if (*p)

294 return le32_to_cpu(*p);

295

296 /* No such thing, so let's try location of indirect block */

297 if (ind­>bh)

298 return ind­>bh­>b_blocknr;

299

300 /*

301 * It is going to be refered from inode itself? OK, just put it into

302 * the same cylinder group then.

303 */

304 return (inode­>u.ext2_i.i_block_group *

305 EXT2_BLOCKS_PER_GROUP(inode­>i_sb)) +

306 le32_to_cpu(inode­>i_sb­>u.ext2_sb.s_es­>s_first_data_block);

307 }

start

ext2_get_block()
ext2_alloc_branch()

fs/ext2/inode.c

==================== fs/ext2/inode.c 350 423 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

610

>ext2_alloc_branch()]
350 /**

351 * ext2_alloc_branch ­ allocate and set up a chain of blocks.

352 * @inode: owner

353 * @num: depth of the chain (number of blocks to allocate)

354 * @offsets: offsets (in the blocks) to store the pointers to next.

355 * @branch: place to store the chain in.

356 *

357 * This function allocates @num blocks, zeroes out all but the last one,

358 * links them into chain and (if we are synchronous) writes them to disk.

359 * In other words, it prepares a branch that can be spliced onto the

360 * inode. It stores the information about that chain in the branch[], in

361 * the same format as ext2_get_branch() would do. We are calling it after

362 * we had read the existing part of chain and partial points to the last

363 * triple of that (one with zero ­>key). Upon the exit we have the same

364 * picture as after the successful ext2_get_block(), excpet that in one

365 * place chain is disconnected ­ *branch­>p is still zero (we did not

366 * set the last link), but branch­>key contains the number that should

367 * be placed into *branch­>p to fill that gap.

368 *

369 * If allocation fails we free all blocks we've allocated (and forget

370 * ther buffer_heads) and return the error value the from failed

371 * ext2_alloc_block() (normally ­ENOSPC). Otherwise we set the chain

372 * as described above and return 0.

373 */

374

375 static int ext2_alloc_branch(struct inode *inode,

376 int num,

377 unsigned long goal,

378 int *offsets,

379 Indirect *branch)

380 {

381 int blocksize = inode­>i_sb­>s_blocksize;

382 int n = 0;

383 int err;

384 int i;

385 int parent = ext2_alloc_block(inode, goal, &err);

386

387 branch[0].key = cpu_to_le32(parent);

388 if (parent) for (n = 1; n < num; n++) {

389 struct buffer_head *bh;

390 /* Allocate the next block */

391 int nr = ext2_alloc_block(inode, parent, &err);

392 if (!nr)

393 break;

394 branch[n].key = cpu_to_le32(nr);

395 /*

396 * Get buffer_head for parent block, zero it out and set

397 * the pointer to new one, then send parent to disk.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

611

398 */

399 bh = getblk(inode­>i_dev, parent, blocksize);

400 if (!buffer_uptodate(bh))

401 wait_on_buffer(bh);

402 memset(bh­>b_data, 0, blocksize);

403 branch[n].bh = bh;

404 branch[n].p = (u32*) bh­>b_data + offsets[n];

405 *branch[n].p = branch[n].key;

406 mark_buffer_uptodate(bh, 1);

407 mark_buffer_dirty_inode(bh, inode);

408 if (IS_SYNC(inode) || inode­>u.ext2_i.i_osync) {

409 ll_rw_block (WRITE, 1, &bh);

410 wait_on_buffer (bh);

411 }

412 parent = nr;

413 }

414 if (n == num)

415 return 0;

416

417 /* Allocation failed, free what we already allocated */

418 for (i = 1; i < n; i++)

419 bforget(branch[i].bh);

420 for (i = 0; i < n; i++)

421 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);

422 return err;

423 }

num branch
chain[] offset offsets[]

0 branch chain[2]
offset offsets[2] num 2

ext2_get_branch() ext2_block_to_path() branch[0] Indirect
ext2_alloc_block()

for get_block()
memset() 0

403 405 ll_rw_block()
for parent

ext2_get_block() ext2_get_block() buffer_head
ext2_get_block()

buffer_head b_blocknr ext2_get_branch() NULL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

612

ext2_get_block() got_it 525

branch[0]
Indirect key p

ext2_alloc_block() fs/ext2/inode.c

==================== fs/ext2/inode.c 85 123 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>ext2_alloc_block()]
85 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)

86 {

87 #ifdef EXT2FS_DEBUG

88 static unsigned long alloc_hits = 0, alloc_attempts = 0;

89 #endif

90 unsigned long result;

91

92

93 #ifdef EXT2_PREALLOCATE

94 /* Writer: ­>i_prealloc* */

95 if (inode­>u.ext2_i.i_prealloc_count &&

96 (goal == inode­>u.ext2_i.i_prealloc_block ||

97 goal + 1 == inode­>u.ext2_i.i_prealloc_block))

98 {

99 result = inode­>u.ext2_i.i_prealloc_block++;

100 inode­>u.ext2_i.i_prealloc_count­­;

101 /* Writer: end */

102 #ifdef EXT2FS_DEBUG

103 ext2_debug ("preallocation hit (%lu/%lu).\n",

104 ++alloc_hits, ++alloc_attempts);

105 #endif

106 } else {

107 ext2_discard_prealloc (inode);

108 #ifdef EXT2FS_DEBUG

109 ext2_debug ("preallocation miss (%lu/%lu).\n",

110 alloc_hits, ++alloc_attempts);

111 #endif

112 if (S_ISREG(inode­>i_mode))

113 result = ext2_new_block (inode, goal,

114 &inode­>u.ext2_i.i_prealloc_count,

115 &inode­>u.ext2_i.i_prealloc_block, err);

116 else

117 result = ext2_new_block (inode, goal, 0, 0, err);

118 }

119 #else

120 result = ext2_new_block (inode, goal, 0, 0, err);

121 #endif

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

613

122 return result;

123 }

goal
EXT2_PREALLOCATE

ext2_inode_info i_prealloc_block i_prealloc_count
ext2_new_block() fs/ext2/balloc.c

ext2_new_block() 250

32
0 8

getblk()
fs/buffer.c

==================== fs/buffer.c 968 1027 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()]
968 /*

969 * Ok, this is getblk, and it isn't very clear, again to hinder

970 * race­conditions. Most of the code is seldom used, (ie repeating),

971 * so it should be much more efficient than it looks.

972 *

973 * The algorithm is changed: hopefully better, and an elusive bug removed.

974 *

975 * 14.02.92: changed it to sync dirty buffers a bit: better performance

976 * when the filesystem starts to get full of dirty blocks (I hope).

977 */

978 struct buffer_head * getblk(kdev_t dev, int block, int size)

979 {

980 struct buffer_head * bh;

981 int isize;

982

983 repeat:

984 spin_lock(&lru_list_lock);

985 write_lock(&hash_table_lock);

986 bh = __get_hash_table(dev, block, size);

987 if (bh)

988 goto out;

989

990 isize = BUFSIZE_INDEX(size);

991 spin_lock(&free_list[isize].lock);

992 bh = free_list[isize].list;

993 if (bh) {

994 __remove_from_free_list(bh, isize);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

614

995 atomic_set(&bh­>b_count, 1);

996 }

997 spin_unlock(&free_list[isize].lock);

998

999 /*

1000 * OK, FINALLY we know that this buffer is the only one of

1001 * its kind, we hold a reference (b_count>0), it is unlocked,

1002 * and it is clean.

1003 */

1004 if (bh) {

1005 init_buffer(bh, NULL, NULL);

1006 bh­>b_dev = dev;

1007 bh­>b_blocknr = block;

1008 bh­>b_state = 1 << BH_Mapped;

1009

1010 /* Insert the buffer into the regular lists */

1011 __insert_into_queues(bh);

1012 out:

1013 write_unlock(&hash_table_lock);

1014 spin_unlock(&lru_list_lock);

1015 touch_buffer(bh);

1016 return bh;

1017 }

1018

1019 /*

1020 * If we block while refilling the free list, somebody may

1021 * create the buffer first ... search the hashes again.

1022 */

1023 write_unlock(&hash_table_lock);

1024 spin_unlock(&lru_list_lock);

1025 refill_freelist(size);

1026 goto repeat;

1027 }

block
free_list[]

__insert_into_queues() LRU fs/buffer.c

==================== fs/buffer.c 494 500 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()__insert_into_queues()]
494 static void __insert_into_queues(struct buffer_head *bh)

495 {

496 struct buffer_head **head = &hash(bh­>b_dev, bh­>b_blocknr);

497

498 __hash_link(bh, head);

499 __insert_into_lru_list(bh, bh­>b_list);

500 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

615

free_list[] refill_freelist()
fs/buffer.c

==================== fs/buffer.c 755 766 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getbtk()>refill_freelist()]
755 /*

756 * We used to try various strange things. Let's not.

757 * We'll just try to balance dirty buffers, and possibly

758 * launder some pages.

759 */

760 static void refill_freelist(int size)

761 {

762 balance_dirty(NODEV);

763 if (free_shortage())

764 page_launder(GFP_BUFFER, 0);

765 grow_buffers(size);

766 }

LRU bdflush
bdflush

bdflush
bdflush

balance_dirty()
bdflush fs/buffer.c

==================== fs/buffer.c 1064 1078 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()>refill_freelist()>balance_dirty()]
1064 /*

1065 * if a new dirty buffer is created we need to balance bdflush.

1066 *

1067 * in the future we might want to make bdflush aware of different

1068 * pressures on different devices ­ thus the (currently unused)

1069 * 'dev' parameter.

1070 */

1071 void balance_dirty(kdev_t dev)

1072 {

1073 int state = balance_dirty_state(dev);

1074

1075 if (state < 0)

1076 return;

1077 wakeup_bdflush(state);

1078 }

balance_dirty_stat() bdflush

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

616

==================== fs/buffer.c 1029 1062 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()>refill_freelist()>balance_dirty()>balance_dirty_state()]
1029 /* ­1 ­> no need to flush

1030 0 ­> async flush

1031 1 ­> sync flush (wait for I/O completation) */

1032 int balance_dirty_state(kdev_t dev)

1033 {

1034 unsigned long dirty, tot, hard_dirty_limit, soft_dirty_limit;

1035 int shortage;

1036

1037 dirty = size_buffers_type[BUF_DIRTY] >> PAGE_SHIFT;

1038 tot = nr_free_buffer_pages();

1039

1040 dirty *= 100;

1041 soft_dirty_limit = tot * bdf_prm.b_un.nfract;

1042 hard_dirty_limit = tot * bdf_prm.b_un.nfract_sync;

1043

1044 /* First, check for the "real" dirty limit. */

1045 if (dirty > soft_dirty_limit) {

1046 if (dirty > hard_dirty_limit)

1047 return 1;

1048 return 0;

1049 }

1050

1051 /*

1052 * If we are about to get low on free pages and

1053 * cleaning the inactive_dirty pages would help

1054 * fix this, wake up bdflush.

1055 */

1056 shortage = free_shortage();

1057 if (shortage && nr_inactive_dirty_pages > shortage &&

1058 nr_inactive_dirty_pages > freepages.high)

1059 return 0;

1060

1061 return ­1;

1062 }

­1
bdflush 0

bdflush 1
bdflush

bdflush
bdflush

bdflush
wakeup_bdflush() bdflush

flush_dirty_buffers()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

617

==================== fs/buffer.c 2591 2601 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()>refill_freelist()>balance_dirty()>wakeup_bdflush()]
2591 struct task_struct *bdflush_tsk = 0;

2592

2593 void wakeup_bdflush(int block)

2594 {

2595 if (current != bdflush_tsk) {

2596 wake_up_process(bdflush_tsk);

2597

2598 if (block)

2599 flush_dirty_buffers(0);

2600 }

2601 }

bdflush_tsk bdflush task_struct
wake_up_process() inline reschedule_idle()

need_schedule 1
4 flush_dirty_buffers() fs/buffer.c

==================== fs/buffer.c 2530 2589 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()>refill_freelist()>balance_dirty()>wakeup_bdflush()>flush_dirty_buffers()]
2530 /* ====================== bdflush support =================== */

2531

2532 /* This is a simple kernel daemon, whose job it is to provide a dynamic

2533 * response to dirty buffers. Once this process is activated, we write back

2534 * a limited number of buffers to the disks and then go back to sleep again.

2535 */

2536

2537 /* This is the _only_ function that deals with flushing async writes

2538 to disk.

2539 NOTENOTENOTENOTE: we _only_ need to browse the DIRTY lru list

2540 as all dirty buffers lives _only_ in the DIRTY lru list.

2541 As we never browse the LOCKED and CLEAN lru lists they are infact

2542 completly useless. */

2543 static int flush_dirty_buffers(int check_flushtime)

2544 {

2545 struct buffer_head * bh, *next;

2546 int flushed = 0, i;

2547

2548 restart:

2549 spin_lock(&lru_list_lock);

2550 bh = lru_list[BUF_DIRTY];

2551 if (!bh)

2552 goto out_unlock;

2553 for (i = nr_buffers_type[BUF_DIRTY]; i­­ > 0; bh = next) {

2554 next = bh­>b_next_free;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

618

2555

2556 if (!buffer_dirty(bh)) {

2557 __refile_buffer(bh);

2558 continue;

2559 }

2560 if (buffer_locked(bh))

2561 continue;

2562

2563 if (check_flushtime) {

2564 /* The dirty lru list is chronologically ordered so

2565 if the current bh is not yet timed out,

2566 then also all the following bhs

2567 will be too young. */

2568 if (time_before(jiffies, bh­>b_flushtime))

2569 goto out_unlock;

2570 } else {

2571 if (++flushed > bdf_prm.b_un.ndirty)

2572 goto out_unlock;

2573 }

2574

2575 /* OK, now we are committed to write it out. */

2576 atomic_inc(&bh­>b_count);

2577 spin_unlock(&lru_list_lock);

2578 ll_rw_block(WRITE, 1, &bh);

2579 atomic_dec(&bh­>b_count);

2580

2581 if (current­>need_resched)

2582 schedule();

2583 goto restart;

2584 }

2585 out_unlock:

2586 spin_unlock(&lru_list_lock);

2587

2588 return flushed;

2589 }

2581
current­>need_resched wake_up_process() bdflush

refill_freelist() 763
764 page_launder() 2

grow_buffers()
grow_buffers()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

619

==================== fs/buffer.c 2244 2305 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_alloc_branch()>getblk()>refill_freelist()>grow_buffers()]
2244 /*

2245 * Try to increase the number of buffers available: the size argument

2246 * is used to determine what kind of buffers we want.

2247 */

2248 static int grow_buffers(int size)

2249 {

2250 struct page * page;

2251 struct buffer_head *bh, *tmp;

2252 struct buffer_head * insert_point;

2253 int isize;

2254

2255 if ((size & 511) || (size > PAGE_SIZE)) {

2256 printk("VFS: grow_buffers: size = %d\n",size);

2257 return 0;

2258 }

2259

2260 page = alloc_page(GFP_BUFFER);

2261 if (!page)

2262 goto out;

2263 LockPage(page);

2264 bh = create_buffers(page, size, 0);

2265 if (!bh)

2266 goto no_buffer_head;

2267

2268 isize = BUFSIZE_INDEX(size);

2269

2270 spin_lock(&free_list[isize].lock);

2271 insert_point = free_list[isize].list;

2272 tmp = bh;

2273 while (1) {

2274 if (insert_point) {

2275 tmp­>b_next_free = insert_point­>b_next_free;

2276 tmp­>b_prev_free = insert_point;

2277 insert_point­>b_next_free­>b_prev_free = tmp;

2278 insert_point­>b_next_free = tmp;

2279 } else {

2280 tmp­>b_prev_free = tmp;

2281 tmp­>b_next_free = tmp;

2282 }

2283 insert_point = tmp;

2284 if (tmp­>b_this_page)

2285 tmp = tmp­>b_this_page;

2286 else

2287 break;

2288 }

2289 tmp­>b_this_page = bh;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

620

2290 free_list[isize].list = bh;

2291 spin_unlock(&free_list[isize].lock);

2292

2293 page­>buffers = bh;

2294 page­>flags &= ~(1 << PG_referenced);

2295 lru_cache_add(page);

2296 UnlockPage(page);

2297 atomic_inc(&buffermem_pages);

2298 return 1;

2299

2300 no_buffer_head:

2301 UnlockPage(page);

2302 page_cache_release(page);

2303 out:

2304 return 0;

2305 }

ext2_alloc_branch() ext2_get_block()

Indirect key
inode

ext2_splice_branch() fs/ext2/inode.c

==================== fs/ext2/inode.c 425 491 ====================
[sys_write()>generic_file_write()>ext2_prepare_write()>block_prepare_write()>__block_prepare_write()>ext2_get_block()
>ext2_splice_branch()]
425 /**

426 * ext2_splice_branch ­ splice the allocated branch onto inode.

427 * @inode: owner

428 * @block: (logical) number of block we are adding

429 * @chain: chain of indirect blocks (with a missing link ­ see

430 * ext2_alloc_branch)

431 * @where: location of missing link

432 * @num: number of blocks we are adding

433 *

434 * This function verifies that chain (up to the missing link) had not

435 * changed, fills the missing link and does all housekeeping needed in

436 * inode (­>i_blocks, etc.). In case of success we end up with the full

437 * chain to new block and return 0. Otherwise (== chain had been changed)

438 * we free the new blocks (forgetting their buffer_heads, indeed) and

439 * return ­EAGAIN.

440 */

441

442 static inline int ext2_splice_branch(struct inode *inode,

443 long block,

444 Indirect chain[4],

445 Indirect *where,

446 int num)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

621

447 {

448 int i;

449

450 /* Verify that place we are splicing to is still there and vacant */

451

452 /* Writer: pointers, ­>i_next_alloc*, ­>i_blocks */

453 if (!verify_chain(chain, where­1) || *where­>p)

454 /* Writer: end */

455 goto changed;

456

457 /* That's it */

458

459 *where­>p = where­>key;

460 inode­>u.ext2_i.i_next_alloc_block = block;

461 inode­>u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num­1].key);

462 inode­>i_blocks += num * inode­>i_sb­>s_blocksize/512;

463

464 /* Writer: end */

465

466 /* We are done with atomic stuff, now do the rest of housekeeping */

467

468 inode­>i_ctime = CURRENT_TIME;

469

470 /* had we spliced it onto indirect block? */

471 if (where­>bh) {

472 mark_buffer_dirty_inode(where­>bh, inode);

473 if (IS_SYNC(inode) || inode­>u.ext2_i.i_osync) {

474 ll_rw_block (WRITE, 1, &where­>bh);

475 wait_on_buffer(where­>bh);

476 }

477 }

478

479 if (IS_SYNC(inode) || inode­>u.ext2_i.i_osync)

480 ext2_sync_inode (inode);

481 else

482 mark_inode_dirty(inode);

483 return 0;

484

485 changed:

486 for (i = 1; i < num; i++)

487 bforget(where[i].bh);

488 for (i = 0; i < num; i++)

489 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);

490 return ­EAGAIN;

491 }

459
inode ext2_inode_info i_data[]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

622

Indirect bh 0 chain[0] inode

ext2_get_block() got_it
bh_result

ext2_get_block() __block_prepare_write() 1586
__block_prepare_write() ext2_get_block()

unmap_underlying_metadata()
ll_rw_block() __block_prepare_write() for

wait_on_buffer() 1616 1621

__block_prepare_write() block_prepare_write()
ext2_prepare_write() generic_file_write()

generic_file_write() while

while

==================== mm/filemap.c 2533 2541 ====================
[sys_write()>generic_file_write()]
2533 status = mapping­>a_ops­>prepare_write(file, page, offset, offset+bytes);

2534 if (status)

2535 goto unlock;

2536 kaddr = page_address(page);

2537 status = copy_from_user(kaddr+offset, buf, bytes);

2538 flush_dcache_page(page);

2539 if (status)

2540 goto fail_write;

2541 status = mapping­>a_ops­>commit_write(file, page, offset, offset+bytes);

copy_from_user() buf (kaddr +
offset) bytes while

i386 flush_dcache_page()
kflushd

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

623

kflushd kflushd
address_space_operations

commit_write Ext2 generic_commit_write() fs/buffer.c

==================== fs/buffer.c 1844 1856 ====================
[sys_write()>generic_file_write()>generic_commit_write()]
1844 int generic_commit_write(struct file *file, struct page *page,

1845 unsigned from, unsigned to)

1846 {

1847 struct inode *inode = page­>mapping­>host;

1848 loff_t pos = ((loff_t)page­>index << PAGE_CACHE_SHIFT) + to;

1849 __block_commit_write(inode,page,from,to);

1850 kunmap(page);

1851 if (pos > inode­>i_size) {

1852 inode­>i_size = pos;

1853 mark_inode_dirty(inode);

1854 }

1855 return 0;

1856 }

__block_commit_write() kunmap() i386

==================== fs/buffer.c 1627 1665 ====================
[sys_write()>generic_file_write()>generic_cmomit_write()>__block_commit_write()]
1627 static int __block_commit_write(struct inode *inode, struct page *page,

1628 unsigned from, unsigned to)

1629 {

1630 unsigned block_start, block_end;

1631 int partial = 0, need_balance_dirty = 0;

1632 unsigned blocksize;

1633 struct buffer_head *bh, *head;

1634

1635 blocksize = inode­>i_sb­>s_blocksize;

1636

1637 for(bh = head = page­>buffers, block_start = 0;

1638 bh != head || !block_start;

1639 block_start=block_end, bh = bh­>b_this_page) {

1640 block_end = block_start + blocksize;

1641 if (block_end <= from || block_start >= to) {

1642 if (!buffer_uptodate(bh))

1643 partial = 1;

1644 } else {

1645 set_bit(BH_Uptodate, &bh­>b_state);

1646 if (!atomic_set_buffer_dirty(bh)) {

1647 __mark_dirty(bh);

1648 buffer_insert_inode_queue(bh, inode);

1649 need_balance_dirty = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

624

1650 }

1651 }

1652 }

1653

1654 if (need_balance_dirty)

1655 balance_dirty(bh­>b_dev);

1656 /*

1657 * is this a partial write that happened to make all buffers

1658 * uptodate then we can optimize away a bogus readpage() for

1659 * the next read(). Here we 'discover' wether the page went

1660 * uptodate as a result of this (potentially partial) write.

1661 */

1662 if (!partial)

1663 SetPageUptodate(page);

1664 return 0;

1665 }

for from to
“uptodate dirty

kflushd BH_Uptodate 1

kflushd

commit

dirty __mark_dirty()
need_balance_dirty 1 __mark_dirty()

LRU fs/buffer.c

==================== fs/buffer.c 1080 1084 ====================
[sys_write()>generic_file_write()>generic_cmomit_write()>__block_commit_write()>__mark_dirty()]
1080 static __inline__ void __mark_dirty(struct buffer_head *bh)

1081 {

1082 bh­>b_flushtime = jiffies + bdf_prm.b_un.age_buffer;

1083 refile_buffer(bh);

1084 }

==================== fs/buffer.c 1124 1129 ====================
[sys_write()>generic_file_write()>generic_cmomit_write()>__block_commit_write()>__mark_dirty()>refile_buffer()]
1124 void refile_buffer(struct buffer_head *bh)

1125 {

1126 spin_lock(&lru_list_lock);

1127 __refile_buffer(bh);

1128 spin_unlock(&lru_list_lock);

1129 }

==================== fs/buffer.c 1102 1122 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

625

[sys_write()>generic_file_write()>generic_cmomit_write()>__block_commit_write()>__mark_dirty()>refile_buffer()]
1102 /*

1103 * A buffer may need to be moved from one buffer list to another

1104 * (e.g. in case it is not shared any more). Handle this.

1105 */

1106 static void __refile_buffer(struct buffer_head *bh)

1107 {

1108 int dispose = BUF_CLEAN;

1109 if (buffer_locked(bh))

1110 dispose = BUF_LOCKED;

1111 if (buffer_dirty(bh))

1112 dispose = BUF_DIRTY;

1113 if (buffer_protected(bh))

1114 dispose = BUF_PROTECTED;

1115 if (dispose != bh­>b_list) {

1116 __remove_from_lru_list(bh, bh­>b_list);

1117 bh­>b_list = dispose;

1118 if (dispose == BUF_CLEAN)

1119 remove_inode_queue(bh);

1120 __insert_into_lru_list(bh, dispose);

1121 }

1122 }

buffer_head b_next_free b_prev_free LRU
LRU lru_list[] fs/buffer.c

==================== fs/buffer.c 82 82 ====================
82 static struct buffer_head *lru_list[NR_LIST];

include/linux/fs.h

==================== include/linux/fs.h 991 995 ====================
991 #define BUF_CLEAN 0

992 #define BUF_LOCKED 1 /* Buffers scheduled for write */

993 #define BUF_DIRTY 2 /* Dirty buffers, not yet scheduled for write */

994 #define BUF_PROTECTED 3 /* Ramdisk persistent storage */

995 #define NR_LIST 4

LRU bdflush
lru_list[BUF_DIRTY]

need_balance_dirty 1
balance_dirty() bdflush

bdflush

generic_commit_write() generic_file_write()
page_cache_release()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

626

generic_file_write() sys_write()
sys_write() sys_read() sys_write()

file_operations write sys_read()
file_operations read Ext2

generic_file_read() mm/filemap.c

==================== mm/filemap.c 1237 1264 ====================
[sys_read()>generic_file_read()]
1237 /*

1238 * This is the "read()" routine for all filesystems

1239 * that can use the page cache directly.

1240 */

1241 ssize_t generic_file_read(struct file * filp, char * buf, size_t count, loff_t *ppos)

1242 {

1243 ssize_t retval;

1244

1245 retval = ­EFAULT;

1246 if (access_ok(VERIFY_WRITE, buf, count)) {

1247 retval = 0;

1248

1249 if (count) {

1250 read_descriptor_t desc;

1251

1252 desc.written = 0;

1253 desc.count = count;

1254 desc.buf = buf;

1255 desc.error = 0;

1256 do_generic_file_read(filp, ppos, &desc, file_read_actor);

1257

1258 retval = desc.written;

1259 if (!retval)

1260 retval = desc.error;

1261 }

1262 }

1263 return retval;

1264 }

do_generic_file_read()
read_descriptor_t

do_generic_file_read()
do_generic_file_read() filemap.c

==================== mm/filemap.c 1005 1065 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

627

[sys_read()>generic_file_read()>do_generic_file_read()]
1005 /*

1006 * This is a generic file read routine, and uses the

1007 * inode­>i_op­>readpage() function for the actual low­level

1008 * stuff.

1009 *

1010 * This is really ugly. But the goto's actually try to clarify some

1011 * of the logic when it comes to error handling etc.

1012 */

1013 void do_generic_file_read(struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t

actor)

1014 {

1015 struct inode *inode = filp­>f_dentry­>d_inode;

1016 struct address_space *mapping = inode­>i_mapping;

1017 unsigned long index, offset;

1018 struct page *cached_page;

1019 int reada_ok;

1020 int error;

1021 int max_readahead = get_max_readahead(inode);

1022

1023 cached_page = NULL;

1024 index = *ppos >> PAGE_CACHE_SHIFT;

1025 offset = *ppos & ~PAGE_CACHE_MASK;

1026

1027 /*

1028 * If the current position is outside the previous read­ahead window,

1029 * we reset the current read­ahead context and set read ahead max to zero

1030 * (will be set to just needed value later),

1031 * otherwise, we assume that the file accesses are sequential enough to

1032 * continue read­ahead.

1033 */

1034 if (index > filp­>f_raend || index + filp­>f_rawin < filp­>f_raend) {

1035 reada_ok = 0;

1036 filp­>f_raend = 0;

1037 filp­>f_ralen = 0;

1038 filp­>f_ramax = 0;

1039 filp­>f_rawin = 0;

1040 } else {

1041 reada_ok = 1;

1042 }

1043 /*

1044 * Adjust the current value of read­ahead max.

1045 * If the read operation stay in the first half page, force no readahead.

1046 * Otherwise try to increase read ahead max just enough to do the read request.

1047 * Then, at least MIN_READAHEAD if read ahead is ok,

1048 * and at most MAX_READAHEAD in all cases.

1049 */

1050 if (!index && offset + desc­>count <= (PAGE_CACHE_SIZE >> 1)) {

1051 filp­>f_ramax = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

628

1052 } else {

1053 unsigned long needed;

1054

1055 needed = ((offset + desc­>count) >> PAGE_CACHE_SHIFT) + 1;

1056

1057 if (filp­>f_ramax < needed)

1058 filp­>f_ramax = needed;

1059

1060 if (reada_ok && filp­>f_ramax < MIN_READAHEAD)

1061 filp­>f_ramax = MIN_READAHEAD;

1062 if (filp­>f_ramax > max_readahead)

1063 filp­>f_ramax = max_readahead;

1064 }

1065

actor file_read_actor()

max_readahead[] drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 111 114 ====================
111 /*

112 * The following tunes the read­ahead algorithm in mm/filemap.c

113 */

114 int * max_readahead[MAX_BLKDEV];

inline get_max_readahead()
inode mm/filemap.c

==================== mm/filemap.c 829 890 ====================
[sys_write()>generic_file_read()>do_generic_file_read()>get_max_readahead()]
829 /*

830 * Read­ahead context:

831 * ­­­­­­­­­­­­­­­­­­­

832 * The read ahead context fields of the "struct file" are the following:

833 * ­ f_raend : position of the first byte after the last page we tried to

834 * read ahead.

835 * ­ f_ramax : current read­ahead maximum size.

836 * ­ f_ralen : length of the current IO read block we tried to read­ahead.

837 * ­ f_rawin : length of the current read­ahead window.

838 * if last read­ahead was synchronous then

839 * f_rawin = f_ralen

840 * otherwise (was asynchronous)

841 * f_rawin = previous value of f_ralen + f_ralen

842 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

629

843 * Read­ahead limits:

844 * ­­­­­­­­­­­­­­­­­­

845 * MIN_READAHEAD : minimum read­ahead size when read­ahead.

846 * MAX_READAHEAD : maximum read­ahead size when read­ahead.

847 *

848 * Synchronous read­ahead benefits:

849 * ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

850 * Using reasonable IO xfer length from peripheral devices increase system

851 * performances.

852 * Reasonable means, in this context, not too large but not too small.

853 * The actual maximum value is:

854 * MAX_READAHEAD + PAGE_CACHE_SIZE = 76k is CONFIG_READA_SMALL is undefined

855 * and 32K if defined (4K page size assumed).

856 *

857 * Asynchronous read­ahead benefits:

858 * ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

859 * Overlapping next read request and user process execution increase system

860 * performance.

861 *

862 * Read­ahead risks:

863 * ­­­­­­­­­­­­­­­­­

864 * We have to guess which further data are needed by the user process.

865 * If these data are often not really needed, it's bad for system

866 * performances.

867 * However, we know that files are often accessed sequentially by

868 * application programs and it seems that it is possible to have some good

869 * strategy in that guessing.

870 * We only try to read­ahead files that seems to be read sequentially.

871 *

872 * Asynchronous read­ahead risks:

873 * ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

874 * In order to maximize overlapping, we must start some asynchronous read

875 * request from the device, as soon as possible.

876 * We must be very careful about:

877 * ­ The number of effective pending IO read requests.

878 * ONE seems to be the only reasonable value.

879 * ­ The total memory pool usage for the file access stream.

880 * This maximum memory usage is implicitly 2 IO read chunks:

881 * 2*(MAX_READAHEAD + PAGE_CACHE_SIZE) = 156K if CONFIG_READA_SMALL is undefined,

882 * 64k if defined (4K page size assumed).

883 */

884

885 static inline int get_max_readahead(struct inode * inode)

886 {

887 if (!inode­>i_dev || !max_readahead[MAJOR(inode­>i_dev)])

888 return MAX_READAHEAD;

889 return max_readahead[MAJOR(inode­>i_dev)][MINOR(inode­>i_dev)];

890 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

630

MAX_READAHEAD 31 31 124K
file ”f_pos

file f_reada
f_ramax f_raend f_ralen f_rawin

f_raend
f_rawin index offset

index

1034 1039
read_ok 1 file

1050
file f_ramax 0 needed

f_ramax 1057 1063
do_generic_file_read()

==================== mm/filemap.c 1066 1125 ====================
[sys_read()>generic_file_read()>do_generic_file_read()]
1066 for (;;) {

1067 struct page *page, **hash;

1068 unsigned long end_index, nr;

1069

1070 end_index = inode­>i_size >> PAGE_CACHE_SHIFT;

1071 if (index > end_index)

1072 break;

1073 nr = PAGE_CACHE_SIZE;

1074 if (index == end_index) {

1075 nr = inode­>i_size & ~PAGE_CACHE_MASK;

1076 if (nr <= offset)

1077 break;

1078 }

1079

1080 nr = nr ­ offset;

1081

1082 /*

1083 * Try to find the data in the page cache..

1084 */

1085 hash = page_hash(mapping, index);

1086

1087 spin_lock(&pagecache_lock);

1088 page = __find_page_nolock(mapping, index, *hash);

1089 if (!page)

1090 goto no_cached_page;

1091 found_page:

1092 page_cache_get(page);

1093 spin_unlock(&pagecache_lock);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

631

1094

1095 if (!Page_Uptodate(page))

1096 goto page_not_up_to_date;

1097 generic_file_readahead(reada_ok, filp, inode, page);

1098 page_ok:

1099 /* If users can be writing to this page using arbitrary

1100 * virtual addresses, take care about potential aliasing

1101 * before reading the page on the kernel side.

1102 */

1103 if (mapping­>i_mmap_shared != NULL)

1104 flush_dcache_page(page);

1105

1106 /*

1107 * Ok, we have the page, and it's up­to­date, so

1108 * now we can copy it to user space...

1109 *

1110 * The actor routine returns how many bytes were actually used..

1111 * NOTE! This may not be the same as how much of a user buffer

1112 * we filled up (we may be padding etc), so we can only update

1113 * "pos" here (the actor routine has to update the user buffer

1114 * pointers and the remaining count).

1115 */

1116 nr = actor(desc, page, offset, nr);

1117 offset += nr;

1118 index += offset >> PAGE_CACHE_SHIFT;

1119 offset &= ~PAGE_CACHE_MASK;

1120

1121 page_cache_release(page);

1122 if (nr && desc­>count)

1123 continue;

1124 break;

1125

for for

1070 1078
lseek()

nr offset
1073 1080

1085 1088

1098 page_ok

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

632

actor
file_read_actor()

file_read_actor() nr index offset
nr 0 0

1123 continue 1124 break
1096

page_not_up_to_date

==================== mm/filemap.c 1126 1171 ====================
[sys_read()>generic_file_read()>do_generic_file_read()]
1126 /*

1127 * Ok, the page was not immediately readable, so let's try to read ahead while we're at it..

1128 */

1129 page_not_up_to_date:

1130 generic_file_readahead(reada_ok, filp, inode, page);

1131

1132 if (Page_Uptodate(page))

1133 goto page_ok;

1134

1135 /* Get exclusive access to the page ... */

1136 lock_page(page);

1137

1138 /* Did it get unhashed before we got the lock? */

1139 if (!page­>mapping) {

1140 UnlockPage(page);

1141 page_cache_release(page);

1142 continue;

1143 }

1144

1145 /* Did somebody else fill it already? */

1146 if (Page_Uptodate(page)) {

1147 UnlockPage(page);

1148 goto page_ok;

1149 }

1150

1151 readpage:

1152 /* ... and start the actual read. The read will unlock the page. */

1153 error = mapping­>a_ops­>readpage(filp, page);

1154

1155 if (!error) {

1156 if (Page_Uptodate(page))

1157 goto page_ok;

1158

1159 /* Again, try some read­ahead while waiting for the page to finish.. */

1160 generic_file_readahead(reada_ok, filp, inode, page);

1161 wait_on_page(page);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

633

1162 if (Page_Uptodate(page))

1163 goto page_ok;

1164 error = ­EIO;

1165 }

1166

1167 /* UHHUH! A synchronous read error occurred. Report it */

1168 desc­>error = error;

1169 page_cache_release(page);

1170 break;

1171

generic_file_readahead()

1132
page_ok 1098

lock_page()

lock_page()
lock_page()

page_ok

readpage address_space_operations
readpage Ext2 ext2_readpage() fs/ext2/inode.c

==================== fs/ext2/inode.c 657 660 ====================
[sys_read()>generic_file_read()>do_generic_file_read()>ext2_readpage()]
657 static int ext2_readpage(struct file *file, struct page *page)

658 {

659 return block_read_full_page(page,ext2_get_block);

660 }

block_read_full_page() ext2_get_block()
ext2_get_block() Ext2

block_read_full_page() fs/buffer.c

==================== fs/buffer.c 1667 1744 ====================
[sys_read()>generic_file_read()>do_generic_file_read()>ext2_readpage()>block_read_full_page()]
1667 /*

1668 * Generic "read page" function for block devices that have the normal

1669 * get_block functionality. This is most of the block device filesystems.

1670 * Reads the page asynchronously ­­­ the unlock_buffer() and

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

634

1671 * mark_buffer_uptodate() functions propagate buffer state into the

1672 * page struct once IO has completed.

1673 */

1674 int block_read_full_page(struct page *page, get_block_t *get_block)

1675 {

1676 struct inode *inode = page­>mapping­>host;

1677 unsigned long iblock, lblock;

1678 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];

1679 unsigned int blocksize, blocks;

1680 int nr, i;

1681

1682 if (!PageLocked(page))

1683 PAGE_BUG(page);

1684 blocksize = inode­>i_sb­>s_blocksize;

1685 if (!page­>buffers)

1686 create_empty_buffers(page, inode­>i_dev, blocksize);

1687 head = page­>buffers;

1688

1689 blocks = PAGE_CACHE_SIZE >> inode­>i_sb­>s_blocksize_bits;

1690 iblock = page­>index << (PAGE_CACHE_SHIFT ­ inode­>i_sb­>s_blocksize_bits);

1691 lblock = (inode­>i_size+blocksize­1) >> inode­>i_sb­>s_blocksize_bits;

1692 bh = head;

1693 nr = 0;

1694 i = 0;

1695

1696 do {

1697 if (buffer_uptodate(bh))

1698 continue;

1699

1700 if (!buffer_mapped(bh)) {

1701 if (iblock < lblock) {

1702 if (get_block(inode, iblock, bh, 0))

1703 continue;

1704 }

1705 if (!buffer_mapped(bh)) {

1706 memset(kmap(page) + i*blocksize, 0, blocksize);

1707 flush_dcache_page(page);

1708 kunmap(page);

1709 set_bit(BH_Uptodate, &bh­>b_state);

1710 continue;

1711 }

1712 /* get_block() might have updated the buffer synchronously */

1713 if (buffer_uptodate(bh))

1714 continue;

1715 }

1716

1717 arr[nr] = bh;

1718 nr++;

1719 } while (i++, iblock++, (bh = bh­>b_this_page) != head);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

635

1720

1721 if (!nr) {

1722 /*

1723 * all buffers are uptodate ­ we can set the page

1724 * uptodate as well.

1725 */

1726 SetPageUptodate(page);

1727 UnlockPage(page);

1728 return 0;

1729 }

1730

1731 /* Stage two: lock the buffers */

1732 for (i = 0; i < nr; i++) {

1733 struct buffer_head * bh = arr[i];

1734 lock_buffer(bh);

1735 bh­>b_end_io = end_buffer_io_async;

1736 atomic_inc(&bh­>b_count);

1737 }

1738

1739 /* Stage 3: start the IO */

1740 for (i = 0; i < nr; i++)

1741 submit_bh(READ, arr[i]);

1742

1743 return 0;

1744 }

page buffer_head buffers
buffer_head

create_empty_buffers()

1698 continue
1700 1701

1702 Ext2
ext2_get_block()

0
1

ext2_get_block() 0
cleanup if (!creat...) ext2_get_branch() 0

if create 0
BH_MAPPED

1
ext2_get_block()

lseek()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

636

0 0
ext2_get_block() create

1

init_buffer() buffer_head
b_end_io I/O
end_buffer_io_async() init_buffer() buffer.c

==================== fs/buffer.c 768 773 ====================
[sys_read()>generic_file_read()>do_generic_file_read()>ext2_readpage()>block_read_full_page()>init_buffer()]
768 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)

769 {

770 bh­>b_list = BUF_CLEAN;

771 bh­>b_end_io = handler;

772 bh­>b_private = private;

773 }

arr[] 1733
ll_rw_block() ll_rw_block()

ll_rw_block()
ll_bw_block() ext2_readpage() DMA

do_generic_file_read() 1155
PG_UPTODATE 1

page_ok

generic_file_readahead()
page_not_up_to_date readpage generic_file_readahead()

readpage

wait_on_page()
PG_uptodate

1 Page_Uptodate()
wait_on_page()

page_ok
1123 continue

for

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

637

__find_page_nolock() NULL
no_cached_page filemap.c

==================== mm/filemap.c 1172 1213 ====================
[sys_read()>generic_file_read()>do_generic_file_read()]
1172 no_cached_page:

1173 /*

1174 * Ok, it wasn't cached, so we need to create a new

1175 * page..

1176 *

1177 * We get here with the page cache lock held.

1178 */

1179 if (!cached_page) {

1180 spin_unlock(&pagecache_lock);

1181 cached_page = page_cache_alloc();

1182 if (!cached_page) {

1183 desc­>error = ­ENOMEM;

1184 break;

1185 }

1186

1187 /*

1188 * Somebody may have added the page while we

1189 * dropped the page cache lock. Check for that.

1190 */

1191 spin_lock(&pagecache_lock);

1192 page = __find_page_nolock(mapping, index, *hash);

1193 if (page)

1194 goto found_page;

1195 }

1196

1197 /*

1198 * Ok, add the new page to the hash­queues...

1199 */

1200 page = cached_page;

1201 __add_to_page_cache(page, mapping, index, hash);

1202 spin_unlock(&pagecache_lock);

1203 cached_page = NULL;

1204

1205 goto readpage;

1206 }

1207

1208 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;

1209 filp­>f_reada = 1;

1210 if (cached_page)

1211 page_cache_free(cached_page);

1212 UPDATE_ATIME(inode);

1213 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

638

1023 cached_page NULL
page_cache_alloc()

1182 page_cache_alloc()

found_page cached_page

1211
inode i_mapping address_space

inode i_data
LRU readpage

1124 break
for 1208 file f_pos index offset

1117 1119 read()
file f_reada 1

do_generic_file_readahead() generic_file_read()
generic_flle_readahead()

mm/filemap.c

==================== mm/filemap.c 892 1002 ====================
[sys_read()>generic_file_read()>do_gerieric_file_read()>generic_file_readahead()]
892 static void generic_file_readahead(int reada_ok,

893 struct file * filp, struct inode * inode,

894 struct page * page)

895 {

896 unsigned long end_index = inode­>i_size >> PAGE_CACHE_SHIFT;

897 unsigned long index = page­>index;

898 unsigned long max_ahead, ahead;

899 unsigned long raend;

900 int max_readahead = get_max_readahead(inode);

901

902 raend = filp­>f_raend;

903 max_ahead = 0;

904

905 /*

906 * The current page is locked.

907 * If the current position is inside the previous read IO request, do not

908 * try to reread previously read ahead pages.

909 * Otherwise decide or not to read ahead some pages synchronously.

910 * If we are not going to read ahead, set the read ahead context for this

911 * page only.

912 */

913 if (PageLocked(page)) {

914 if (!filp­>f_ralen || index >= raend || index + filp­>f_rawin < raend) {

915 raend = index;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

639

916 if (raend < end_index)

917 max_ahead = filp­>f_ramax;

918 filp­>f_rawin = 0;

919 filp­>f_ralen = 1;

920 if (!max_ahead) {

921 filp­>f_raend = index + filp­>f_ralen;

922 filp­>f_rawin += filp­>f_ralen;

923 }

924 }

925 }

926 /*

927 * The current page is not locked.

928 * If we were reading ahead and,

929 * if the current max read ahead size is not zero and,

930 * if the current position is inside the last read­ahead IO request,

931 * it is the moment to try to read ahead asynchronously.

932 * We will later force unplug device in order to force asynchronous read IO.

933 */

934 else if (reada_ok && filp­>f_ramax && raend >= 1 &&

935 index <= raend && index + filp­>f_ralen >= raend) {

936 /*

937 * Add ONE page to max_ahead in order to try to have about the same IO max size

938 * as synchronous read­ahead (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE.

939 * Compute the position of the last page we have tried to read in order to

940 * begin to read ahead just at the next page.

941 */

942 raend ­= 1;

943 if (raend < end_index)

944 max_ahead = filp­>f_ramax + 1;

945

946 if (max_ahead) {

947 filp­>f_rawin = filp­>f_ralen;

948 filp­>f_ralen = 0;

949 reada_ok = 2;

950 }

951 }

952 /*

953 * Try to read ahead pages.

954 * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the

955 * scheduler, will work enough for us to avoid too bad actuals IO requests.

956 */

957 ahead = 0;

958 while (ahead < max_ahead) {

959 ahead ++;

960 if ((raend + ahead) >= end_index)

961 break;

962 if (page_cache_read(filp, raend + ahead) < 0)

963 break;

964 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

640

965 /*

966 * If we tried to read ahead some pages,

967 * If we tried to read ahead asynchronously,

968 * Try to force unplug of the device in order to start an asynchronous

969 * read IO request.

970 * Update the read­ahead context.

971 * Store the length of the current read­ahead window.

972 * Double the current max read ahead size.

973 * That heuristic avoid to do some large IO for files that are not really

974 * accessed sequentially.

975 */

976 if (ahead) {

977 if (reada_ok == 2) {

978 run_task_queue(&tq_disk);

979 }

980

981 filp­>f_ralen += ahead;

982 filp­>f_rawin += filp­>f_ralen;

983 filp­>f_raend = raend + ahead + 1;

984

985 filp­>f_ramax += filp­>f_ramax;

986

987 if (filp­>f_ramax > max_readahead)

988 filp­>f_ramax = max_readahead;

989

990 /*

991 * Move the pages that have already been passed

992 * to the inactive list.

993 */

994 drop_behind(filp, index);

995

996 #ifdef PROFILE_READAHEAD

997 profile_readahead((reada_ok == 2), filp);

998 #endif

999 }

1000

1001 return;

1002 }

reada_ok page do_generic_file_read()

max_ahead 0
page

max_ahead 0
generic_file_readahead()

flle

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

641

f_ralen 0
index>=raend

file f_ramax do_generic_file_read() for
f_raend f_rawin for generic_file_readahead()

0
do_generic_file_read() 1050 1064 0

read_ok 0 934 835
max_ahead file f_ramax

filp­>f_ralen
1 0

949 reada_ok 2

while
page_cache_read() filemap.c

==================== mm/filemap.c 545 577 ====================
[sys_read()>generic_file_read()>do_generic_file_read()>generic_file_readahead()>page_cache_read()]
545 /*

546 * This adds the requested page to the page cache if it isn't already there,

547 * and schedules an I/O to read in its contents from disk.

548 */

549 static inline int page_cache_read(struct file * file, unsigned long offset)

550 {

551 struct inode *inode = file­>f_dentry­>d_inode;

552 struct address_space *mapping = inode­>i_mapping;

553 struct page **hash = page_hash(mapping, offset);

554 struct page *page;

555

556 spin_lock(&pagecache_lock);

557 page = __find_page_nolock(mapping, offset, *hash);

558 spin_unlock(&pagecache_lock);

559 if (page)

560 return 0;

561

562 page = page_cache_alloc();

563 if (!page)

564 return ­ENOMEM;

565

566 if (!add_to_page_cache_unique(page, mapping, offset, hash)) {

567 int error = mapping­>a_ops­>readpage(file, page);

568 page_cache_release(page);

569 return error;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

642

570 }

571 /*

572 * We arrive here in the unlikely event that someone

573 * raced with us and added our page to the cache first.

574 */

575 page_cache_free(page);

576 return 0;

577 }

mapping­>a_ops­>readpage() Ext2
ext2_readpage()

find_page_nolock() 0 while

do_generic_file_read()
page_not_up_to_date

end_index while
max_ahead ext2_readpage() ll_rw_block()

DMA

978 run_task_queue()
file f_ramax 985

get_max_readahead() max_readahead
max_readahead

lseek()

profile_readahead()

5.7

open() close() write()

3
Unix/Linux

lseek()
sys_lseek() fs/read_write.c

==================== fs/read_write.c 64 83 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

643

64 asmlinkage off_t sys_lseek(unsigned int fd, off_t offset, unsigned int origin)

65 {

66 off_t retval;

67 struct file * file;

68

69 retval = ­EBADF;

70 file = fget(fd);

71 if (!file)

72 goto bad;

73 retval = ­EINVAL;

74 if (origin <= 2) {

75 loff_t res = llseek(file, offset, origin);

76 retval = res;

77 if (res != (loff_t)retval)

78 retval = ­EOVERFLOW; /* LFS: should only happen on 32 bit platforms */

79 }

80 fput(file);

81 bad:

82 return retval;

83 }

origin 0 1 2 offset
76 77 res retval

res loff_t 64 retval off_t
32 include/linux/types.h

==================== include/linux/types.h 18 18 ====================
18 typedef __kernel_off_t off_t;

==================== include/linux/types.h 45 45 ====================
45 typedef __kernel_loff_t loff_t;

__kernel_off_t __kernel_loff_t include/asm­i386/posix_types.h

==================== include/asm­i386/posix_types.h 14 14 ====================
14 typedef long __kernel_off_t;

==================== include/asm­i386/posix_types.h 36 36 ====================
36 typedef long long __kernel_loff_t;

64 32 32
lseek() 32 4GB

Linux llseek() 32 4GB
llseek() llseek()

fs/read_write.c

==================== fs/read_write.c 50 62 ====================
[sys_lseek()>llseek()]
50 static inline loff_t llseek(struct file *file, loff_t offset, int origin)

51 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

644

52 loff_t (*fn)(struct file *, loff_t, int);

53 loff_t retval;

54

55 fn = default_llseek;

56 if (file­>f_op && file­>f_op­>llseek)

57 fn = file­>f_op­>llseek;

58 lock_kernel();

59 retval = fn(file, offset, origin);

60 unlock_kernel();

61 return retval;

62 }

64 loff_t offset loff_t
file_operations llseek

default_llseek() Ext2
ext2_file_lseek() fslext2/file.c

==================== fs/ext2/file.c 39 68 ====================
[sys_lseek()>llseek()>ext2_file_lseek()]
39 /*

40 * Make sure the offset never goes beyond the 32­bit mark..

41 */

42 static loff_t ext2_file_lseek(

43 struct file *file,

44 loff_t offset,

45 int origin)

46 {

47 struct inode *inode = file­>f_dentry­>d_inode;

48

49 switch (origin) {

50 case 2:

51 offset += inode­>i_size;

52 break;

53 case 1:

54 offset += file­>f_pos;

55 }

56 if (offset<0)

57 return ­EINVAL;

58 if (((unsigned long long) offset >> 32) != 0) {

59 if (offset > ext2_max_sizes[EXT2_BLOCK_SIZE_BITS(inode­>i_sb)])

60 return ­EINVAL;

61 }

62 if (offset != file­>f_pos) {

63 file­>f_pos = offset;

64 file­>f_reada = 0;

65 file­>f_version = ++event;

66 }

67 return offset;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

645

68 }

offset origion
58 59 offset offset

32 58
Ext2

ext2_max_sizes[] fs/ext2/file.c

==================== fs/ext2/file.c 28 37 ====================
28 #define EXT2_MAX_SIZE(bits) \

29 (((EXT2_NDIR_BLOCKS + (1LL << (bits ­ 2)) + \

30 (1LL << (bits ­ 2)) * (1LL << (bits ­ 2)) + \

31 (1LL << (bits ­ 2)) * (1LL << (bits ­ 2)) * (1LL << (bits ­ 2))) * \

32 (1LL << bits)) ­ 1)

33

34 static long long ext2_max_sizes[] = {

35 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

36 EXT2_MAX_SIZE(10), EXT2_MAX_SIZE(11), EXT2_MAX_SIZE(12), EXT2_MAX_SIZE(13)

37 };

Ext2 1K 210

EXT2_MAX_SIZE(10)
file f_pos offset f_reada 0

event file f_version event

ext2_file_lseek()
lseek()

offset
1KB lseek() 9KB 1

9KB 1 8K

0 lseek()

dup()
Unix/Linux

sys_dup() fs/fcntl.c

==================== fs/fcntl.c 187 195 ====================
187 asmlinkage long sys_dup(unsigned int fildes)

188 {

189 int ret = ­EBADF;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

646

190 struct file * file = fget(fildes);

191

192 if (file)

193 ret = dupfd(file, 0);

194 return ret;

195 }

fildes dupfd()

==================== fs/fcntl.c 116 131 ====================
[sys_dup()>dupfd()]
116 static int dupfd(struct file *file, int start)

117 {

118 struct files_struct * files = current­>files;

119 int ret;

120

121 ret = locate_fd(files, file, start);

122 if (ret < 0)

123 goto out_putf;

124 allocate_fd(files, file, ret);

125 return ret;

126

127 out_putf:

128 write_unlock(&files­>file_lock);

129 fput(file);

130 return ret;

131 }

dup() files_struct file
file

start sys_dup()
0 inline locate_fd() 0

allocate_fd() file
fs/fcntl.c

==================== fs/fcntl.c 107 114 ====================
[sys_dup()>dupfd()>allocate_fd()]
107 static inline void allocate_fd(struct files_struct *files,

108 struct file *file, int fd)

109 {

110 FD_SET(fd, files­>open_fds);

111 FD_CLR(fd, files­>close_on_exec);

112 write_unlock(&files­>file_lock);

113 fd_install(fd, file);

114 }

fd_install() sys_open()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

647

sys_dup() fildes
Unix/Linux shell

shell “echo
what is dup? shell echo “what is dup?

shell bin/echo fork() bin/echo
shell

0 1 2 “what
is dup? “echo what is dup? > foo

foo shell
shell 0 1 2

(1) foo foo 3
(2) dup() stdout 1 file

4 stdout file
(3) stdout 1 file 4

stdout
(4) dup() 3 1 stdout

file foo
(5) fork() exec() echo echo

3 4 0 1 2 stdout 1
foo echo stdout

foo
(6) shell foo 1 3 dup()

close() file stdout shell

echo stdout

stdin stderr echo

polymorphism overload
30

dup() dup2() “dup to

ioctl()

Linux ioctl()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

648

ioctl() ioctl() sys_ioctl() fs/ioctl.c

==================== fs/ioctl.c 48 115 ====================
48 asmlinkage long sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)

49 {

50 struct file * filp;

51 unsigned int flag;

52 int on, error = ­EBADF;

53

54 filp = fget(fd);

55 if (!filp)

56 goto out;

57 error = 0;

58 lock_kernel();

59 switch (cmd) {

60 case FIOCLEX:

61 set_close_on_exec(fd, 1);

62 break;

63

64 case FIONCLEX:

65 set_close_on_exec(fd, 0);

66 break;

67

68 case FIONBIO:

69 if ((error = get_user(on, (int *)arg)) != 0)

70 break;

71 flag = O_NONBLOCK;

72 #ifdef __sparc__

73 /* SunOS compatibility item. */

74 if(O_NONBLOCK != O_NDELAY)

75 flag |= O_NDELAY;

76 #endif

77 if (on)

78 filp­>f_flags |= flag;

79 else

80 filp­>f_flags &= ~flag;

81 break;

82

83 case FIOASYNC:

84 if ((error = get_user(on, (int *)arg)) != 0)

85 break;

86 flag = on ? FASYNC : 0;

87

88 /* Did FASYNC state change ? */

89 if ((flag ^ filp­>f_flags) & FASYNC) {

90 if (filp­>f_op && filp­>f_op­>fasync)

91 error = filp­>f_op­>fasync(fd, filp, on);

92 else error = ­ENOTTY;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

649

93 }

94 if (error != 0)

95 break;

96

97 if (on)

98 filp­>f_flags |= FASYNC;

99 else

100 filp­>f_flags &= ~FASYNC;

101 break;

102

103 default:

104 error = ­ENOTTY;

105 if (S_ISREG(filp­>f_dentry­>d_inode­>i_mode))

106 error = file_ioctl(filp, cmd, arg);

107 else if (filp­>f_op && filp­>f_op­>ioctl)

108 error = filp­>f_op­>ioctl(filp­>f_dentry­>d_inode, filp, cmd, arg);

109 }

110 unlock_kernel();

111 fput(filp);

112

113 out:

114 return error;

115 }

fd cmd arg
ioctl()

arg

include/linux/ioctl.h 0x5401 0x545F
0x54 “T ASCII

cmd 32
ioctl()

GNU 32
cmd 5.8

5.8 ioctl

include/asm­i386/ioctl.h

==================== include/asm­i386/ioctl.h 9 59 ====================
9 /* ioctl command encoding: 32 bits total, command in lower 16 bits,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

650

10 * size of the parameter structure in the lower 14 bits of the

11 * upper 16 bits.

12 * Encoding the size of the parameter structure in the ioctl request

13 * is useful for catching programs compiled with old versions

14 * and to avoid overwriting user space outside the user buffer area.

15 * The highest 2 bits are reserved for indicating the ``access mode''.

16 * NOTE: This limits the max parameter size to 16kB ­1 !

17 */

18

19 /*

20 * The following is for compatibility across the various Linux

21 * platforms. The i386 ioctl numbering scheme doesn't really enforce

22 * a type field. De facto, however, the top 8 bits of the lower 16

23 * bits are indeed used as a type field, so we might just as well make

24 * this explicit here. Please be sure to use the decoding macros

25 * below from now on.

26 */

27 #define _IOC_NRBITS 8

28 #define _IOC_TYPEBITS 8

29 #define _IOC_SIZEBITS 14

30 #define _IOC_DIRBITS 2

31

32 #define _IOC_NRMASK ((1 << _IOC_NRBITS)­1)

33 #define _IOC_TYPEMASK ((1 << _IOC_TYPEBITS)­1)

34 #define _IOC_SIZEMASK ((1 << _IOC_SIZEBITS)­1)

35 #define _IOC_DIRMASK ((1 << _IOC_DIRBITS)­1)

36

37 #define _IOC_NRSHIFT 0

38 #define _IOC_TYPESHIFT (_IOC_NRSHIFT+_IOC_NRBITS)

39 #define _IOC_SIZESHIFT (_IOC_TYPESHIFT+_IOC_TYPEBITS)

40 #define _IOC_DIRSHIFT (_IOC_SIZESHIFT+_IOC_SIZEBITS)

41

42 /*

43 * Direction bits.

44 */

45 #define _IOC_NONE 0U

46 #define _IOC_WRITE 1U

47 #define _IOC_READ 2U

48

49 #define _IOC(dir,type,nr,size) \

50 (((dir) << _IOC_DIRSHIFT) | \

51 ((type) << _IOC_TYPESHIFT) | \

52 ((nr) << _IOC_NRSHIFT) | \

53 ((size) << _IOC_SIZESHIFT))

54

55 /* used to create numbers */

56 #define _IO(type,nr) _IOC(_IOC_NONE,(type),(nr),0)

57 #define _IOR(type,nr,size) _IOC(_IOC_READ,(type),(nr),sizeof(size))

58 #define _IOW(type,nr,size) _IOC(_IOC_WRITE,(type),(nr),sizeof(size))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

651

59 #define _IOWR(type,nr,size) _IOC(_IOC_READ|_IOC_WRITE,(type),(nr),sizeof(size))

Linux
read() write() lseek() ioctl()

include/linux/telephony.h

==================== include/linux/telephony.h 117 117 ====================
117 #define PHONE_PLAY_VOLUME _IOW ('q', 0x94, int)

_IOW PHONE_PLAY_VOLUME
0x40045194 GNU

Linux Documentation/ioctl_number.txt

ioctl()
sys_ioctl() switch FIOCLEX

FIONCLEX FIONBIO FIOASYNC VFS FIOCLEX
files_sturct close_on_exec fd 1

exec() FIONCLEX
FIONBIO blocking/non_blocking

FIOASYNC

file_ioctl()
FIFO file_operations ioctl

file_ioctl() fs/ioctl.c

==================== fs/ioctl.c 13 45 ====================
[sys_ioctl()>file_ioctl()]
13 static int file_ioctl(struct file *filp,unsigned int cmd,unsigned long arg)

14 {

15 int error;

16 int block;

17 struct inode * inode = filp­>f_dentry­>d_inode;

18

19 switch (cmd) {

20 case FIBMAP:

21 {

22 struct address_space *mapping = inode­>i_mapping;

23 int res;

24 /* do we support this mess? */

25 if (!mapping­>a_ops­>bmap)

26 return ­EINVAL;

27 if (!capable(CAP_SYS_RAWIO))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

652

28 return ­EPERM;

29 if ((error = get_user(block, (int *) arg)) != 0)

30 return error;

31

32 res = mapping­>a_ops­>bmap(mapping, block);

33 return put_user(res, (int *) arg);

34 }

35 case FIGETBSZ:

36 if (inode­>i_sb == NULL)

37 return ­EBADF;

38 return put_user(inode­>i_sb­>s_blocksize, (int *) arg);

39 case FIONREAD:

40 return put_user(inode­>i_size ­ filp­>f_pos, (int *) arg);

41 }

42 if (filp­>f_op && filp­>f_op­>ioctl)

43 return filp­>f_op­>ioctl(inode, filp, cmd, arg);

44 return ­ENOTTY;

45 }

FIBMAP FIGETBSZ
FIONREAD

file_operations ioctl
file_operations file_operations

Ext2
ext2_file_operations ext2_dir_operations

file_operations
file_operations ioctl

ioctl

link()
link() symlink() link() sys_link()

fs/namei.c

==================== fs/namei.c 1579 1632 ====================
1579 /*

1580 * Hardlinks are often used in delicate situations. We avoid

1581 * security­related surprises by not following symlinks on the

1582 * newname. ­­KAB

1583 *

1584 * We don't follow them on the oldname either to be compatible

1585 * with linux 2.0, and to avoid hard­linking to directories

1586 * and other special files. ­­ADM

1587 */

1588 asmlinkage long sys_link(const char * oldname, const char * newname)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

653

1589 {

1590 int error;

1591 char * from;

1592 char * to;

1593

1594 from = getname(oldname);

1595 if(IS_ERR(from))

1596 return PTR_ERR(from);

1597 to = getname(newname);

1598 error = PTR_ERR(to);

1599 if (!IS_ERR(to)) {

1600 struct dentry *new_dentry;

1601 struct nameidata nd, old_nd;

1602

1603 error = 0;

1604 if (path_init(from, LOOKUP_POSITIVE, &old_nd))

1605 error = path_walk(from, &old_nd);

1606 if (error)

1607 goto exit;

1608 if (path_init(to, LOOKUP_PARENT, &nd))

1609 error = path_walk(to, &nd);

1610 if (error)

1611 goto out;

1612 error = ­EXDEV;

1613 if (old_nd.mnt != nd.mnt)

1614 goto out_release;

1615 new_dentry = lookup_create(&nd, 0);

1616 error = PTR_ERR(new_dentry);

1617 if (!IS_ERR(new_dentry)) {

1618 error = vfs_link(old_nd.dentry, nd.dentry­>d_inode, new_dentry);

1619 dput(new_dentry);

1620 }

1621 up(&nd.dentry­>d_inode­>i_sem);

1622 out_release:

1623 path_release(&nd);

1624 out:

1625 path_release(&old_nd);

1626 exit:

1627 putname(to);

1628 }

1629 putname(from);

1630

1631 return error;

1632 }

vfs_link()
fs/namei.c

==================== fs/namei.c 1539 1577 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

654

[sys_link()>vfs_link()]
1539 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)

1540 {

1541 struct inode *inode;

1542 int error;

1543

1544 down(&dir­>i_zombie);

1545 error = ­ENOENT;

1546 inode = old_dentry­>d_inode;

1547 if (!inode)

1548 goto exit_lock;

1549

1550 error = may_create(dir, new_dentry);

1551 if (error)

1552 goto exit_lock;

1553

1554 error = ­EXDEV;

1555 if (dir­>i_dev != inode­>i_dev)

1556 goto exit_lock;

1557

1558 /*

1559 * A link to an append­only or immutable file cannot be created.

1560 */

1561 error = ­EPERM;

1562 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))

1563 goto exit_lock;

1564 if (!dir­>i_op || !dir­>i_op­>link)

1565 goto exit_lock;

1566

1567 DQUOT_INIT(dir);

1568 lock_kernel();

1569 error = dir­>i_op­>link(old_dentry, dir, new_dentry);

1570 unlock_kernel();

1571

1572 exit_lock:

1573 up(&dir­>i_zombie);

1574 if (!error)

1575 inode_dir_notify(dir, DN_CREATE);

1576 return error;

1577 }

IS_APPEND IS_IMMUTABLE

inode_operations link Ext2
ext2_link() fs/ext2/namei.C

==================== fs/ext2/namei.c 663 686 ====================
[sys_link()>vfs_link()>ext2_link()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

655

663 static int ext2_link (struct dentry * old_dentry,

664 struct inode * dir, struct dentry *dentry)

665 {

666 struct inode *inode = old_dentry­>d_inode;

667 int err;

668

669 if (S_ISDIR(inode­>i_mode))

670 return ­EPERM;

671

672 if (inode­>i_nlink >= EXT2_LINK_MAX)

673 return ­EMLINK;

674

675 err = ext2_add_entry (dir, dentry­>d_name.name, dentry­>d_name.len,

676 inode);

677 if (err)

678 return err;

679

680 inode­>i_nlink++;

681 inode­>i_ctime = CURRENT_TIME;

682 mark_inode_dirty(inode);

683 atomic_inc(&inode­>i_count);

684 d_instantiate(dentry, inode);

685 return 0;

686 }

ext2_add_entry() d_instantiate()
d_instantiate() inode i_dentry dentry

dentry dentry d_inode
inode

mknod() select()
mmap()

2

5.8 /proc

Unix /dev /dev/mem

read() write() lseek()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

656

Unix
/dev/kmem

/proc
pid

exit() /proc
/proc proc

/proc proc /proc

/proc “du ­a /proc
1000

(1) pid
cpu

(2) /proc/slabinfo slab
/proc/swaps swap /proc/partitions

(3) /proc/pci PCI

(4) /proc/mounts
/proc/filesystems

(5) /proc/interrupts
(6) /proc/modules

/proc/ksyms
(7) /dev/mem /proc/kcore
(8)

“man proc
/proc

proc proc
mount() kern_mount()

mount()
fs/proc/procfs_syms.c init_proc_fs()

==================== fs/proc/procfs_syms.c 23 37 ====================
23 static DECLARE_FSTYPE(proc_fs_type, "proc", proc_read_super, FS_SINGLE);

24

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

657

25 static int __init init_proc_fs(void)

26 {

27 int err = register_filesystem(&proc_fs_type);

28 if (!err) {

29 proc_mnt = kern_mount(&proc_fs_type);

30 err = PTR_ERR(proc_mnt);

31 if (IS_ERR(proc_mnt))

32 unregister_filesystem(&proc_fs_type);

33 else

34 err = 0;

35 }

36 return err;

37 }

proc register_filesystem() “proc
kern_mount() proc /proc

kern_mount() fs/super.c

==================== fs/super.c 970 989 ====================
[init_proc_fs()>kern_mount()]
970 struct vfsmount *kern_mount(struct file_system_type *type)

971 {

972 kdev_t dev = get_unnamed_dev();

973 struct super_block *sb;

974 struct vfsmount *mnt;

975 if (!dev)

976 return ERR_PTR(­EMFILE);

977 sb = read_super(dev, NULL, type, 0, NULL, 0);

978 if (!sb) {

979 put_unnamed_dev(dev);

980 return ERR_PTR(­EINVAL);

981 }

982 mnt = add_vfsmnt(NULL, sb­>s_root, NULL);

983 if (!mnt) {

984 kill_super(sb, 0);

985 return ERR_PTR(­ENOMEM);

986 }

987 type­>kern_mnt = mnt;

988 return mnt;

989 }

super_block proc super_block
proc

get_unnamed_dev() super.c

==================== fs/super.c 757 773 ====================
[init_proc_fs()>kern_mount()>get_unnamed_dev()]
757 /*

758 * Unnamed block devices are dummy devices used by virtual

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

658

759 * filesystems which don't use real block­devices. ­­ jrs

760 */

761

762 static unsigned int unnamed_dev_in_use[256/(8*sizeof(unsigned int))];

763

764 kdev_t get_unnamed_dev(void)

765 {

766 int i;

767

768 for (i = 1; i < 256; i++) {

769 if (!test_and_set_bit(i,unnamed_dev_in_use))

770 return MKDEV(UNNAMED_MAJOR, i);

771 }

772 return 0;

773 }

UNNAMED_MAJOR 0
kern_mount()

read_super() super_block
file_system_type read_super proc

proc_read_super() DECLARE_FSTYPE
fs/proc/inode.c

==================== fs/proc/inode.c 181 210 ====================
[init_proc_fs()>kern_mount()>read_super()>proc_read_super()]
181 struct super_block *proc_read_super(struct super_block *s,void *data,

182 int silent)

183 {

184 struct inode * root_inode;

185 struct task_struct *p;

186

187 s­>s_blocksize = 1024;

188 s­>s_blocksize_bits = 10;

189 s­>s_magic = PROC_SUPER_MAGIC;

190 s­>s_op = &proc_sops;

191 root_inode = proc_get_inode(s, PROC_ROOT_INO, &proc_root);

192 if (!root_inode)

193 goto out_no_root;

194 /*

195 * Fixup the root inode's nlink value

196 */

197 read_lock(&tasklist_lock);

198 for_each_task(p) if (p­>pid) root_inode­>i_nlink++;

199 read_unlock(&tasklist_lock);

200 s­>s_root = d_alloc_root(root_inode);

201 if (!s­>s_root)

202 goto out_no_root;

203 parse_options(data, &root_inode­>i_uid, &root_inode­>i_gid);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

659

204 return s;

205

206 out_no_root:

207 printk("proc_read_super: get root inode failed\n");

208 iput(root_inode);

209 return NULL;

210 }

super_block super_operations
s_op proc_sops fs/proc/inode.c

==================== fs/proc/inode.c 94 99 ====================
94 static struct super_operations proc_sops = {

95 read_inode: proc_read_inode,

96 put_inode: force_delete,

97 delete_inode: proc_delete_inode,

98 statfs: proc_statfs,

99 };

proc inode super_block

proc dentry
proc_dir_entry include/linux/proc_fs.h

==================== include/linux/proc_fs.h 53 73 ====================
53 struct proc_dir_entry {

54 unsigned short low_ino;

55 unsigned short namelen;

56 const char *name;

57 mode_t mode;

58 nlink_t nlink;

59 uid_t uid;

60 gid_t gid;

61 unsigned long size;

62 struct inode_operations * proc_iops;

63 struct file_operations * proc_fops;

64 get_info_t *get_info;

65 struct module *owner;

66 struct proc_dir_entry *next, *parent, *subdir;

67 void *data;

68 read_proc_t *read_proc;

69 write_proc_t *write_proc;

70 atomic_t count; /* use count */

71 int deleted; /* delete flag */

72 kdev_t rdev;

73 };

inode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

660

dentry inode Ext2 ext2_dir_entry
proc_dir_entry

proc_dir_entry
proc /proc proc_root fs/proc/root.c

==================== fs/proc/root.c 96 108 ====================
96 /*

97 * This is the root "inode" in the /proc tree..

98 */

99 struct proc_dir_entry proc_root = {

100 low_ino: PROC_ROOT_INO,

101 namelen: 5,

102 name: "/proc",

103 mode: S_IFDIR | S_IRUGO | S_IXUGO,

104 nlink: 2,

105 proc_iops: &proc_root_inode_operations,

106 proc_fops: &proc_root_operations,

107 parent: &proc_root,

108 };

proc_iops proc_root_inode_operations proc_fops
proc_root_operations parent proc_root

proc_read_super() proc_root /proc inode
PROC_ROOT_INO proc_fs.h

==================== include/linux/proc_fs.h 22 22 ====================
22 PROC_ROOT_INO = 1,

/proc inode 1 1
proc_get_inode() fs/proc/inode.c

==================== fs/proc/inode.c 131 179 ====================
[init_proc_fs()>kern_mount()>read_super()>proc_read_super()>proc_get_inode()]
131 struct inode * proc_get_inode(struct super_block * sb, int ino,

132 struct proc_dir_entry * de)

133 {

134 struct inode * inode;

135

136 /*

137 * Increment the use count so the dir entry can't disappear.

138 */

139 de_get(de);

140 #if 1

141 /* shouldn't ever happen */

142 if (de && de­>deleted)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

661

143 printk("proc_iget: using deleted entry %s, count=%d\n", de­>name, atomic_read(&de­>count));

144 #endif

145

146 inode = iget(sb, ino);

147 if (!inode)

148 goto out_fail;

149

150 inode­>u.generic_ip = (void *) de;

151 if (de) {

152 if (de­>mode) {

153 inode­>i_mode = de­>mode;

154 inode­>i_uid = de­>uid;

155 inode­>i_gid = de­>gid;

156 }

157 if (de­>size)

158 inode­>i_size = de­>size;

159 if (de­>nlink)

160 inode­>i_nlink = de­>nlink;

161 if (de­>owner)

162 __MOD_INC_USE_COUNT(de­>owner);

163 if (S_ISBLK(de­>mode)||S_ISCHR(de­>mode)||S_ISFIFO(de­>mode))

164 init_special_inode(inode,de­>mode,kdev_t_to_nr(de­>rdev));

165 else {

166 if (de­>proc_iops)

167 inode­>i_op = de­>proc_iops;

168 if (de­>proc_fops)

169 inode­>i_fop = de­>proc_fops;

170 }

171 }

172

173 out:

174 return inode;

175

176 out_fail:

177 de_put(de);

178 goto out;

179 }

inode union Ext2
ext2_inode_info inode

union 4
generic_ip proc_dir_entry inode

de_get() iget() inlinc
inode get_new_inode()

inode
proc inode d_alloc_root() dentry

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

662

0 inode i_nlink
inode

kern_mount() add_vfsmnt()
nd nameidata nameidata

dentry NULL
root dentry dentry proc

dentry NULL add_vfsmnt()

==================== fs/super.c 337 350 ====================
337 mnt­>mnt_root = dget(root);

338 mnt­>mnt_mountpoint = nd ? dget(nd­>dentry) : dget(root);

339 mnt­>mnt_parent = nd ? mntget(nd­>mnt) : mnt;

340

341 if (nd) {

342 list_add(&mnt­>mnt_child, &nd­>mnt­>mnt_mounts);

343 list_add(&mnt­>mnt_clash, &nd­>dentry­>d_vfsmnt);

344 } else {

345 INIT_LIST_HEAD(&mnt­>mnt_child);

346 INIT_LIST_HEAD(&mnt­>mnt_clash);

347 }

348 INIT_LIST_HEAD(&mnt­>mnt_mounts);

349 list_add(&mnt­>mnt_instances, &sb­>s_mounts);

350 list_add(&mnt­>mnt_list, vfsmntlist.prev);

nd NULL vfsmount mnt_mountpoint
dentry proc dentry mnt_parent

vfsmount vfsmount mnt_child mnt_clash
vfsmount proc kern_mount()

==================== fs/super.c 987 987 ====================
987 type­>kern_mnt = mnt;

proc file_system_type vfsmount
kern_mnt vfsmount path_walk() “/proc

proc path_walk() file_system_type
kern_mount() mount()

mount ­nvt proc /dev/null /proc
”/dev/null proc /proc

/proc
proc file_system_type FS_SINGLE 1

sys_mount() do_mount() get_sb_single()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

663

get_sb_bdev() super_block do_mount()

==================== fs/super.c 1371 1377 ====================
1371 /* get superblock, locks mount_sem on success */

1372 if (fstype­>fs_flags & FS_NOMOUNT)

1373 sb = ERR_PTR(­EINVAL);

1374 else if (fstype­>fs_flags & FS_REQUIRES_DEV)

1375 sb = get_sb_bdev(fstype, dev_name, flags, data_page);

1376 else if (fstype­>fs_flags & FS_SINGLE)

1377 sb = get_sb_single(fstype, flags, data_page);

do_mount() get_sb_single()
fs/super.c

==================== fs/super.c 870 885 ====================
[sys_mount()>do_mount()>get_sb_single()]
870 static struct super_block *get_sb_single(struct file_system_type *fs_type,

871 int flags, void *data)

872 {

873 struct super_block * sb;

874 /*

875 * Get the superblock of kernel­wide instance, but

876 * keep the reference to fs_type.

877 */

878 down(&mount_sem);

879 sb = fs_type­>kern_mnt­>mnt_sb;

880 if (!sb)

881 BUG();

882 get_filesystem(fs_type);

883 do_remount_sb(sb, flags, data);

884 return sb;

885 }

file_system_type kern_mnt vfsmount
super_block kern_mount()

do_remount_sb() fs/super.c

==================== fs/super.c 936 968 ====================
[sys_mount()>do_mount()>get_sb_single()>do_remount_sb()]
936 /*

937 * Alters the mount flags of a mounted file system. Only the mount point

938 * is used as a reference ­ file system type and the device are ignored.

939 */

940

941 static int do_remount_sb(struct super_block *sb, int flags, char *data)

942 {

943 int retval;

944

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

664

945 if (!(flags & MS_RDONLY) && sb­>s_dev && is_read_only(sb­>s_dev))

946 return ­EACCES;

947 /*flags |= MS_RDONLY;*/

948 /* If we are remounting RDONLY, make sure there are no rw files open */

949 if ((flags & MS_RDONLY) && !(sb­>s_flags & MS_RDONLY))

950 if (!fs_may_remount_ro(sb))

951 return ­EBUSY;

952 if (sb­>s_op && sb­>s_op­>remount_fs) {

953 lock_super(sb);

954 retval = sb­>s_op­>remount_fs(sb, &flags, data);

955 unlock_super(sb);

956 if (retval)

957 return retval;

958 }

959 sb­>s_flags = (sb­>s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);

960

961 /*

962 * We can't invalidate inodes as we can loose data when remounting

963 * (someone might manage to alter data while we are waiting in lock_super()

964 * or in foo_remount_fs()))

965 */

966

967 return 0;

968 }

proc proc remount_fs
MS_RMT_MASK include/linux/fs.h

==================== include/linux/fs.h 110 114 ====================
110 /*

111 * Flags that can be altered by MS_REMOUNT

112 */

113 #define MS_RMT_MASK (MS_RDONLY|MS_NOSUID|MS_NODEV|MS_NOEXEC|\

114 MS_SYNCHRONOUS|MS_MANDLOCK|MS_NOATIME|MS_NODIRATIME)

do_remount_sb() super_block

proc super_block do_mount()
proc /proc

proc
proc_root_init()

fs/proc/ro0t.c

==================== fs/proc/root.c 25 46 ====================
25 void __init proc_root_init(void)

26 {

27 proc_misc_init();

28 proc_net = proc_mkdir("net", 0);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

665

29 #ifdef CONFIG_SYSVIPC

30 proc_mkdir("sysvipc", 0);

31 #endif

32 #ifdef CONFIG_SYSCTL

33 proc_sys_root = proc_mkdir("sys", 0);

34 #endif

35 proc_root_fs = proc_mkdir("fs", 0);

36 proc_root_driver = proc_mkdir("driver", 0);

37 #if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)

38 /* just give it a mountpoint */

39 proc_mkdir("openprom", 0);

40 #endif

41 proc_tty_init();

42 #ifdef CONFIG_PROC_DEVICETREE

43 proc_device_tree_init();

44 #endif

45 proc_bus = proc_mkdir("bus", 0);

46 }

/proc proc_misc_init()
fs/proc/proc_misc.c

==================== fs/proc/proc_misc.c 505 582 ====================
[proc_root_init()>proc_misc_init()]
505 void __init proc_misc_init(void)

506 {

507 struct proc_dir_entry *entry;

508 static struct {

509 char *name;

510 int (*read_proc)(char*,char**,off_t,int,int*,void*);

511 } *p, simple_ones[] = {

512 {"loadavg", loadavg_read_proc},

513 {"uptime", uptime_read_proc},

514 {"meminfo", meminfo_read_proc},

515 {"version", version_read_proc},

516 {"cpuinfo", cpuinfo_read_proc},

517 #ifdef CONFIG_PROC_HARDWARE

518 {"hardware", hardware_read_proc},

519 #endif

520 #ifdef CONFIG_STRAM_PROC

521 {"stram", stram_read_proc},

522 #endif

523 #ifdef CONFIG_DEBUG_MALLOC

524 {"malloc", malloc_read_proc},

525 #endif

526 #ifdef CONFIG_MODULES

527 {"modules", modules_read_proc},

528 {"ksyms", ksyms_read_proc},

529 #endif

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

666

530 {"stat", kstat_read_proc},

531 {"devices", devices_read_proc},

532 {"partitions", partitions_read_proc},

533 #if !defined(CONFIG_ARCH_S390)

534 {"interrupts", interrupts_read_proc},

535 #endif

536 {"filesystems", filesystems_read_proc},

537 {"dma", dma_read_proc},

538 {"ioports", ioports_read_proc},

539 {"cmdline", cmdline_read_proc},

540 #ifdef CONFIG_SGI_DS1286

541 {"rtc", ds1286_read_proc},

542 #endif

543 {"locks", locks_read_proc},

544 {"mounts", mounts_read_proc},

545 {"swaps", swaps_read_proc},

546 {"iomem", memory_read_proc},

547 {"execdomains", execdomains_read_proc},

548 {NULL,}

549 };

550 for (p = simple_ones; p­>name; p++)

551 create_proc_read_entry(p­>name, 0, NULL, p­>read_proc, NULL);

552

553 /* And now for trickier ones */

554 entry = create_proc_entry("kmsg", S_IRUSR, &proc_root);

555 if (entry)

556 entry­>proc_fops = &proc_kmsg_operations;

557 proc_root_kcore = create_proc_entry("kcore", S_IRUSR, NULL);

558 if (proc_root_kcore) {

559 proc_root_kcore­>proc_fops = &proc_kcore_operations;

560 proc_root_kcore­>size =

561 (size_t)high_memory ­ PAGE_OFFSET + PAGE_SIZE;

562 }

563 if (prof_shift) {

564 entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL);

565 if (entry) {

566 entry­>proc_fops = &proc_profile_operations;

567 entry­>size = (1+prof_len) * sizeof(unsigned int);

568 }

569 }

570 #ifdef __powerpc__

571 {

572 extern struct file_operations ppc_htab_operations;

573 entry = create_proc_entry("ppc_htab", S_IRUGO|S_IWUSR, NULL);

574 if (entry)

575 entry­>proc_fops = &ppc_htab_operations;

576 }

577 #endif

578 entry = create_proc_read_entry("slabinfo", S_IWUSR | S_IRUGO, NULL,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

667

579 slabinfo_read_proc, NULL);

580 if (entry)

581 entry­>write_proc = slabinfo_write_proc;

582 }

/proc
/proc/cpuinfo cpuinfo_read_proc()

cpuinfo_read_proc()

lseek() simple_ones[] /proc
create_proc_read_entry()

proc_dir_entry inode /proc
include/linux/proc.h inline

==================== include/linux/proc_fs.h 135 145 ====================
[proc_root_init()>proc_misc_init()>create_proc_read_entry()]
135 extern inline struct proc_dir_entry *create_proc_read_entry(const char *name,

136 mode_t mode, struct proc_dir_entry *base,

137 read_proc_t *read_proc, void * data)

138 {

139 struct proc_dir_entry *res=create_proc_entry(name,mode,base);

140 if (res) {

141 res­>read_proc=read_proc;

142 res­>data=data;

143 }

144 return res;

145 }

name read_proc 0 NULL
mode 0 create_proc_entry()

proc_dir_entry read_proc
create_proc_entry() fs/proc/generic.c

==================== fs/proc/generic.c 497 535 ====================
[proc_root_init()>proc_misc_init()>create_proc_read_entry()>create_proc_entry()]
497 struct proc_dir_entry *create_proc_entry(const char *name, mode_t mode,

498 struct proc_dir_entry *parent)

499 {

500 struct proc_dir_entry *ent = NULL;

501 const char *fn = name;

502 int len;

503

504 if (!parent && xlate_proc_name(name, &parent, &fn) != 0)

505 goto out;

506 len = strlen(fn);

507

508 ent = kmalloc(sizeof(struct proc_dir_entry) + len + 1, GFP_KERNEL);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

668

509 if (!ent)

510 goto out;

511 memset(ent, 0, sizeof(struct proc_dir_entry));

512 memcpy(((char *) ent) + sizeof(*ent), fn, len + 1);

513 ent­>name = ((char *) ent) + sizeof(*ent);

514 ent­>namelen = len;

515

516 if (S_ISDIR(mode)) {

517 if ((mode & S_IALLUGO) == 0)

518 mode |= S_IRUGO | S_IXUGO;

519 ent­>proc_fops = &proc_dir_operations;

520 ent­>proc_iops = &proc_dir_inode_operations;

521 ent­>nlink = 2;

522 } else {

523 if ((mode & S_IFMT) == 0)

524 mode |= S_IFREG;

525 if ((mode & S_IALLUGO) == 0)

526 mode |= S_IRUGO;

527 ent­>nlink = 1;

528 }

529 ent­>mode = mode;

530

531 proc_register(parent, ent);

532

533 out:

534 return ent;

535 }

parent NULL 505 xlate_proc_name()
“cpuinfo “/proc

proc proc_dir_entry parent
fs/proc/generic.c

==================== fs/proc/generic.c 161 191 ====================
[proc_root_init()>proc_misc_init()>create_proc_read_entry()>create_proc_entry()>xlate_proc_name()]
161 /*

162 * This function parses a name such as "tty/driver/serial", and

163 * returns the struct proc_dir_entry for "/proc/tty/driver", and

164 * returns "serial" in residual.

165 */

166 static int xlate_proc_name(const char *name,

167 struct proc_dir_entry **ret, const char **residual)

168 {

169 const char *cp = name, *next;

170 struct proc_dir_entry *de;

171 int len;

172

173 de = &proc_root;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

669

174 while (1) {

175 next = strchr(cp, '/');

176 if (!next)

177 break;

178

179 len = next ­ cp;

180 for (de = de­>subdir; de ; de = de­>next) {

181 if (proc_match(len, cp, de))

182 break;

183 }

184 if (!de)

185 return ­ENOENT;

186 cp += len + 1;

187 }

188 *residual = cp;

189 *ret = de;

190 return 0;

191 }

proc_root /proc proc_dir_entry subdir
/proc proc_dir_entry strchr() cp

“/ while
/proc “cpuinfo “/

strchr() NULL 177 break while “cpuinfo”
0 create_proc_entry() parent /proc proc_dir_entry

fn “cpuinfo proc_dir_entry
proc_register() parent /proc proc_dir_entry

proc_register() proc_dir_entry proc_dir_entry
subdir fs/proc/generic.c

==================== fs/proc/generic.c 350 375 ====================
[proc_root_init()>proc_misc_init()>create_proc_read_entry()>create_proc_entry()>proc_register()]
350 static int proc_register(struct proc_dir_entry * dir, struct proc_dir_entry * dp)

351 {

352 int i;

353

354 i = make_inode_number();

355 if (i < 0)

356 return ­EAGAIN;

357 dp­>low_ino = i;

358 dp­>next = dir­>subdir;

359 dp­>parent = dir;

360 dir­>subdir = dp;

361 if (S_ISDIR(dp­>mode)) {

362 if (dp­>proc_iops == NULL) {

363 dp­>proc_fops = &proc_dir_operations;

364 dp­>proc_iops = &proc_dir_inode_operations;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

670

365 }

366 dir­>nlink++;

367 } else if (S_ISLNK(dp­>mode)) {

368 if (dp­>proc_iops == NULL)

369 dp­>proc_iops = &proc_link_inode_operations;

370 } else if (S_ISREG(dp­>mode)) {

371 if (dp­>proc_fops == NULL)

372 dp­>proc_fops = &proc_file_operations;

373 }

374 return 0;

375 }

dir dp /proc
inode inode

proc /proc 1
make_inode_number() fs/proc/generic.c

==================== fs/proc/generic.c 193 202 ====================
[proc_root_init()>proc_misc_init()>create_proc_read_entry()>create_proc_entry()>proc_register()>make_inode_number()]
193 static unsigned char proc_alloc_map[PROC_NDYNAMIC / 8];

194

195 static int make_inode_number(void)

196 {

197 int i = find_first_zero_bit((void *) proc_alloc_map, PROC_NDYNAMIC);

198 if (i<0 || i>=PROC_NDYNAMIC)

199 return ­1;

200 set_bit(i, (void *) proc_alloc_map);

201 return PROC_DYNAMIC_FIRST + i;

202 }

include/linux/proc_fs.h

==================== include/linux/proc_fs.h 25 28 ====================
25 /* Finally, the dynamically allocatable proc entries are reserved: */

26

27 #define PROC_DYNAMIC_FIRST 4096

28 #define PROC_NDYNAMIC 4096

4096 8192
/proc

proc file_operations proc_dir_operations
proc_file_operations inode_operations proc_dir_inode_operations
proc_link_inode_operations /proc/self

proc_iops proc_link_operations
proc_register() “cpuinfo

subdir

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

671

proc_misc_init() simple_ones[] “kmsg “kcore “profile”
“kmsg “kcore mode S_IRUSR

create_proc_read_entry()
create_proc_entry() /proc/kcore

PAGE_OFFSET 0x0000 0000 high_memory
/proc proc_root_init() /proc

“net “fs “driver “bus proc_mkdir()
fs/proc/generic.c create_proc_entry() mode S_IFDIR 1 S_IALLUGO 0

“self /proc/self
/proc

cmdline cpu cwd environ
cwd

cmdline

pid /proc/self
“more /proc/self/cmdline

proc_dir_entry inode

self
/proc/tty

proc_tty_init() fs/proc/proc_tty.c

==================== fs/proc/proc_tty.c 169 181 ====================
[proc_root_init()>proc_tty_init()]
169 /*

170 * Called by proc_root_init() to initialize the /proc/tty subtree

171 */

172 void __init proc_tty_init(void)

173 {

174 if (!proc_mkdir("tty", 0))

175 return;

176 proc_tty_ldisc = proc_mkdir("tty/ldisc", 0);

177 proc_tty_driver = proc_mkdir("tty/driver", 0);

178

179 create_proc_read_entry("tty/ldiscs", 0, 0, tty_ldiscs_read_proc,NULL);

180 create_proc_read_entry("tty/drivers", 0, 0, tty_drivers_read_proc,NULL);

181 }

/dev
/device_tree proc_root_init() /device_tree proc_device_tree_init()

fs/proc/proc_device.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

672

==================== fs/proc/proc_devtree.c 122 139 ====================
[proc_root_init()>proc_device_tree_init()]
122 /*

123 * Called on initialization to set up the /proc/device­tree subtree

124 */

125 void proc_device_tree_init(void)

126 {

127 struct device_node *root;

128 if (!have_of)

129 return;

130 proc_device_tree = proc_mkdir("device­tree", 0);

131 if (proc_device_tree == 0)

132 return;

133 root = find_path_device("/");

134 if (root == 0) {

135 printk(KERN_ERR "/proc/device­tree: can't find root\n");

136 return;

137 }

138 add_node(root, proc_device_tree);

139 }

find_device_tree() add_node()

/proc
/proc

proc_register()
/proc

/dev /proc
proc_register_dynamic() proc

proc_register() /proc
inode_operations file_operations proc_dir_entry proc

/proc proc_register()

proc_register() proc_mkdir() proc_dir_entry
dentry inode dentry inode

/proc proc_root proc_dir_entry proc_root
proc_dir_entry
path_walk() dentry inode

proc /proc inode
proc_read_super() proc_get_inode() proc_root

dentry proc_read_super() d_alloc_root() proc super_block

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

673

s_root dentry d_entry d_inode inode
proc path_walk

inode_operations file_operations dentry_operations
/proc inode

proc_dir_entry
proc

/proc/loadavg 1 5 15
proc_dir_entry proc_misc_init()

create_proc_read_entry() open()
path_walk()

nameidata dentry dentry
qstr this

last_component
“. “.. cached_lookup() dentry

real_lookup() dentry inode
fs/namei.c

==================== fs/namei.c 558 566 ====================
558 dentry = cached_lookup(nd­>dentry, &this, 0);

559 if (!dentry) {

560 dentry = real_lookup(nd­>dentry, &this, 0);

561 err = PTR_ERR(dentry);

562 if (IS_ERR(dentry))

563 break;

564 }

565 while (d_mountpoint(dentry) && __follow_down(&nd­>mnt, &dentry))

566 ;

path_walk() /proc super_block
proc dentry

nd­>dentry dentry this “loadavg
cached_lookup() dentry

real_lookup() dentry
/proc proc

real_lookup()

==================== fs/namei.c 268 269 ====================
268 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, int flags)

269 {

==================== fs/namei.c 281 282 ====================
281 result = d_lookup(parent, name);

282 if (!result) {

==================== fs/namei.c 310 310 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

674

310 }

dentry inode
i_op inode_operations lookup /proc

i_op proc_root_inode_operations proc_dir_entry proc_root
fs/proc/root.c

==================== fs/proc/root.c 79 94 ====================
79 /*

80 * The root /proc directory is special, as it has the

81 * <pid> directories. Thus we don't use the generic

82 * directory handling functions for that..

83 */

84 static struct file_operations proc_root_operations = {

85 read: generic_read_dir,

86 readdir: proc_root_readdir,

87 };

88

89 /*

90 * proc root can do almost nothing..

91 */

92 static struct inode_operations proc_root_inode_operations = {

93 lookup: proc_root_lookup,

94 };

file_operations /proc
readdir() getdents() “ls proc_root_readdir()

proc_root_lookup()
fs/proc/root.c

==================== fs/proc/root.c 49 62 ====================
48 static struct dentry *proc_root_lookup(struct inode * dir, struct dentry * dentry)

49 {

50 if (dir­>i_ino == PROC_ROOT_INO) { /* check for safety... */

51 int nlink = proc_root.nlink;

52

53 nlink += nr_threads;

54

55 dir­>i_nlink = nlink;

56 }

57

58 if (!proc_lookup(dir, dentry))

59 return NULL;

60

61 return proc_pid_lookup(dir, dentry);

62 }

dir /proc inode inode nlink

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

675

proc_root_lookup() nr_threads
0 0

/proc proc_dir_entry proc_root()
proc_dir_entry

proc_lookup() proc_dir_entry dentry inode
task_struct dentry inode

/proc/loadavg proc_lookup() fs/proc/generic.c

==================== fs/proc/generic.c 237 271 ====================
[proc_root_lookup()>proc_lookup()]
237 /*

238 * Don't create negative dentries here, return ­ENOENT by hand

239 * instead.

240 */

241 struct dentry *proc_lookup(struct inode * dir, struct dentry *dentry)

242 {

243 struct inode *inode;

244 struct proc_dir_entry * de;

245 int error;

246

247 error = ­ENOENT;

248 inode = NULL;

249 de = (struct proc_dir_entry *) dir­>u.generic_ip;

250 if (de) {

251 for (de = de­>subdir; de ; de = de­>next) {

252 if (!de || !de­>low_ino)

253 continue;

254 if (de­>namelen != dentry­>d_name.len)

255 continue;

256 if (!memcmp(dentry­>d_name.name, de­>name, de­>namelen)) {

257 int ino = de­>low_ino;

258 error = ­EINVAL;

259 inode = proc_get_inode(dir­>i_sb, ino, de);

260 break;

261 }

262 }

263 }

264

265 if (inode) {

266 dentry­>d_op = &proc_dentry_operations;

267 d_add(dentry, inode);

268 return NULL;

269 }

270 return ERR_PTR(error);

271 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

676

dir /proc inode dentry dentry
proc_get_inode() d_add()

dentry dentry inode

proc_lookup() path_walk()
path_walk() /proc/loadavg

dentry open()
read() dentry inode

file f_op
file_operations read proc file f_op

inode inode proc_dir_entry proc_get_inode()
proc_register() proc_fops proc_dir_operations

/proc/loadavg proc_fops proc_file_operations /proc/loadavg
file_operations proc_file_operations fs/proc/generic.c

==================== fs/proc/generic.c 36 40 ====================
36 static struct file_operations proc_file_operations = {

37 llseek: proc_file_lseek,

38 read: proc_file_read,

39 write: proc_file_write,

40 };

proc_file_read() proc
generic.c

==================== fs/proc/generic.c 46 121 ====================
46 /* buffer size is one page but our output routines use some slack for overruns */

47 #define PROC_BLOCK_SIZE (PAGE_SIZE ­ 1024)

48

49 static ssize_t

50 proc_file_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)

51 {

52 struct inode * inode = file­>f_dentry­>d_inode;

53 char *page;

54 ssize_t retval=0;

55 int eof=0;

56 ssize_t n, count;

57 char *start;

58 struct proc_dir_entry * dp;

59

60 dp = (struct proc_dir_entry *) inode­>u.generic_ip;

61 if (!(page = (char*) __get_free_page(GFP_KERNEL)))

62 return ­ENOMEM;

63

64 while ((nbytes > 0) && !eof)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

677

65 {

66 count = MIN(PROC_BLOCK_SIZE, nbytes);

67

68 start = NULL;

69 if (dp­>get_info) {

70 /*

71 * Handle backwards compatibility with the old net

72 * routines.

73 */

74 n = dp­>get_info(page, &start, *ppos, count);

75 if (n < count)

76 eof = 1;

77 } else if (dp­>read_proc) {

78 n = dp­>read_proc(page, &start, *ppos,

79 count, &eof, dp­>data);

80 } else

81 break;

82

83 if (!start) {

84 /*

85 * For proc files that are less than 4k

86 */

87 start = page + *ppos;

88 n ­= *ppos;

89 if (n <= 0)

90 break;

91 if (n > count)

92 n = count;

93 }

94 if (n == 0)

95 break; /* End of file */

96 if (n < 0) {

97 if (retval == 0)

98 retval = n;

99 break;

100 }

101

102 /* This is a hack to allow mangling of file pos independent

103 * of actual bytes read. Simply place the data at page,

104 * return the bytes, and set `start' to the desired offset

105 * as an unsigned int. ­ Paul.Russell@rustcorp.com.au

106 */

107 n ­= copy_to_user(buf, start < page ? page : start, n);

108 if (n == 0) {

109 if (retval == 0)

110 retval = ­EFAULT;

111 break;

112 }

113

mailto:Paul.Russell@rustcorp.com.au
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

678

114 *ppos += start < page ? (long)start : n; /* Move down the file */

115 nbytes ­= n;

116 buf += n;

117 retval += n;

118 }

119 free_page((unsigned long) page);

120 return retval;

121 }

proc_dir_entry get_info read_proc
get_info read_proc Ext2
proc
Ext2 file_operation
proc proc file_operations

proc_file_read() read_proc
proc_misc_init() create_proc_read_entry() /proc/loadavg

loadavg_read_proc() fs/proc/proc_misc.c

==================== fs/proc/proc_misc.c 86 101 ====================
86 static int loadavg_read_proc(char *page, char **start, off_t off,

87 int count, int *eof, void *data)

88 {

89 int a, b, c;

90 int len;

91

92 a = avenrun[0] + (FIXED_1/200);

93 b = avenrun[1] + (FIXED_1/200);

94 c = avenrun[2] + (FIXED_1/200);

95 len = sprintf(page,"%d.%02d %d.%02d %d.%02d %d/%d %d\n",

96 LOAD_INT(a), LOAD_FRAC(a),

97 LOAD_INT(b), LOAD_FRAC(b),

98 LOAD_INT(c), LOAD_FRAC(c),

99 nr_running, nr_threads, last_pid);

100 return proc_calc_metrics(page, start, off, count, eof, len);

101 }

==================== fs/proc/proc_misc.c 75 84 ====================
75 static int proc_calc_metrics(char *page, char **start, off_t off,

76 int count, int *eof, int len)

77 {

78 if (len <= off+count) *eof = 1;

79 *start = page + off;

80 len ­= off;

81 if (len>count) len = count;

82 if (len<0) len = 0;

83 return len;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

679

84 }

avenrun[] 1 5 15 CPU
sprintf() 5

nr_running nr_threads last_pid

/proc/self/cwd /proc/self
/proc cwd

/proc/self/cwd
proc Ext2

path_walk()
path_walk /proc __follow_down()

super_block proc
dentry nameidata dentry

self fs/namei.c
path_walk() 494

==================== fs/namei.c 494 501 ====================
494 /* This does the actual lookups.. */

495 dentry = cached_lookup(nd­>dentry, &this, LOOKUP_CONTINUE);

496 if (!dentry) {

497 dentry = real_lookup(nd­>dentry, &this, LOOKUP_CONTINUE);

498 err = PTR_ERR(dentry);

499 if (IS_ERR(dentry))

500 break;

501 }

proc_root_lookup()
proc_lookup() dentry inode /proc/self

proc_dir_entry proc_lookup() 0
proc_pid_lookup() fs/proc/base.c

==================== fs/proc/base.c 907 932 ====================
[proc_root_lookup()>proc_pid_lookup()]
907 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry)

908 {

909 unsigned int pid, c;

910 struct task_struct *task;

911 const char *name;

912 struct inode *inode;

913 int len;

914

915 pid = 0;

916 name = dentry­>d_name.name;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

680

917 len = dentry­>d_name.len;

918 if (len == 4 && !memcmp(name, "self", 4)) {

919 inode = new_inode(dir­>i_sb);

920 if (!inode)

921 return ERR_PTR(­ENOMEM);

922 inode­>i_mtime = inode­>i_atime = inode­>i_ctime = CURRENT_TIME;

923 inode­>i_ino = fake_ino(0, PROC_PID_INO);

924 inode­>u.proc_i.file = NULL;

925 inode­>u.proc_i.task = NULL;

926 inode­>i_mode = S_IFLNK|S_IRWXUGO;

927 inode­>i_uid = inode­>i_gid = 0;

928 inode­>i_size = 64;

929 inode­>i_op = &proc_self_inode_operations;

930 d_add(dentry, inode);

931 return NULL;

932 }

“self inode
inode_operations i_op /proc/self proc_self_inode_operations
fs/proc/root/c

==================== fs/proc/base.c 902 905 ====================
902 static struct inode_operations proc_self_inode_operations = {

903 readlink: proc_self_readlink,

904 follow_link: proc_self_follow_link,

905 };

inode pid 16
PROC_PID_INO PROC_PID_INO 2

proc_root_lookup() path_walk()
/proc/self

path_walk() fs/namei.c

==================== fs/namei.c 514 515 ====================
514 if (inode­>i_op­>follow_link) {

515 err = do_follow_link(dentry, nd);

inode inode_operations follow_link 0
/proc/self proc_pid_lookup() follow_link
proc_self_follow_link() fs/proc/base.c

==================== fs/proc/base.c 895 900 ====================
895 static int proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)

896 {

897 char tmp[30];

898 sprintf(tmp, "%d", current­>pid);

899 return vfs_follow_link(nd,tmp);

900 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

681

vfs_follow_link() pid
nameidata dentry dentry vfs_follow_link()

vfs_follow_link() path_walk()
/proc lookup proc_root_lookup() “self

pid proc_root_lookup() proc_lookup()
proc_root subdir proc_dir_entry
proc_pid_lookup() proc_root_lookup() “self

proc_self_follow_link() proc_pid_lookup()

==================== fs/proc/base.c 933 971 ====================
[proc_root_lookup()>proc_pid_lookup()]
933 while (len­­ > 0) {

934 c = *name ­ '0';

935 name++;

936 if (c > 9)

937 goto out;

938 if (pid >= MAX_MULBY10)

939 goto out;

940 pid *= 10;

941 pid += c;

942 if (!pid)

943 goto out;

944 }

945

946 read_lock(&tasklist_lock);

947 task = find_task_by_pid(pid);

948 if (task)

949 get_task_struct(task);

950 read_unlock(&tasklist_lock);

951 if (!task)

952 goto out;

953

954 inode = proc_pid_make_inode(dir­>i_sb, task, PROC_PID_INO);

955

956 free_task_struct(task);

957

958 if (!inode)

959 goto out;

960 inode­>i_mode = S_IFDIR|S_IRUGO|S_IXUGO;

961 inode­>i_op = &proc_base_inode_operations;

962 inode­>i_fop = &proc_base_operations;

963 inode­>i_nlink = 3;

964 inode­>i_flags|=S_IMMUTABLE;

965

966 dentry­>d_op = &pid_base_dentry_operations;

967 d_add(dentry, inode);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

682

968 return NULL;

969 out:

970 return ERR_PTR(­ENOENT);

971 }

pid
proc_pid_make_inode() inode

dentry fs/proc/base.c inode
inode_operations i_op proc_base_inode_operations file_operations i_fop

proc_base_operations dentry d_op pid_base_dentry_operations
proc file_operations inode_operations

proc_follow_link() nd­>dentry dentry
path_walk() /proc/self

“cwd
last_component real_lookup() inode_operations

lookup proc_base_inode_operaions
fs/proc/base.c

==================== fs/proc/base.c 881 883 ====================
881 static struct inode_operations proc_base_inode_operations = {

882 lookup: proc_base_lookup,

883 };

proc_base_lookup() fs/proc/base.c

==================== fs/proc/base.c 783 874 ====================
783 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)

784 {

785 struct inode *inode;

786 int error;

787 struct task_struct *task = dir­>u.proc_i.task;

788 struct pid_entry *p;

789

790 error = ­ENOENT;

791 inode = NULL;

792

793 for (p = base_stuff; p­>name; p++) {

794 if (p­>len != dentry­>d_name.len)

795 continue;

796 if (!memcmp(dentry­>d_name.name, p­>name, p­>len))

797 break;

798 }

799 if (!p­>name)

800 goto out;

801

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

683

802 error = ­EINVAL;

803 inode = proc_pid_make_inode(dir­>i_sb, task, p­>type);

804 if (!inode)

805 goto out;

806

807 inode­>i_mode = p­>mode;

808 /*

809 * Yes, it does not scale. And it should not. Don't add

810 * new entries into /proc/<pid>/ without very good reasons.

811 */

812 switch(p­>type) {

813 case PROC_PID_FD:

814 inode­>i_nlink = 2;

815 inode­>i_op = &proc_fd_inode_operations;

816 inode­>i_fop = &proc_fd_operations;

817 break;

818 case PROC_PID_EXE:

819 inode­>i_op = &proc_pid_link_inode_operations;

820 inode­>u.proc_i.op.proc_get_link = proc_exe_link;

821 break;

822 case PROC_PID_CWD:

823 inode­>i_op = &proc_pid_link_inode_operations;

824 inode­>u.proc_i.op.proc_get_link = proc_cwd_link;

825 break;

826 case PROC_PID_ROOT:

827 inode­>i_op = &proc_pid_link_inode_operations;

828 inode­>u.proc_i.op.proc_get_link = proc_root_link;

829 break;

830 case PROC_PID_ENVIRON:

831 inode­>i_fop = &proc_info_file_operations;

832 inode­>u.proc_i.op.proc_read = proc_pid_environ;

833 break;

834 case PROC_PID_STATUS:

835 inode­>i_fop = &proc_info_file_operations;

836 inode­>u.proc_i.op.proc_read = proc_pid_status;

837 break;

838 case PROC_PID_STAT:

839 inode­>i_fop = &proc_info_file_operations;

840 inode­>u.proc_i.op.proc_read = proc_pid_stat;

841 break;

842 case PROC_PID_CMDLINE:

843 inode­>i_fop = &proc_info_file_operations;

844 inode­>u.proc_i.op.proc_read = proc_pid_cmdline;

845 break;

846 case PROC_PID_STATM:

847 inode­>i_fop = &proc_info_file_operations;

848 inode­>u.proc_i.op.proc_read = proc_pid_statm;

849 break;

850 case PROC_PID_MAPS:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

684

851 inode­>i_fop = &proc_maps_operations;

852 break;

853 #ifdef CONFIG_SMP

854 case PROC_PID_CPU:

855 inode­>i_fop = &proc_info_file_operations;

856 inode­>u.proc_i.op.proc_read = proc_pid_cpu;

857 break;

858 #endif

859 case PROC_PID_MEM:

860 inode­>i_op = &proc_mem_inode_operations;

861 inode­>i_fop = &proc_mem_operations;

862 break;

863 default:

864 printk("procfs: impossible type (%d)",p­>type);

865 iput(inode);

866 return ERR_PTR(­EINVAL);

867 }

868 dentry­>d_op = &pid_dentry_operations;

869 d_add(dentry, inode);

870 return NULL;

871

872 out:

873 return ERR_PTR(error);

874 }

base_stuff[] fs/proc/base.c

==================== fs/proc/base.c 477 519 ====================
477 struct pid_entry {

478 int type;

479 int len;

480 char *name;

481 mode_t mode;

482 };

483

484 enum pid_directory_inos {

485 PROC_PID_INO = 2,

486 PROC_PID_STATUS,

487 PROC_PID_MEM,

488 PROC_PID_CWD,

489 PROC_PID_ROOT,

490 PROC_PID_EXE,

491 PROC_PID_FD,

492 PROC_PID_ENVIRON,

493 PROC_PID_CMDLINE,

494 PROC_PID_STAT,

495 PROC_PID_STATM,

496 PROC_PID_MAPS,

497 PROC_PID_CPU,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

685

498 PROC_PID_FD_DIR = 0x8000, /* 0x8000­0xffff */

499 };

500

501 #define E(type,name,mode) {(type),sizeof(name)­1,(name),(mode)}

502 static struct pid_entry base_stuff[] = {

503 E(PROC_PID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR),

504 E(PROC_PID_ENVIRON, "environ", S_IFREG|S_IRUSR),

505 E(PROC_PID_STATUS, "status", S_IFREG|S_IRUGO),

506 E(PROC_PID_CMDLINE, "cmdline", S_IFREG|S_IRUGO),

507 E(PROC_PID_STAT, "stat", S_IFREG|S_IRUGO),

508 E(PROC_PID_STATM, "statm", S_IFREG|S_IRUGO),

509 #ifdef CONFIG_SMP

510 E(PROC_PID_CPU, "cpu", S_IFREG|S_IRUGO),

511 #endif

512 E(PROC_PID_MAPS, "maps", S_IFREG|S_IRUGO),

513 E(PROC_PID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR),

514 E(PROC_PID_CWD, "cwd", S_IFLNK|S_IRWXUGO),

515 E(PROC_PID_ROOT, "root", S_IFLNK|S_IRWXUGO),

516 E(PROC_PID_EXE, "exe", S_IFLNK|S_IRWXUGO),

517 {0,0,NULL,0}

518 };

519 #undef E

proc_base_lookup() “cwd
inode 16 switch
inode inode union

proc_inode_info proc_i include/linux/proc_fs_i.h

==================== include/linux/proc_fs_i.h 1 9 ====================
1 struct proc_inode_info {

2 struct task_struct *task;

3 int type;

4 union {

5 int (*proc_get_link)(struct inode *, struct dentry **, struct vfsmount **);

6 int (*proc_read)(struct task_struct *task, char *page);

7 } op;

8 struct file *file;

9 };

task proc_pid_make_inode() inode task_struct
“cwd inode i_op

proc_pid_link_inode_operations proc_inode_info proc_get_link
proc_cwd_link() proc_pid_link_inode_operaions

fs/proc/base.c

==================== fs/proc/base.c 472 475 ====================
472 static struct inode_operations proc_pid_link_inode_operations = {

473 readlink: proc_pid_readlink,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

686

474 follow_link: proc_pid_follow_link

475 };

proc_base_lookup() real_lookup() path_walk() nameidata dentry
“cwd dentry inode i_op

inode_operations follow_link path_walk() fs/namei.c

==================== fs/namei.c 567 570 ====================
567 inode = dentry­>d_inode;

568 if ((lookup_flags & LOOKUP_FOLLOW)

569 && inode && inode­>i_op && inode­>i_op­>follow_link) {

570 err = do_follow_link(dentry, nd);

inode follow_link 0 proc_cwd_link()
fs/proc/base.c

==================== fs/proc/base.c 85 103 ====================
85 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)

86 {

87 struct fs_struct *fs;

88 int result = ­ENOENT;

89 task_lock(inode­>u.proc_i.task);

90 fs = inode­>u.proc_i.task­>fs;

91 if(fs)

92 atomic_inc(&fs­>count);

93 task_unlock(inode­>u.proc_i.task);

94 if (fs) {

95 read_lock(&fs­>lock);

96 *mnt = mntget(fs­>pwdmnt);

97 *dentry = dget(fs­>pwd);

98 read_unlock(&fs­>lock);

99 result = 0;

100 put_fs_struct(fs);

101 }

102 return result;

103 }

inode union proc_inode_info task
task_struct fs_struct pwd

dentry pwdmnt vfsmount
dentry mnt 96 97 nameidata

dentry mnt proc_cwdlink() do_follow_link() path_walk()
nameidata

proc
path_walk()

Ext2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

687

proc
/proc/meminfo /proc/self/maps

proc

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

688

6 Unix

6.1

IPC

Unix
Unix

•

•

•

• 7

CPU

Unix
“Unix Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

689

Unix Linux
Unix

• Pipe

FIFO

• Signal 4 signal

signal

• Trace ptrace()

pid
pid

• named pipe FIFO

AT&T Unix V
“System V IPC

• Message
”

Message Passing
•

• Semaphore 4 V

AT&T Unix BSD Unix

• Socket Socket Socket

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
sie
Underline

690

Socket Socket
Unix

Socket
Linux

POSIX.1 Unix
Linux

6 7 Unix
System V IPC Socket Socket

6.2 pipe()

pipe() pipe()
fork()

pipe()

pipe()
sys_pipe() arch/i386/kernel/sys_i386.c

==================== arch/i386/kernel/sys_i386.c 25 40 ====================
25 /*

26 * sys_pipe() is the normal C calling standard for creating

27 * a pipe. It's not the way Unix traditionally does this, though.

28 */

29 asmlinkage int sys_pipe(unsigned long * fildes)

30 {

31 int fd[2];

32 int error;

33

34 error = do_pipe(fd);

35 if (!error) {

36 if (copy_to_user(fildes, fd, 2*sizeof(int)))

37 error = ­EFAULT;

38 }

39 return error;

40 }

do_pipe() fd[]
copy_to_user() fd[] do_pipe()

fs/pipe.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

691

==================== fs/pipe.c 509 541 ====================
[sys_pipe()>do_pipe()]
509 int do_pipe(int *fd)

510 {

511 struct qstr this;

512 char name[32];

513 struct dentry *dentry;

514 struct inode * inode;

515 struct file *f1, *f2;

516 int error;

517 int i,j;

518

519 error = ­ENFILE;

520 f1 = get_empty_filp();

521 if (!f1)

522 goto no_files;

523

524 f2 = get_empty_filp();

525 if (!f2)

526 goto close_f1;

527

528 inode = get_pipe_inode();

529 if (!inode)

530 goto close_f12;

531

532 error = get_unused_fd();

533 if (error < 0)

534 goto close_f12_inode;

535 i = error;

536

537 error = get_unused_fd();

538 if (error < 0)

539 goto close_f12_inode_i;

540 j = error;

541

file

file
file 520 524 get_empty_filp() f1

f2 file get_empty_filp() file

f_pos
0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

692

inode
inode

inode 528 get_pipe_inode()
get_pipe_inode() fs/pipe.c

==================== fs/pipe.c 476 507 ====================
[sys_pipe()>do_pipe()>get_pipe_inode()]
476 static struct inode * get_pipe_inode(void)

477 {

478 struct inode *inode = get_empty_inode();

479

480 if (!inode)

481 goto fail_inode;

482

483 if(!pipe_new(inode))

484 goto fail_iput;

485 PIPE_READERS(*inode) = PIPE_WRITERS(*inode) = 1;

486 inode­>i_fop = &rdwr_pipe_fops;

487 inode­>i_sb = pipe_mnt­>mnt_sb;

488

489 /*

490 * Mark the inode dirty from the very beginning,

491 * that way it will never be moved to the dirty

492 * list because "mark_inode_dirty()" will think

493 * that it already _is_ on the dirty list.

494 */

495 inode­>i_state = I_DIRTY;

496 inode­>i_mode = S_IFIFO | S_IRUSR | S_IWUSR;

497 inode­>i_uid = current­>fsuid;

498 inode­>i_gid = current­>fsgid;

499 inode­>i_atime = inode­>i_mtime = inode­>i_ctime = CURRENT_TIME;

500 inode­>i_blksize = PAGE_SIZE;

501 return inode;

502

503 fail_iput:

504 iput(inode);

505 fail_inode:

506 return NULL;

507 }

478 inode ”

i_pipe
pipe_inode_info inode

NULL pipe_inode_info
include/linux/pipe_fs_i.h

==================== include/linux/pipe_fs_i.h 5 15 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

693

5 struct pipe_inode_info {

6 wait_queue_head_t wait;

7 char *base;

8 unsigned int start;

9 unsigned int readers;

10 unsigned int writers;

11 unsigned int waiting_readers;

12 unsigned int waiting_writers;

13 unsigned int r_counter;

14 unsigned int w_counter;

15 };

==================== include/linux/pipe_fs_i.h 17 38 ====================
17 /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual

18 memory allocation, whereas PIPE_BUF makes atomicity guarantees. */

19 #define PIPE_SIZE PAGE_SIZE

20

21 #define PIPE_SEM(inode) (&(inode).i_sem)

22 #define PIPE_WAIT(inode) (&(inode).i_pipe­>wait)

23 #define PIPE_BASE(inode) ((inode).i_pipe­>base)

24 #define PIPE_START(inode) ((inode).i_pipe­>start)

25 #define PIPE_LEN(inode) ((inode).i_size)

26 #define PIPE_READERS(inode) ((inode).i_pipe­>readers)

27 #define PIPE_WRITERS(inode) ((inode).i_pipe­>writers)

28 #define PIPE_WAITING_READERS(inode) ((inode).i_pipe­>waiting_readers)

29 #define PIPE_WAITING_WRITERS(inode) ((inode).i_pipe­>waiting_writers)

30 #define PIPE_RCOUNTER(inode) ((inode).i_pipe­>r_counter)

31 #define PIPE_WCOUNTER(inode) ((inode).i_pipe­>w_counter)

32

33 #define PIPE_EMPTY(inode) (PIPE_LEN(inode) == 0)

34 #define PIPE_FULL(inode) (PIPE_LEN(inode) == PIPE_SIZE)

35 #define PIPE_FREE(inode) (PIPE_SIZE ­ PIPE_LEN(inode))

36 #define PIPE_END(inode) ((PIPE_START(inode) + PIPE_LEN(inode)) & (PIPE_SIZE­1))

37 #define PIPE_MAX_RCHUNK(inode) (PIPE_SIZE ­ PIPE_START(inode))

38 #define PIPE_MAX_WCHUNK(inode) (PIPE_SIZE ­ PIPE_END(inode))

get_pipe_inode() PIPE_READERS PIPE_WRITERS inode
483 pipe_new() fs/pipe.c

==================== fs/pipe.c 442 465 ====================
[sys_pipe()>do_pipe()>get_pipe_inode()>pipe_new()]
442 struct inode* pipe_new(struct inode* inode)

443 {

444 unsigned long page;

445

446 page = __get_free_page(GFP_USER);

447 if (!page)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

694

448 return NULL;

449

450 inode­>i_pipe = kmalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);

451 if (!inode­>i_pipe)

452 goto fail_page;

453

454 init_waitqueue_head(PIPE_WAIT(*inode));

455 PIPE_BASE(*inode) = (char*) page;

456 PIPE_START(*inode) = PIPE_LEN(*inode) = 0;

457 PIPE_READERS(*inode) = PIPE_WRITERS(*inode) = 0;

458 PIPE_WAITING_READERS(*inode) = PIPE_WAITING_WRITERS(*inode) = 0;

459 PIPE_RCOUNTER(*inode) = PIPE_WCOUNTER(*inode) = 1;

460

461 return inode;

462 fail_page:

463 free_page(page);

464 return NULL;

465 }

pipe_inode_info

inode i_fop file_operations

get_pipe_inode() 486 rdwr_pipe_fops fs/pipe.c

==================== fs/pipe.c 432 440 ====================
432 struct file_operations rdwr_pipe_fops = {

433 llseek: pipe_lseek,

434 read: pipe_read,

435 write: pipe_write,

436 poll: pipe_poll,

437 ioctl: pipe_ioctl,

438 open: pipe_rdwr_open,

439 release: pipe_rdwr_release,

440 };

include/linux/pipe_fs_i.h get_pipe_inode() inode
inode

inode_operations i_op 0 inode
inode inode

get_pipe_inode() do_pipe()
get_unused_fd()

do_pipe() fs/pipe.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

695

==================== fs/pipe.c 542 572 ====================
[sys_pipe()>do_pipe()]
542 error = ­ENOMEM;

543 sprintf(name, "[%lu]", inode­>i_ino);

544 this.name = name;

545 this.len = strlen(name);

546 this.hash = inode­>i_ino; /* will go */

547 dentry = d_alloc(pipe_mnt­>mnt_sb­>s_root, &this);

548 if (!dentry)

549 goto close_f12_inode_i_j;

550 dentry­>d_op = &pipefs_dentry_operations;

551 d_add(dentry, inode);

552 f1­>f_vfsmnt = f2­>f_vfsmnt = mntget(mntget(pipe_mnt));

553 f1­>f_dentry = f2­>f_dentry = dget(dentry);

554

555 /* read file */

556 f1­>f_pos = f2­>f_pos = 0;

557 f1­>f_flags = O_RDONLY;

558 f1­>f_op = &read_pipe_fops;

559 f1­>f_mode = 1;

560 f1­>f_version = 0;

561

562 /* write file */

563 f2­>f_flags = O_WRONLY;

564 f2­>f_op = &write_pipe_fops;

565 f2­>f_mode = 2;

566 f2­>f_version = 0;

567

568 fd_install(i, f1);

569 fd_install(j, f2);

570 fd[0] = i;

571 fd[1] = j;

572 return 0;

dentry inode file
f_dentry dentry file

inode file
inode inode

547 d_alloc()
d_add() inode

f_dentry
dentry_operations

pipefs_dentry_operations 550 fs/pipe.c

==================== fs/pipe.c 472 474 ====================
472 static struct dentry_operations pipefs_dentry_operations = {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

696

473 d_delete: pipefs_delete_dentry,

474 };

pipefs_delete_dentry()
f1 O_RDONLY

O_WRONLY read_pipe_fops write_pipe_fops
fs/pipe.c

==================== fs/pipe.c 412 430 ====================
412 struct file_operations read_pipe_fops = {

413 llseek: pipe_lseek,

414 read: pipe_read,

415 write: bad_pipe_w,

416 poll: pipe_poll,

417 ioctl: pipe_ioctl,

418 open: pipe_read_open,

419 release: pipe_read_release,

420 };

421

422 struct file_operations write_pipe_fops = {

423 llseek: pipe_lseek,

424 read: bad_pipe_r,

425 write: pipe_write,

426 poll: pipe_poll,

427 ioctl: pipe_ioctl,

428 open: pipe_write_open,

429 release: pipe_write_release,

430 };

read_pipe_fops bad_pipe_w() write_pipe_fops
bad_pipe_r() inode

i_fop rdwr_pipe_fops

inode
”

file f_op inode i_fop file_operations
file file_operations

Ext2
pipe_fs_type fs/pipe.c

==================== fs/pipe.c 632 633 ====================
632 static DECLARE_FSTYPE(pipe_fs_type, "pipefs", pipefs_read_super,

633 FS_NOMOUNT|FS_SINGLE);

kern_mount() pipe_mnt

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

697

vfsmount

==================== fs/pipe.c 467 467 ====================
467 static struct vfsmount *pipe_mnt;

file
f_vfsmnt vfsmount

mntget() 552 2
do_pipe() 568 569

fd[] fd[0]
fd[1] sys_pipe()

(1) A A
6.1

6.1

(2) A fork() B fork() A B
6.2

(3) A B A
B 6.3

(4) A fork() C
C B 6.4

(5) C B exec()

shell

“ls ­l | wc ­l”

A shell B “wc ­l C “ls ­l C

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

698

”stdout B ”stdin

6.2

6.3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

699

6.4

#include <stdio.h>

int main()

{

int child_B, child_C;

int pipefds[2]; /* pipefds[0] for read, pipefds[1] for write */

char *args1[] = {"/bin/wc", NULL};

char *args2[] = {"/usr/bin/ls", "­l", NULL};

/* process A */

pipe(pipefds); /* create a pipe */

if (!(child_B = fork())) /* fork process B */

{

/**** Process B ****/

close(pipefds[1]); /* close the write end */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

700

/* redirect stdin */

close(0);

dup2(pipefds[0], 0);

close(pipefds[0]);

/* exec the target */

execve("/usr/bin/wc", args1, NULL); /* no return if success */

printf("pid %d: I am back, something is wrong!\n", getpid());

}

/* process A continues */

close(pipefds[0]); /* close the read end */

if (!(child_C = fork())) /* fork process C */

{

/**** process C ****/

/* redirect stdout */

close(1) ;

dup2(pipefds[1], 1);

close(pipefds[1]);

/* exec the target */

execve("/bin/ls", args2, NULL); /* no return if success */

printf("pid %d: I am back, something is wrong!\n", getpid());

}

/* process A continues */

close(pipefds[1]); /* close the write end */

wait4(child_B, NULL, 0, NULL); /* wait for process B to finish */

printf("Done!\n") ;

return 0;

}

dup2() file
B 0

0
C

EOF

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

701

exit()
exit() exit()

exit() exit()

SIGPIPE exit()

close()
fput()

sys_close()>filp_close()>fput()

fput() file 1 1 0
release dentry file

file 1
1 fput() 0

fork() 4 do_fork()
copy_files() for file get_file()

fork() 1
0

dup() dup2()
file

dup2() close() file
0

file
release file

fput() dentry do_pipe()
file_operations read_pipe_fops

write_pipe_fops release pipe_read_release
pipe_write_release() fput() pipe_read_release()
pipe_write_release() pipe_release() pipe_release()

fs/pipe.c

==================== fs/pipe.c 321 331 ====================
[sys_close()>filp_close()>fput()>pipe_read_release()]
321 static int

322 pipe_read_release(struct inode *inode, struct file *filp)

323 {

324 return pipe_release(inode, 1, 0);

325 }

326

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

702

327 static int

328 pipe_write_release(struct inode *inode, struct file *filp)

329 {

330 return pipe_release(inode, 0, 1);

331 }

pipe_release() fs/pipe.c
pipe_fs_i.h pipe_release()

==================== fs/pipe.c 302 319 ====================
[sys_close()>filp_close()>fput()>pipe_read_release()>pipe_release()]
302 static int

303 pipe_release(struct inode *inode, int decr, int decw)

304 {

305 down(PIPE_SEM(*inode));

306 PIPE_READERS(*inode) ­= decr;

307 PIPE_WRITERS(*inode) ­= decw;

308 if (!PIPE_READERS(*inode) && !PIPE_WRITERS(*inode)) {

309 struct pipe_inode_info *info = inode­>i_pipe;

310 inode­>i_pipe = NULL;

311 free_page((unsigned long) info­>base);

312 kfree(info);

313 } else {

314 wake_up_interruptible(PIPE_WAIT(*inode));

315 }

316 up(PIPE_SEM(*inode));

317

318 return 0;

319 }

file inode­>i_pipe pipe_inode_info
readers writers get_pipe_inode()

1 fs/pipe.c get_pipe_inode() 485
pipe_read_release() pipe_release() readers 1 writers 1

0 pipe_inode_info
inode

inode
inode dentry

inode inode_operations 0
read()

sys_read() read_pipe_fops
pipe_read() fs/pipe.c

==================== fs/pipe.c 38 49 ====================
[sys_read()>pipe_read()]
38 static ssize_t

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

703

39 pipe_read(struct file *filp, char *buf, size_t count, loff_t *ppos)

40 {

41 struct inode *inode = filp­>f_dentry­>d_inode;

42 ssize_t size, read, ret;

43

44 /* Seeks are not allowed on pipes. */

45 ret = ­ESPIPE;

46 read = 0;

47 if (ppos != &filp­>f_pos)

48 goto out_nolock;

49

44 seek pipe_lseek()
47 ppos filp­>f_pos

fs/pipe.c

==================== fs/pipe.c 50 84 ====================
[sys_read()>pipe_read()]
50 /* Always return 0 on null read. */

51 ret = 0;

52 if (count == 0)

53 goto out_nolock;

54

55 /* Get the pipe semaphore */

56 ret = ­ERESTARTSYS;

57 if (down_interruptible(PIPE_SEM(*inode)))

58 goto out_nolock;

59

60 if (PIPE_EMPTY(*inode)) {

61 do_more_read:

62 ret = 0;

63 if (!PIPE_WRITERS(*inode))

64 goto out;

65

66 ret = ­EAGAIN;

67 if (filp­>f_flags & O_NONBLOCK)

68 goto out;

69

70 for (;;) {

71 PIPE_WAITING_READERS(*inode)++;

72 pipe_wait(inode);

73 PIPE_WAITING_READERS(*inode)­­;

74 ret = ­ERESTARTSYS;

75 if (signal_pending(current))

76 goto out;

77 ret = 0;

78 if (!PIPE_EMPTY(*inode))

79 break;

80 if (!PIPE_WRITERS(*inode))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

704

81 goto out;

82 }

83 }

84

writers
0

O_NOBLOCK
pipe_wait() pipe_wait()

fs/pipe.c

==================== fs/pipe.c 25 36 ====================
[sys_read()>pipe_read()>pipe_wait()]
25 /* Drop the inode semaphore and wait for a pipe event, atomically */

26 void pipe_wait(struct inode * inode)

27 {

28 DECLARE_WAITQUEUE(wait, current);

29 current­>state = TASK_INTERRUPTIBLE;

30 add_wait_queue(PIPE_WAIT(*inode), &wait);

31 up(PIPE_SEM(*inode));

32 schedule();

33 remove_wait_queue(PIPE_WAIT(*inode), &wait);

34 current­>state = TASK_RUNNING;

35 down(PIPE_SEM(*inode));

36 }

4 up()
down_interruptible() pipe_read() 57 for for

pipe_read() 57 127
pipe_wait()

78 79
fs/pipe.c

==================== fs/pipe.c 85 132 ====================
[sys_read()>pipe_read()]
85 /* Read what data is available. */

86 ret = ­EFAULT;

87 while (count > 0 && (size = PIPE_LEN(*inode))) {

88 char *pipebuf = PIPE_BASE(*inode) + PIPE_START(*inode);

89 ssize_t chars = PIPE_MAX_RCHUNK(*inode);

90

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

705

91 if (chars > count)

92 chars = count;

93 if (chars > size)

94 chars = size;

95

96 if (copy_to_user(buf, pipebuf, chars))

97 goto out;

98

99 read += chars;

100 PIPE_START(*inode) += chars;

101 PIPE_START(*inode) &= (PIPE_SIZE ­ 1);

102 PIPE_LEN(*inode) ­= chars;

103 count ­= chars;

104 buf += chars;

105 }

106

107 /* Cache behaviour optimization */

108 if (!PIPE_LEN(*inode))

109 PIPE_START(*inode) = 0;

110

111 if (count && PIPE_WAITING_WRITERS(*inode) && !(filp­>f_flags & O_NONBLOCK)) {

112 /*

113 * We know that we are going to sleep: signal

114 * writers synchronously that there is more

115 * room.

116 */

117 wake_up_interruptible_sync(PIPE_WAIT(*inode));

118 if (!PIPE_EMPTY(*inode))

119 BUG();

120 goto do_more_read;

121 }

122 /* Signal writers asynchronously that there is more room. */

123 wake_up_interruptible(PIPE_WAIT(*inode));

124

125 ret = read;

126 out:

127 up(PIPE_SEM(*inode));

128 out_nolock:

129 if (read)

130 ret = read;

131 return ret;

132 }

6.5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

706

6.5

(1) count 0
0

(2)
(3)

start
start

108 109

0 inode
inode

57 down_interruptible() 127

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

707

up()
sys_write() file f_op file_operations

write_pipe_fops write pipe_write() fs/pipe.c

==================== fs/pipe.c 134 150 ====================
[sys_write()>pipe_write()]
134 static ssize_t

135 pipe_write(struct file *filp, const char *buf, size_t count, loff_t *ppos)

136 {

137 struct inode *inode = filp­>f_dentry­>d_inode;

138 ssize_t free, written, ret;

139

140 /* Seeks are not allowed on pipes. */

141 ret = ­ESPIPE;

142 written = 0;

143 if (ppos != &filp­>f_pos)

144 goto out_nolock;

145

146 /* Null write succeeds. */

147 ret = 0;

148 if (count == 0)

149 goto out_nolock;

150

pipe_read()

==================== fs/pipe.c 151 180 ====================
151 ret = ­ERESTARTSYS;

152 if (down_interruptible(PIPE_SEM(*inode)))

153 goto out_nolock;

154

155 /* No readers yields SIGPIPE. */

156 if (!PIPE_READERS(*inode))

157 goto sigpipe;

158

159 /* If count <= PIPE_BUF, we have to make it atomic. */

160 free = (count <= PIPE_BUF ? count : 1);

161

162 /* Wait, or check for, available space. */

163 if (filp­>f_flags & O_NONBLOCK) {

164 ret = ­EAGAIN;

165 if (PIPE_FREE(*inode) < free)

166 goto out;

167 } else {

168 while (PIPE_FREE(*inode) < free) {

169 PIPE_WAITING_WRITERS(*inode)++;

170 pipe_wait(inode);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

708

171 PIPE_WAITING_WRITERS(*inode)­­;

172 ret = ­ERESTARTSYS;

173 if (signal_pending(current))

174 goto out;

175

176 if (!PIPE_READERS(*inode))

177 goto sigpipe;

178 }

179 }

180

sigpipe
SIGPIPE

==================== fs/pipe.c 240 245 ====================
240 sigpipe:

241 if (written)

242 goto out;

243 up(PIPE_SEM(*inode));

244 send_sig(SIGPIPE, current, 0);

245 return ­EPIPE;

SIGPIPE do_exit()
SIGPIPE do_exit()

SIGPIPE

160 PIPE_BUF include/linux/limits.h 4096

160 free
count 1 free

pipe_read() 162 179

fs/pipe.c

==================== fs/pipe.c 181 238 ====================
[sys_write()>pipe_write()]
181 /* Copy into available space. */

182 ret = ­EFAULT;

183 while (count > 0) {

184 int space;

185 char *pipebuf = PIPE_BASE(*inode) + PIPE_END(*inode);

186 ssize_t chars = PIPE_MAX_WCHUNK(*inode);

187

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

709

188 if ((space = PIPE_FREE(*inode)) != 0) {

189 if (chars > count)

190 chars = count;

191 if (chars > space)

192 chars = space;

193

194 if (copy_from_user(pipebuf, buf, chars))

195 goto out;

196

197 written += chars;

198 PIPE_LEN(*inode) += chars;

199 count ­= chars;

200 buf += chars;

201 space = PIPE_FREE(*inode);

202 continue;

203 }

204

205 ret = written;

206 if (filp­>f_flags & O_NONBLOCK)

207 break;

208

209 do {

210 /*

211 * Synchronous wake­up: it knows that this process

212 * is going to give up this CPU, so it doesnt have

213 * to do idle reschedules.

214 */

215 wake_up_interruptible_sync(PIPE_WAIT(*inode));

216 PIPE_WAITING_WRITERS(*inode)++;

217 pipe_wait(inode);

218 PIPE_WAITING_WRITERS(*inode)­­;

219 if (signal_pending(current))

220 goto out;

221 if (!PIPE_READERS(*inode))

222 goto sigpipe;

223 } while (!PIPE_FREE(*inode));

224 ret = ­EFAULT;

225 }

226

227 /* Signal readers asynchronously that there is more data. */

228 wake_up_interruptible(PIPE_WAIT(*inode));

229

230 inode­>i_ctime = inode­>i_mtime = CURRENT_TIME;

231 mark_inode_dirty(inode);

232

233 out:

234 up(PIPE_SEM(*inode));

235 out_nolock:

236 if (written)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

710

237 ret = written;

.

==================== fs/pipe.c 246 246 ====================
246 }

pipe_read() PIPE_BUF
while PIPE_BUF

209 223 do­while

while pipe_read()

202 continue PIPE_BUF
do­while 185 PIPE_END()

pipe_buf

•

•

6.3

Unix
“Unix

fork()

inode
fork()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

711

FIFO
lseek()

mknod

%mknod mypipe p

“p
mknod() mode S_IFIFO

FIFO

FIFO file_operations fs/pipe.c

==================== fs/pipe.c 378 410 ====================
378 /*

379 * The file_operations structs are not static because they

380 * are also used in linux/fs/fifo.c to do operations on FIFOs.

381 */

382 struct file_operations read_fifo_fops = {

383 llseek: pipe_lseek,

384 read: pipe_read,

385 write: bad_pipe_w,

386 poll: fifo_poll,

387 ioctl: pipe_ioctl,

388 open: pipe_read_open,

389 release: pipe_read_release,

390 };

391

392 struct file_operations write_fifo_fops = {

393 llseek: pipe_lseek,

394 read: bad_pipe_r,

395 write: pipe_write,

396 poll: fifo_poll,

397 ioctl: pipe_ioctl,

398 open: pipe_write_open,

399 release: pipe_write_release,

400 };

401

402 struct file_operations rdwr_fifo_fops = {

403 llseek: pipe_lseek,

404 read: pipe_read,

405 write: pipe_write,

406 poll: fifo_poll,

407 ioctl: pipe_ioctl,

408 open: pipe_rdwr_open,

409 release: pipe_rdwr_release,

410 };

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

712

read_pipe_fops write_pipe_fops rdwr_pipe_fops
fifo_poll() pipe_poll() select()

open()
pipe_read_open() pipe_write_open() pipe_rdwr_open()

do_pipe() fork()
pipe()

FIFO
open()

FIFO
sys_open() filp_open() open_namei() path_walk()

inode inode FIFO
S_IFIFO 1 inode i_op i_fop inode_operations

file_operations FIFO init_special_inode()
ext2_read_inode() fs/ext2/inode.c

==================== fs/ext2/inode.c 1059 1078 ====================
[sys_open()>filp_open()>open_namei()>path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()
>ext2_read_inode()]
1059 if (inode­>i_ino == EXT2_ACL_IDX_INO ||

1060 inode­>i_ino == EXT2_ACL_DATA_INO)

1061 /* Nothing to do */ ;

1062 else if (S_ISREG(inode­>i_mode)) {

1063 inode­>i_op = &ext2_file_inode_operations;

1064 inode­>i_fop = &ext2_file_operations;

1065 inode­>i_mapping­>a_ops = &ext2_aops;

1066 } else if (S_ISDIR(inode­>i_mode)) {

1067 inode­>i_op = &ext2_dir_inode_operations;

1068 inode­>i_fop = &ext2_dir_operations;

1069 } else if (S_ISLNK(inode­>i_mode)) {

1070 if (!inode­>i_blocks)

1071 inode­>i_op = &ext2_fast_symlink_inode_operations;

1072 else {

1073 inode­>i_op = &page_symlink_inode_operations;

1074 inode­>i_mapping­>a_ops = &ext2_aops;

1075 }

1076 } else

1077 init_special_inode(inode, inode­>i_mode,

1078 le32_to_cpu(raw_inode­>i_block[0]));

ACL
init_special_inode() inode fs/devices.c

==================== fs/devices.c 200 216 ====================
[sys_open()>filp_open()>open_namei()>path_walk()>real_lookup()>ext2_lookup()>iget()>get_new_inode()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

713

>ext2_read_inode()>init_special_inode()]
200 void init_special_inode(struct inode *inode, umode_t mode, int rdev)

201 {

202 inode­>i_mode = mode;

203 if (S_ISCHR(mode)) {

204 inode­>i_fop = &def_chr_fops;

205 inode­>i_rdev = to_kdev_t(rdev);

206 } else if (S_ISBLK(mode)) {

207 inode­>i_fop = &def_blk_fops;

208 inode­>i_rdev = to_kdev_t(rdev);

209 inode­>i_bdev = bdget(rdev);

210 } else if (S_ISFIFO(mode))

211 inode­>i_fop = &def_fifo_fops;

212 else if (S_ISSOCK(mode))

213 inode­>i_fop = &bad_sock_fops;

214 else

215 printk(KERN_DEBUG "init_special_inode: bogus imode (%o)\n", mode);

216 }

FIFO inode inode_operations i_op 0
file_operations i_fop def_fifo_fops fs/fifo.c

==================== fs/fifo.c 150 157 ====================
150 /*

151 * Dummy default file­operations: the only thing this does

152 * is contain the open that then fills in the correct operations

153 * depending on the access mode of the file...

154 */

155 struct file_operations def_fifo_fops = {

156 open: fifo_open, /* will set read or write pipe_fops */

157 };

pipe inode pipe inode
init_special_inode() pipe inode

ext2_read_inode()
dentry_open() inode file_operations file

def_fifo_fops fifo_open
fifo_open()

fifo_open() fifo_open() fs/fifo.c

==================== fs/fifo.c 31 46 ====================
[sys_open()>filp_open()>dentry_open()>fifo_open()]
31 static int fifo_open(struct inode *inode, struct file *filp)

32 {

33 int ret;

34

35 ret = ­ERESTARTSYS;

36 lock_kernel();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

714

37 if (down_interruptible(PIPE_SEM(*inode)))

38 goto err_nolock_nocleanup;

39

40 if (!inode­>i_pipe) {

41 ret = ­ENOMEM;

42 if(!pipe_new(inode))

43 goto err_nocleanup;

44 }

45 filp­>f_version = 0;

46

FIFO fifo_open()
42 pipe_new() pipe_inode_info FIFO

fs/fifo.c

==================== fs/fifo.c 47 148 ====================
47 switch (filp­>f_mode) {

48 case 1:

49 /*

50 * O_RDONLY

51 * POSIX.1 says that O_NONBLOCK means return with the FIFO

52 * opened, even when there is no process writing the FIFO.

53 */

54 filp­>f_op = &read_fifo_fops;

55 PIPE_RCOUNTER(*inode)++;

56 if (PIPE_READERS(*inode)++ == 0)

57 wake_up_partner(inode);

58

59 if (!PIPE_WRITERS(*inode)) {

60 if ((filp­>f_flags & O_NONBLOCK)) {

61 /* suppress POLLHUP until we have

62 * seen a writer */

63 filp­>f_version = PIPE_WCOUNTER(*inode);

64 } else

65 {

66 wait_for_partner(inode, &PIPE_WCOUNTER(*inode));

67 if(signal_pending(current))

68 goto err_rd;

69 }

70 }

71 break;

72

73 case 2:

74 /*

75 * O_WRONLY

76 * POSIX.1 says that O_NONBLOCK means return ­1 with

77 * errno=ENXIO when there is no process reading the FIFO.

78 */

79 ret = ­ENXIO;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

715

80 if ((filp­>f_flags & O_NONBLOCK) && !PIPE_READERS(*inode))

81 goto err;

82

83 filp­>f_op = &write_fifo_fops;

84 PIPE_WCOUNTER(*inode)++;

85 if (!PIPE_WRITERS(*inode)++)

86 wake_up_partner(inode);

87

88 if (!PIPE_READERS(*inode)) {

89 wait_for_partner(inode, &PIPE_RCOUNTER(*inode));

90 if (signal_pending(current))

91 goto err_wr;

92 }

93 break;

94

95 case 3:

96 /*

97 * O_RDWR

98 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.

99 * This implementation will NEVER block on a O_RDWR open, since

100 * the process can at least talk to itself.

101 */

102 filp­>f_op = &rdwr_fifo_fops;

103

104 PIPE_READERS(*inode)++;

105 PIPE_WRITERS(*inode)++;

106 PIPE_RCOUNTER(*inode)++;

107 PIPE_WCOUNTER(*inode)++;

108 if (PIPE_READERS(*inode) == 1 || PIPE_WRITERS(*inode) == 1)

109 wake_up_partner(inode);

110 break;

111

112 default:

113 ret = ­EINVAL;

114 goto err;

115 }

116

117 /* Ok! */

118 up(PIPE_SEM(*inode));

119 unlock_kernel();

120 return 0;

121

122 err_rd:

123 if (!­­PIPE_READERS(*inode))

124 wake_up_interruptible(PIPE_WAIT(*inode));

125 ret = ­ERESTARTSYS;

126 goto err;

127

128 err_wr:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

716

129 if (!­­PIPE_WRITERS(*inode))

130 wake_up_interruptible(PIPE_WAIT(*inode));

131 ret = ­ERESTARTSYS;

132 goto err;

133

134 err:

135 if (!PIPE_READERS(*inode) && !PIPE_WRITERS(*inode)) {

136 struct pipe_inode_info *info = inode­>i_pipe;

137 inode­>i_pipe = NULL;

138 free_page((unsigned long)info­>base);

139 kfree(info);

140 }

141

142 err_nocleanup:

143 up(PIPE_SEM(*inode));

144

145 err_nolock_nocleanup:

146 unlock_kernel();

147 return ret;

148 }

FIFO
open() flags flags O_NONBLOCK 1

do_pipe()

FIFO

FIFO case 1
(1)

(2) flags O_NONBLOCK 1
O_NONBLOCK

file f_version
PIPE_WCOUNTER(*inode) pipe_poll()

select() 8

(3) flags O_NONBLOCK 0
wait_for_partner()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

717

file file_operations f_op read_fifo_fops

case 2
(1)

85 86
(2) flags O_NONBLOCK 0

(3) flags O_NONBLOCK 1
­1

FIFO

FIFO
inode

6.4

signal

task_struct
sig signal_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

718

Unix
Unix

BSD AT&T 4.2BSD 4.3BSD SVR3
POSIX.1

POSIX.4 POSIX.1
POSIX.4 POSIX.1 Linux POSIX.4

POSIX
Unix

POSIX
”

task_struct sig signal_struct
include/linux/sched.h

==================== include/linux/sched.h 243 247 ====================
243 struct signal_struct {

244 atomic_t count;

245 struct k_sigaction action[_NSIG];

246 spinlock_t siglock;

247 };

action[]

SIG_DFL SIG_IGN default
include/asm­i386/signal.h

==================== include/asm­i386/signal.h 131 133 ====================
131 #define SIG_DFL ((__sighandler_t)0) /* default signal handling */

132 #define SIG_IGN ((__sighandler_t)1) /* ignore signal */

133 #define SIG_ERR ((__sighandler_t)­1) /* error return from signal */

SIG_DFL 0 SIG_DFL

6.6

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

719

6.6

Unix

k_sigaction include/asm­i386/signal.h

==================== include/asm­i386/signal.h 156 164 ====================
156 struct sigaction {

157 union {

158 __sighandler_t _sa_handler;

159 void (*_sa_sigaction)(int, struct siginfo *, void *);

160 } _u;

161 sigset_t sa_mask;

162 unsigned long sa_flags;

163 void (*sa_restorer)(void);

164 };

_sa_handler _sa_sigaction __sighandler_t
include/asm­i386/signal.h

==================== include/asm­i386/signal.h 129 129 ====================
129 typedef void (*__sighandler_t)(int);

_sa_handler _sa_sigaction _u

sa_restorer sa_mask sa_flags

sa_mask sa_mask
1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

720

1
sa_flags SA_NODEFER SA_NOMASK

1

Unix

SIG_DFL
SIG_DFL

CTRL_C
CTRL_C

CTRL_C SIGINT
do_exit() CTRL_C

SIGINT CTRL_C
CTRL_C

CTRL_C
SIGINT

SIG_DFL SIG_DFL SIGINT

SIG_DFL

sa_mask
sa_mask sigset_t

include/asm­i386/signal.h

==================== include/asm­i386/signal.h 13 21 ====================
13 #define _NSIG 64

14 #define _NSIG_BPW 32

15 #define _NSIG_WORDS (_NSIG / _NSIG_BPW)

16

17 typedef unsigned long old_sigset_t; /* at least 32 bits */

18

19 typedef struct {

20 unsigned long sig[_NSIG_WORDS];

21 } sigset_t;

Intel 8259
task_struct blocked task_struct sigset_t

signal sigpending task_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

721

sigpending pending _NSIG action[] Unix
32 Linux POSIX.4

64
sa_flags include/asm­i386/signal.h

==================== include/asm­i386/signal.h 73 93 ====================
73 /*

74 * SA_FLAGS values:

75 *

76 * SA_ONSTACK indicates that a registered stack_t will be used.

77 * SA_INTERRUPT is a no­op, but left due to historical reasons. Use the

78 * SA_RESTART flag to get restarting signals (which were the default long ago)

79 * SA_NOCLDSTOP flag to turn off SIGCHLD when children stop.

80 * SA_RESETHAND clears the handler when the signal is delivered.

81 * SA_NOCLDWAIT flag on SIGCHLD to inhibit zombies.

82 * SA_NODEFER prevents the current signal from being masked in the handler.

83 *

84 * SA_ONESHOT and SA_NOMASK are the historical Linux names for the Single

85 * Unix names RESETHAND and NODEFER respectively.

86 */

87 #define SA_NOCLDSTOP 0x00000001

88 #define SA_NOCLDWAIT 0x00000002 /* not supported yet */

89 #define SA_SIGINFO 0x00000004

90 #define SA_ONSTACK 0x08000000

91 #define SA_RESTART 0x10000000

92 #define SA_NODEFER 0x40000000

93 #define SA_RESETHAND 0x80000000

SA_SIGINFO 1
SIGINT siginfo_t siginfo_t
include/asm­i386/siginfo.h

==================== include/asm­i386/siginfo.h 8 63 ====================
8 typedef union sigval {

9 int sival_int;

10 void *sival_ptr;

11 } sigval_t;

12

13 #define SI_MAX_SIZE 128

14 #define SI_PAD_SIZE ((SI_MAX_SIZE/sizeof(int)) ­ 3)

15

16 typedef struct siginfo {

17 int si_signo;

18 int si_errno;

19 int si_code;

20

21 union {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

722

22 int _pad[SI_PAD_SIZE];

23

24 /* kill() */

25 struct {

26 pid_t _pid; /* sender's pid */

27 uid_t _uid; /* sender's uid */

28 } _kill;

29

30 /* POSIX.1b timers */

31 struct {

32 unsigned int _timer1;

33 unsigned int _timer2;

34 } _timer;

35

36 /* POSIX.1b signals */

37 struct {

38 pid_t _pid; /* sender's pid */

39 uid_t _uid; /* sender's uid */

40 sigval_t _sigval;

41 } _rt;

42

43 /* SIGCHLD */

44 struct {

45 pid_t _pid; /* which child */

46 uid_t _uid; /* sender's uid */

47 int _status; /* exit code */

48 clock_t _utime;

49 clock_t _stime;

50 } _sigchld;

51

52 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */

53 struct {

54 void *_addr; /* faulting insn/memory ref. */

55 } _sigfault;

56

57 /* SIGPOLL */

58 struct {

59 int _band; /* POLL_IN, POLL_OUT, POLL_MSG */

60 int _fd;

61 } _sigpoll;

62 } _sifields;

63 } siginfo_t;

siginfo_t
void siginfo_t union si_signo

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

723

void
Linux 6.1

6.1 Linux

SIGHUP 1 TTY

SIGINT 2 CTRL_C

SIGQUIT 3 TTY CTRL_\ core

SIGILL 4 core

SIGTRAP 5 debug core

SIGABRT 6 core

SIGIOT 6

SIGBUS 7 core

SIGFPE 8 core

SIGKILL 9

SIGUSR1 10

SIGSEGV 11 core

SIGUSR2 12

SIGPIPE 13

SIGALRM 14 setitimer()

SIGTERM 15

SIGSTKFLT 16

SIGCHLD 17

SIGCONT 18 SIGSTOP

SIGSTOP 19 TASK_STOPPED

SIGTSTP 20 CTRL_Z TASK_STOPPED

SIGTTIN 21

SIGTTOU 22

SIGURG 23 I/O

SIGXCPU 24 CPU

SIGXFSZ 25

SIGVTALRM 26 setitimer()

SIGPROF 27 setitimer()

SIGWINCH 28

SIGIO 29 I/O

SIGPOLL 29 I/o

SIGPWR 30

SIGUNUSED 31

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

724

SIGRTMIN 32 SIGRTMIN SIGRTMAX

SIGRTMAX (_NSIG­1)

task_struct sigset_t signal blocked signal task_struct
sigpending pending

1
0

1 0 1

task_struct
task_struct sigpending

include/linux/signal.h

==================== include/linux/signal.h 17 20 ====================
17 struct sigpending {

18 struct sigqueue *head, **tail;

19 sigset_t signal;

20 };

task_struct sas_ss_sp
sas_ss_size

task_struct

==================== include/linux/sched.h 277 277 ====================
277 struct task_struct {

.

==================== include/linux/sched.h 283 283 ====================
283 int sigpending;

.

==================== include/linux/sched.h 317 318 ====================
317 int exit_code, exit_signal;

318 int pdeath_signal; /* The signal sent when the parent dies */

.

==================== include/linux/sched.h 379 387 ====================
379 /* signal handlers */

380 spinlock_t sigmask_lock; /* Protects signal and blocked */

381 struct signal_struct *sig;

382

383 sigset_t blocked;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

725

384 struct sigpending pending;

385

386 unsigned long sas_ss_sp;

387 size_t sas_ss_size;

.

==================== include/linux/sched.h 397 397 ====================
397 };

task_struct sigpending
sigpending sigpending

Unix

31

RT SIGRTMIN SIGRTMAX
RT RT

Linux

sighandler_t signal(int signum, sighandler_t handler);

sighandler_t
signum SIGINT handler

handler SIG_IGN SIG_DFL
handler

int sigaction (int signum, const struct sigaction *newact, struct sigaction *oldact);

sys_sigaction() sys_rt_sigaction()
signum newact oldact sigaction newact

oldact
sys_signal() sys_sigaction() sys_rt_sigaction()

sys_signal() kernel/signal.c

==================== kernel/signal.c 1244 1259 ====================
1244 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

726

1245 * For backwards compatibility. Functionality superseded by sigaction.

1246 */

1247 asmlinkage unsigned long

1248 sys_signal(int sig, __sighandler_t handler)

1249 {

1250 struct k_sigaction new_sa, old_sa;

1251 int ret;

1252

1253 new_sa.sa.sa_handler = handler;

1254 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;

1255

1256 ret = do_sigaction(sig, &new_sa, &old_sa);

1257

1258 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

1259 }

sys_rt_sigaction()

==================== kernel/signal.c 1187 1211 ====================
1187 asmlinkage long

1188 sys_rt_sigaction(int sig, const struct sigaction *act, struct sigaction *oact,

1189 size_t sigsetsize)

1190 {

1191 struct k_sigaction new_sa, old_sa;

1192 int ret = ­EINVAL;

1193

1194 /* XXX: Don't preclude handling different sized sigset_t's. */

1195 if (sigsetsize != sizeof(sigset_t))

1196 goto out;

1197

1198 if (act) {

1199 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))

1200 return ­EFAULT;

1201 }

1202

1203 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);

1204

1205 if (!ret && oact) {

1206 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))

1207 return ­EFAULT;

1208 }

1209 out:

1210 return ret;

1211 }

do_sigaction()
sys_signal() handler Unix signal()

new_sa.sa.sa_flags SA_ONESHOT | SA_NOMSK SA_ONESHOT

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

727

SIG_DFL signal()
SA_NOMSK

sys_sigaction() sys_rt_sigaction()
sys_sigaction() sigsetsize sys_sigaction()

old_sigaction sigaction
sys_sigaction()

sys_rt_sigaction()
old_sigaction

sa_mask sa_handler sa_flags sa_mask
sigaction sa_mask sa_mask

sigaction

sigaction oldsigaction
“.h

do_sigaction()
kernel/signal.c arch/i386/kernel signal.c

==================== kernel/signal.c 1011 1062 ====================
[sys_signal()>do_sigaction()]
1011 int

1012 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)

1013 {

1014 struct k_sigaction *k;

1015

1016 if (sig < 1 || sig > _NSIG ||

1017 (act && (sig == SIGKILL || sig == SIGSTOP)))

1018 return ­EINVAL;

1019

1020 k = ¤t­>sig­>action[sig­1];

1021

1022 spin_lock(¤t­>sig­>siglock);

1023

1024 if (oact)

1025 *oact = *k;

1026

1027 if (act) {

1028 *k = *act;

1029 sigdelsetmask(&k­>sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP));

1030

1031 /*

1032 * POSIX 3.3.1.3:

1033 * "Setting a signal action to SIG_IGN for a signal that is

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

728

1034 * pending shall cause the pending signal to be discarded,

1035 * whether or not it is blocked."

1036 *

1037 * "Setting a signal action to SIG_DFL for a signal that is

1038 * pending and whose default action is to ignore the signal

1039 * (for example, SIGCHLD), shall cause the pending signal to

1040 * be discarded, whether or not it is blocked"

1041 *

1042 * Note the silly behaviour of SIGCHLD: SIG_IGN means that the

1043 * signal isn't actually ignored, but does automatic child

1044 * reaping, while SIG_DFL is explicitly said by POSIX to force

1045 * the signal to be ignored.

1046 */

1047

1048 if (k­>sa.sa_handler == SIG_IGN

1049 || (k­>sa.sa_handler == SIG_DFL

1050 && (sig == SIGCONT ||

1051 sig == SIGCHLD ||

1052 sig == SIGWINCH))) {

1053 spin_lock_irq(¤t­>sigmask_lock);

1054 if (rm_sig_from_queue(sig, current))

1055 recalc_sigpending(current);

1056 spin_unlock_irq(¤t­>sigmask_lock);

1057 }

1058 }

1059

1060 spin_unlock(¤t­>sig­>siglock);

1061 return 0;

1062 }

SIGKILL SIGSTOP
k­>sa.sa_mask

1029 1 sig­1 sig
1020 1024 1028

SIG_IGN SIG_DFL SIGCONT SIGCHLD
SIGWINCH POSIX

rm_sig_from_queue()
kernel/signal.c

==================== kernel/signal.c 294 303 ====================
[sys_signal()>do_sigaction()>rm_sig_from_queue()]
294 /*

295 * Remove signal sig from t­>pending.

296 * Returns 1 if sig was found.

297 *

298 * All callers must be holding t­>sigmask_lock.

299 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

729

300 static int rm_sig_from_queue(int sig, struct task_struct *t)

301 {

302 return rm_from_queue(sig, &t­>pending);

303 }

rm_from_queue()

==================== kernel/signal.c 270 292 ====================
[sys_signal()>do_sigaction()>rm_sig_from_queue()>rm_from_queue()]
270 static int rm_from_queue(int sig, struct sigpending *s)

271 {

272 struct sigqueue *q, **pp;

273

274 if (!sigismember(&s­>signal, sig))

275 return 0;

276

277 sigdelset(&s­>signal, sig);

278

279 pp = &s­>head;

280

281 while ((q = *pp) != NULL) {

282 if (q­>info.si_signo == sig) {

283 if ((*pp = q­>next) == NULL)

284 s­>tail = pp;

285 kmem_cache_free(sigqueue_cachep,q);

286 atomic_dec(&nr_queued_signals);

287 continue;

288 }

289 pp = &q­>next;

290 }

291 return 1;

292 }

task_struct signal
1

0 277

1 281 while
do_sigaction() task_struct

sigpending 1055
task_struct sigpending signal 0

32

sigprocmask()—— task_struct blocked
k_sigaction sa_mask sa_mask

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

730

blocked

sigpending()——

sigsuspend()——

rt_sigsuspend()
arch/i386/kernel/signal.c kernel/signal.c

kill()

int kill(pid_t pid, int sig);

pid pid pid 0 ­1

sigqueue()

int sigqueue(pid_t pid, int sig, const union sigval val);

kill() sigqueue() sig val sigqueue()
kill() pid 0

val union siginfo
clib raise(int sig) kill(getpid(), sig)

kill() sys_kill() kernel/signal.c

==================== kernel/signal.c 979 991 ====================
979 asmlinkage long

980 sys_kill(int pid, int sig)

981 {

982 struct siginfo info;

983

984 info.si_signo = sig;

985 info.si_errno = 0;

986 info.si_code = SI_USER;

987 info.si_pid = current­>pid;

988 info.si_uid = current­>uid;

989

990 return kill_something_info(sig, &info, pid);

991 }

siginfo kill_something_info()

==================== kernel/signal.c 651 682 ====================
[sys_kill()>kill_something_info()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

731

651 /*

652 * kill_something_info() interprets pid in interesting ways just like kill(2).

653 *

654 * POSIX specifies that kill(­1,sig) is unspecified, but what we have

655 * is probably wrong. Should make it like BSD or SYSV.

656 */

657

658 static int kill_something_info(int sig, struct siginfo *info, int pid)

659 {

660 if (!pid) {

661 return kill_pg_info(sig, info, current­>pgrp);

662 } else if (pid == ­1) {

663 int retval = 0, count = 0;

664 struct task_struct * p;

665

666 read_lock(&tasklist_lock);

667 for_each_task(p) {

668 if (p­>pid > 1 && p != current) {

669 int err = send_sig_info(sig, info, p);

670 ++count;

671 if (err != ­EPERM)

672 retval = err;

673 }

674 }

675 read_unlock(&tasklist_lock);

676 return count ? retval : ­ESRCH;

677 } else if (pid < 0) {

678 return kill_pg_info(sig, info, ­pid);

679 } else {

680 return kill_proc_info(sig, info, pid);

681 }

682 }

kill_something_info() pid
kill_proc_info() kill_pg_info()

sigqueue()
siginfo sys_rt_sigqueue()
kernel/signal.c

==================== kernel/signal.c 993 1009 ====================
993 asmlinkage long

994 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t *uinfo)

995 {

996 siginfo_t info;

997

998 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))

999 return ­EFAULT;

1000

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

732

1001 /* Not even root can pretend to send signals from the kernel.

1002 Nor can they impersonate a kill(), which adds source info. */

1003 if (info.si_code >= 0)

1004 return ­EPERM;

1005 info.si_signo = sig;

1006

1007 /* POSIX.1b doesn't mention process groups. */

1008 return kill_proc_info(sig, &info, pid);

1009 }

kill_proc_info() pid task_struct send_sig_info()
kernel/signal.c

==================== kernel/signal.c 635 648 ====================
[sys_kill()>kill_something_info()>kill_proc_info()]
635 inline int

636 kill_proc_info(int sig, struct siginfo *info, pid_t pid)

637 {

638 int error;

639 struct task_struct *p;

640

641 read_lock(&tasklist_lock);

642 p = find_task_by_pid(pid);

643 error = ­ESRCH;

644 if (p)

645 error = send_sig_info(sig, info, p);

646 read_unlock(&tasklist_lock);

647 return error;

648 }

kill_pg_info()

==================== kernel/signal.c 582 606 ====================
[sys_kill()>kill_something_info()>kill_pg_info()]
582 /*

583 * kill_pg_info() sends a signal to a process group: this is what the tty

584 * control characters do (^C, ^Z etc)

585 */

586

587 int

588 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)

589 {

590 int retval = ­EINVAL;

591 if (pgrp > 0) {

592 struct task_struct *p;

593

594 retval = ­ESRCH;

595 read_lock(&tasklist_lock);

596 for_each_task(p) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

733

597 if (p­>pgrp == pgrp) {

598 int err = send_sig_info(sig, info, p);

599 if (retval)

600 retval = err;

601 }

602 }

603 read_unlock(&tasklist_lock);

604 }

605 return retval;

606 }

kill_pg_info() task_struct
send_sig_info() send_sig_info() 4

exit()
kernel/signal.c kernel/signal.c

==================== kernel/signal.c 503 527 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()]
503 int

504 send_sig_info(int sig, struct siginfo *info, struct task_struct *t)

505 {

506 unsigned long flags;

507 int ret;

508

509

510 #if DEBUG_SIG

511 printk("SIG queue (%s:%d): %d ", t­>comm, t­>pid, sig);

512 #endif

513

514 ret = ­EINVAL;

515 if (sig < 0 || sig > _NSIG)

516 goto out_nolock;

517 /* The somewhat baroque permissions check... */

518 ret = ­EPERM;

519 if (bad_signal(sig, info, t))

520 goto out_nolock;

521

522 /* The null signal is a permissions and process existance probe.

523 No signal is actually delivered. Same goes for zombies. */

524 ret = 0;

525 if (!sig || !t­>sig)

526 goto out_nolock;

527

bad_signal() kernel/signal.c

==================== kernel/signal.c 305 315 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>bad_signal()]
305 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

734

306 * Bad permissions for sending the signal

307 */

308 int bad_signal(int sig, struct siginfo *info, struct task_struct *t)

309 {

310 return (!info || ((unsigned long)info != 1 && SI_FROMUSER(info)))

311 && ((sig != SIGCONT) || (current­>session != t­>session))

312 && (current­>euid ^ t­>suid) && (current­>euid ^ t­>uid)

313 && (current­>uid ^ t­>suid) && (current­>uid ^ t­>uid)

314 && !capable(CAP_KILL);

315 }

current task_struct t
task_struct SI_FROMUSER() include/asm­i386/siginfo.h

==================== include/asm­i386/siginfo.h 99 112 ====================
99 /*

100 * si_code values

101 * Digital reserves positive values for kernel­generated signals.

102 */

103 #define SI_USER 0 /* sent by kill, sigsend, raise */

104 #define SI_KERNEL 0x80 /* sent by the kernel from somewhere */

105 #define SI_QUEUE ­1 /* sent by sigqueue */

106 #define SI_TIMER __SI_CODE(__SI_TIMER,­2) /* sent by timer expiration */

107 #define SI_MESGQ ­3 /* sent by real time mesq state change */

108 #define SI_ASYNCIO ­4 /* sent by AIO completion */

109 #define SI_SIGIO ­5 /* sent by queued SIGIO */

110

111 #define SI_FROMUSER(siptr) ((siptr)­>si_code <= 0)

112 #define SI_FROMKERNEL(siptr) ((siptr)­>si_code > 0)

7 siginfo si_code 7
sys_kill() 986 sys_rt_sigqueueinfo() siginfo

session 4 ”

suser()
capable(CAP_KILL)

if capable(CAP_KILL)
true C

(current­>euid ^ t­>suid)
kernel/signal.c

==================== kernel/signal.c 528 536 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()]
528 spin_lock_irqsave(&t­>sigmask_lock, flags);

529 handle_stop_signal(sig, t);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

735

530

531 /* Optimize away the signal, if it's a signal that can be

532 handled immediately (ie non­blocked and untraced) and

533 that is ignored (either explicitly or by default). */

534

535 if (ignored_signal(sig, t))

536 goto out;

SIGSTOP SIGCONT
SIGCONT 0 SIGCONT SIGSTOP SIGTSTP

SIGTTOU SIGTTIN SIGKILL
SIGCONT TASK_STOPPED

TASK_RUNNING handle_stop_signal()

==================== kernel/signal.c 374 400 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>handle_stop_signal()]
374 /*

375 * Handle TASK_STOPPED cases etc implicit behaviour

376 * of certain magical signals.

377 *

378 * SIGKILL gets spread out to every thread.

379 */

380 static void handle_stop_signal(int sig, struct task_struct *t)

381 {

382 switch (sig) {

383 case SIGKILL: case SIGCONT:

384 /* Wake up the process if stopped. */

385 if (t­>state == TASK_STOPPED)

386 wake_up_process(t);

387 t­>exit_code = 0;

388 rm_sig_from_queue(SIGSTOP, t);

389 rm_sig_from_queue(SIGTSTP, t);

390 rm_sig_from_queue(SIGTTOU, t);

391 rm_sig_from_queue(SIGTTIN, t);

392 break;

393

394 case SIGSTOP: case SIGTSTP:

395 case SIGTTIN: case SIGTTOU:

396 /* If we're stopping again, cancel SIGCONT */

397 rm_sig_from_queue(SIGCONT, t);

398 break;

399 }

400 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

736

send_sig_info() 535
SIG_IGN

SIGCHLD ignored_signal() kernel/signal.c

==================== kernel/signal.c 365 372 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>ignored_signal()]
365 static int ignored_signal(int sig, struct task_struct *t)

366 {

367 /* Don't ignore traced or blocked signals */

368 if ((t­>ptrace & PT_PTRACED) || sigismember(&t­>blocked, sig))

369 return 0;

370

371 return signal_type(sig, t­>sig) == 0;

372 }

==================== kernel/signal.c 317 354 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>ignored_signal()>signal_type()]
317 /*

318 * Signal type:

319 * < 0 : global action (kill ­ spread to all non­blocked threads)

320 * = 0 : ignored

321 * > 0 : wake up.

322 */

323 static int signal_type(int sig, struct signal_struct *signals)

324 {

325 unsigned long handler;

326

327 if (!signals)

328 return 0;

329

330 handler = (unsigned long) signals­>action[sig­1].sa.sa_handler;

331 if (handler > 1)

332 return 1;

333

334 /* "Ignore" handler.. Illogical, but that has an implicit handler for SIGCHLD */

335 if (handler == 1)

336 return sig == SIGCHLD;

337

338 /* Default handler. Normally lethal, but.. */

339 switch (sig) {

340

341 /* Ignored */

342 case SIGCONT: case SIGWINCH:

343 case SIGCHLD: case SIGURG:

344 return 0;

345

346 /* Implicit behaviour */

347 case SIGTSTP: case SIGTTIN: case SIGTTOU:

348 return 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

737

349

350 /* Implicit actions (kill or do special stuff) */

351 default:

352 return ­1;

353 }

354 }

kernel/signal.c

==================== kernel/signal.c 538 555 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()]
538 /* Support queueing exactly one non­rt signal, so that we

539 can get more detailed information about the cause of

540 the signal. */

541 if (sig < SIGRTMIN && sigismember(&t­>pending.signal, sig))

542 goto out;

543

544 ret = deliver_signal(sig, info, t);

545 out:

546 spin_unlock_irqrestore(&t­>sigmask_lock, flags);

547 if ((t­>state & TASK_INTERRUPTIBLE) && signal_pending(t))

548 wake_up_process(t);

549 out_nolock:

550 #if DEBUG_SIG

551 printk(" %d ­> %d\n", signal_pending(t), ret);

552 #endif

553

554 return ret;

555 }

sig < SIGRTMIN
”signal 1

siginfo sys_kill()

siginfo SIGINT SIGINT
SIGINT 0 1 siginfo

SIGINT SIGINT 1
SIGINT siginfo 541

sigismember()

0 deliver_signal() kernel/signal.c

==================== kernel/signal.c 493 501 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

738

[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>deliver_signal()]
493 static int deliver_signal(int sig, struct siginfo *info, struct task_struct *t)

494 {

495 int retval = send_signal(sig, info, &t­>pending);

496

497 if (!retval && !sigismember(&t­>blocked, sig))

498 signal_wake_up(t);

499

500 return retval;

501 }

send_signal() kernel/signal.c

==================== kernel/signal.c 402 453 ====================
[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>deliver_signal()>send_signal()]
402 static int send_signal(int sig, struct siginfo *info, struct sigpending *signals)

403 {

404 struct sigqueue * q = NULL;

405

406 /* Real­time signals must be queued if sent by sigqueue, or

407 some other real­time mechanism. It is implementation

408 defined whether kill() does so. We attempt to do so, on

409 the principle of least surprise, but since kill is not

410 allowed to fail with EAGAIN when low on memory we just

411 make sure at least one signal gets delivered and don't

412 pass on the info struct. */

413

414 if (atomic_read(&nr_queued_signals) < max_queued_signals) {

415 q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);

416 }

417

418 if (q) {

419 atomic_inc(&nr_queued_signals);

420 q­>next = NULL;

421 *signals­>tail = q;

422 signals­>tail = &q­>next;

423 switch ((unsigned long) info) {

424 case 0:

425 q­>info.si_signo = sig;

426 q­>info.si_errno = 0;

427 q­>info.si_code = SI_USER;

428 q­>info.si_pid = current­>pid;

429 q­>info.si_uid = current­>uid;

430 break;

431 case 1:

432 q­>info.si_signo = sig;

433 q­>info.si_errno = 0;

434 q­>info.si_code = SI_KERNEL;

435 q­>info.si_pid = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

739

436 q­>info.si_uid = 0;

437 break;

438 default:

439 copy_siginfo(&q­>info, info);

440 break;

441 }

442 } else if (sig >= SIGRTMIN && info && (unsigned long)info != 1

443 && info­>si_code != SI_USER) {

444 /*

445 * Queue overflow, abort. We may abort if the signal was rt

446 * and sent by user using something other than kill().

447 */

448 return ­EAGAIN;

449 }

450

451 sigaddset(&signals­>signal, sig);

452 return 0;

453 }

siginfo sigqueue sigqueue
include/linux/signal.h

==================== include/linux/signal.h 12 15 ====================
12 struct sigqueue {

13 struct sigqueue *next;

14 siginfo_t info;

15 };

siginfo_t next
sys_kill() sys_rt_sigqueueinfo()

sys_kill() sys_rt_sigqueueinfo() siginfo_t
signal_queue

siginfo_t sigqueue
info 0 1 info

send_sig_info() 424 437
sigaddset() 1

deliver_signal() sigismember() 497
498

signal_wake_up() kernel/signal.c

==================== kernel/signal.c 455 491 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

740

[sys_kill()>kill_something_info()>kill_proc_info()>send_sig_info()>deliver_signal()>signal_wake_up()]
455 /*

456 * Tell a process that it has a new active signal..

457 *

458 * NOTE! we rely on the previous spin_lock to

459 * lock interrupts for us! We can only be called with

460 * "sigmask_lock" held, and the local interrupt must

461 * have been disabled when that got acquired!

462 *

463 * No need to set need_resched since signal event passing

464 * goes through ­>blocked

465 */

466 static inline void signal_wake_up(struct task_struct *t)

467 {

468 t­>sigpending = 1;

469

470 if (t­>state & TASK_INTERRUPTIBLE) {

471 wake_up_process(t);

472 return;

473 }

474

475 #ifdef CONFIG_SMP

476 /*

477 * If the task is running on a different CPU

478 * force a reschedule on the other CPU to make

479 * it notice the new signal quickly.

480 *

481 * The code below is a tad loose and might occasionally

482 * kick the wrong CPU if we catch the process in the

483 * process of changing ­ but no harm is done by that

484 * other than doing an extra (lightweight) IPI interrupt.

485 */

486 spin_lock(&runqueue_lock);

487 if (t­>has_cpu && t­>processor != smp_processor_id())

488 smp_send_reschedule(t­>processor);

489 spin_unlock(&runqueue_lock);

490 #endif /* CONFIG_SMP */

491 }

wake_up_process() 4

2
do_page_fault() force_sig() SIGBUS

force_sig() kernel/signal.c

==================== kernel/signal.c 694 698 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

741

[do_page_fault()>force_sig()]
694 void

695 force_sig(int sig, struct task_struct *p)

696 {

697 force_sig_info(sig, (void*)1L, p);

==================== kernel/signal.c 562 580 ====================
[do_page_fault()>force_sig()>force_sig_info()]
562 int

563 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)

564 {

565 unsigned long int flags;

566

567 spin_lock_irqsave(&t­>sigmask_lock, flags);

568 if (t­>sig == NULL) {

569 spin_unlock_irqrestore(&t­>sigmask_lock, flags);

570 return ­ESRCH;

571 }

572

573 if (t­>sig­>action[sig­1].sa.sa_handler == SIG_IGN)

574 t­>sig­>action[sig­1].sa.sa_handler = SIG_DFL;

575 sigdelset(&t­>blocked, sig);

576 recalc_sigpending(t);

577 spin_unlock_irqrestore(&t­>sigmask_lock, flags);

578

579 return send_sig_info(sig, info, t);

580 }

force_sig() force_sig_info() 1
force_sig()

send_sig_info()

3
arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 217 233 ====================
217 ret_with_reschedule:

218 cmpl $0,need_resched(%ebx)

219 jne reschedule

220 cmpl $0,sigpending(%ebx)

221 jne signal_return

222 restore_all:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

742

223 RESTORE_ALL

224

225 ALIGN

226 signal_return:

227 sti # we can get here from an interrupt handler

228 testl $(VM_MASK),EFLAGS(%esp)

229 movl %esp,%eax

230 jne v86_signal_return

231 xorl %edx,%edx

232 call SYMBOL_NAME(do_signal)

233 jmp restore_all

3 sigpending(%ebx) current­>sigpending

do_signal()
arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 579 600 ====================
[ret_with_reschedule()>do_signal()]
579 /*

580 * Note that 'init' is a special process: it doesn't get signals it doesn't

581 * want to handle. Thus you cannot kill init even with a SIGKILL even by

582 * mistake.

583 */

584 int do_signal(struct pt_regs *regs, sigset_t *oldset)

585 {

586 siginfo_t info;

587 struct k_sigaction *ka;

588

589 /*

590 * We want the common case to go fast, which

591 * is why we may in certain cases get here from

592 * kernel mode. Just return without doing anything

593 * if so.

594 */

595 if ((regs­>xcs & 3) != 3)

596 return 1;

597

598 if (!oldset)

599 oldset = ¤t­>blocked;

600

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

743

3 pt_regs

Linux pt_regs
regs regs­>xcs

CS CS
3 regs­>xcs 3

arch/i386/kernel/signal.c do_signal()

==================== arch/i386/kernel/signal.c 601 704 ====================
[ret_with_reschedule()>do_signal()]
601 for (;;) {

602 unsigned long signr;

603

604 spin_lock_irq(¤t­>sigmask_lock);

605 signr = dequeue_signal(¤t­>blocked, &info);

606 spin_unlock_irq(¤t­>sigmask_lock);

607

608 if (!signr)

609 break;

610

611 if ((current­>ptrace & PT_PTRACED) && signr != SIGKILL) {

612 /* Let the debugger run. */

613 current­>exit_code = signr;

614 current­>state = TASK_STOPPED;

615 notify_parent(current, SIGCHLD);

616 schedule();

617

618 /* We're back. Did the debugger cancel the sig? */

619 if (!(signr = current­>exit_code))

620 continue;

621 current­>exit_code = 0;

622

623 /* The debugger continued. Ignore SIGSTOP. */

624 if (signr == SIGSTOP)

625 continue;

626

627 /* Update the siginfo structure. Is this good? */

628 if (signr != info.si_signo) {

629 info.si_signo = signr;

630 info.si_errno = 0;

631 info.si_code = SI_USER;

632 info.si_pid = current­>p_pptr­>pid;

633 info.si_uid = current­>p_pptr­>uid;

634 }

635

636 /* If the (new) signal is now blocked, requeue it. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

744

637 if (sigismember(¤t­>blocked, signr)) {

638 send_sig_info(signr, &info, current);

639 continue;

640 }

641 }

642

643 ka = ¤t­>sig­>action[signr­1];

644 if (ka­>sa.sa_handler == SIG_IGN) {

645 if (signr != SIGCHLD)

646 continue;

647 /* Check for SIGCHLD: it's special. */

648 while (sys_wait4(­1, NULL, WNOHANG, NULL) > 0)

649 /* nothing */;

650 continue;

651 }

652

653 if (ka­>sa.sa_handler == SIG_DFL) {

654 int exit_code = signr;

655

656 /* Init gets no signals it doesn't want. */

657 if (current­>pid == 1)

658 continue;

659

660 switch (signr) {

661 case SIGCONT: case SIGCHLD: case SIGWINCH:

662 continue;

663

664 case SIGTSTP: case SIGTTIN: case SIGTTOU:

665 if (is_orphaned_pgrp(current­>pgrp))

666 continue;

667 /* FALLTHRU */

668

669 case SIGSTOP:

670 current­>state = TASK_STOPPED;

671 current­>exit_code = signr;

672 if (!(current­>p_pptr­>sig­>action[SIGCHLD­1].sa.sa_flags & SA_NOCLDSTOP))

673 notify_parent(current, SIGCHLD);

674 schedule();

675 continue;

676

677 case SIGQUIT: case SIGILL: case SIGTRAP:

678 case SIGABRT: case SIGFPE: case SIGSEGV:

679 case SIGBUS: case SIGSYS: case SIGXCPU: case SIGXFSZ:

680 if (do_coredump(signr, regs))

681 exit_code |= 0x80;

682 /* FALLTHRU */

683

684 default:

685 sigaddset(¤t­>pending.signal, signr);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

745

686 recalc_sigpending(current);

687 current­>flags |= PF_SIGNALED;

688 do_exit(exit_code);

689 /* NOTREACHED */

690 }

691 }

692

693 /* Reenable any watchpoints before delivering the

694 * signal to user space. The processor register will

695 * have been cleared if the watchpoint triggered

696 * inside the kernel.

697 */

698 __asm__("movl %0,%%db7" : : "r" (current­>thread.debugreg[7]));

699

700 /* Whee! Actually deliver the signal. */

701 handle_signal(signr, ka, &info, oldset, regs);

702 return 1;

703 }

704

for 601 703
dequeue_signal() 608

SIG_DFL
688 702

dequeue_signal()
current­>blocked

signal_queue info
signal_queue 0
sigpending

debug 611~641
ptrace()

k_sigaction ka
SIG_IGN 646
SIGCHLD exit()

SIGCHLD sys_wait4()
­1 4
WNOHANG

0
SIG_DFL SIG_DFL SIG_KILL

684 default do_exit() SIG_KILL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

746

0
do_sigaction() sys_rt_sigprocmask() SIGKILL

0 667 682
break pid 1 init 658

SIG_IGN SIG_DFL

handle_signal()

601 for 703
fo break 609

702
688 do_exit()

SIGCHLD SIGCONT SIGWINCH SIGTSTP SIGTTIN SIGTTOU
SIGSTOP SIG_IGN

do_signal()

==================== arch/i386/kernel/signal.c 705 716 ====================
[ret_with_reschedule()>do_signat()]
705 /* Did we come from a system call? */

706 if (regs­>orig_eax >= 0) {

707 /* Restart the system call ­ no handlers present */

708 if (regs­>eax == ­ERESTARTNOHAND ||

709 regs­>eax == ­ERESTARTSYS ||

710 regs­>eax == ­ERESTARTNOINTR) {

711 regs­>eax = regs­>orig_eax;

712 regs­>eip ­= 2;

713 }

714 }

715 return 0;

716 }

regs­>orig_eax EAX regs­>eax
EAX

regs­>orig_eax 0
EAX regs­>eax ERESTARTNOHAND ERESTARTSYS

ERESTARTNOINTR regs­>eax regs­>orig_eax regs­>eax
regs­>eip 2 3 “int $0x80

EIP
regs­>eip 2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

747

EIP INT INT

handle_signal()
arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 533 577 ====================
[ret_with_reschedule()>do_signal()>handle_signal()]
533 /*

534 * OK, we're invoking a handler

535 */

536

537 static void

538 handle_signal(unsigned long sig, struct k_sigaction *ka,

539 siginfo_t *info, sigset_t *oldset, struct pt_regs * regs)

540 {

541 /* Are we from a system call? */

542 if (regs­>orig_eax >= 0) {

543 /* If so, check system call restarting.. */

544 switch (regs­>eax) {

545 case ­ERESTARTNOHAND:

546 regs­>eax = ­EINTR;

547 break;

548

549 case ­ERESTARTSYS:

550 if (!(ka­>sa.sa_flags & SA_RESTART)) {

551 regs­>eax = ­EINTR;

552 break;

553 }

554 /* fallthrough */

555 case ­ERESTARTNOINTR:

556 regs­>eax = regs­>orig_eax;

557 regs­>eip ­= 2;

558 }

559 }

560

561 /* Set up the stack frame */

562 if (ka­>sa.sa_flags & SA_SIGINFO)

563 setup_rt_frame(sig, ka, info, oldset, regs);

564 else

565 setup_frame(sig, ka, oldset, regs);

566

567 if (ka­>sa.sa_flags & SA_ONESHOT)

568 ka­>sa.sa_handler = SIG_DFL;

569

570 if (!(ka­>sa.sa_flags & SA_NODEFER)) {

571 spin_lock_irq(¤t­>sigmask_lock);

572 sigorsets(¤t­>blocked,¤t­>blocked,&ka­>sa.sa_mask);

573 sigaddset(¤t­>blocked,sig);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

748

574 recalc_sigpending(current);

575 spin_unlock_irq(¤t­>sigmask_lock);

576 }

577 }

do_signal() handle_signal()

setup_rt_frame() setup_frame()
setup_frame()

frame
call push

regs pt_regs

3

sigreturn()

C

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

749

(1)

(2) sigreturn()
(3)
(4)
(5) sigreturn()
(6) sigreturn()
(7)

arch/i386/kernel/signal.c
setup_frame()

==================== arch/i386/kernel/signal.c 388 456 ====================
[ret_with_reschedule()>do_signal()>handle_signal()>setup_frame()]
388 static void setup_frame(int sig, struct k_sigaction *ka,

389 sigset_t *set, struct pt_regs * regs)

390 {

391 struct sigframe *frame;

392 int err = 0;

393

394 frame = get_sigframe(ka, regs, sizeof(*frame));

395

396 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))

397 goto give_sigsegv;

398

399 err |= __put_user((current­>exec_domain

400 && current­>exec_domain­>signal_invmap

401 && sig < 32

402 ? current­>exec_domain­>signal_invmap[sig]

403 : sig),

404 &frame­>sig);

405 if (err)

406 goto give_sigsegv;

407

408 err |= setup_sigcontext(&frame­>sc, &frame­>fpstate, regs, set­>sig[0]);

409 if (err)

410 goto give_sigsegv;

411

412 if (_NSIG_WORDS > 1) {

413 err |= __copy_to_user(frame­>extramask, &set­>sig[1],

414 sizeof(frame­>extramask));

415 }

416 if (err)

417 goto give_sigsegv;

418

419 /* Set up to return from userspace. If provided, use a stub

420 already in userspace. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

750

421 if (ka­>sa.sa_flags & SA_RESTORER) {

422 err |= __put_user(ka­>sa.sa_restorer, &frame­>pretcode);

423 } else {

424 err |= __put_user(frame­>retcode, &frame­>pretcode);

425 /* This is popl %eax ; movl $,%eax ; int $0x80 */

426 err |= __put_user(0xb858, (short *)(frame­>retcode+0));

427 err |= __put_user(__NR_sigreturn, (int *)(frame­>retcode+2));

428 err |= __put_user(0x80cd, (short *)(frame­>retcode+6));

429 }

430

431 if (err)

432 goto give_sigsegv;

433

434 /* Set up registers for signal handler */

435 regs­>esp = (unsigned long) frame;

436 regs­>eip = (unsigned long) ka­>sa.sa_handler;

437

438 set_fs(USER_DS);

439 regs­>xds = __USER_DS;

440 regs­>xes = __USER_DS;

441 regs­>xss = __USER_DS;

442 regs­>xcs = __USER_CS;

443 regs­>eflags &= ~TF_MASK;

444

445 #if DEBUG_SIG

446 printk("SIG deliver (%s:%d): sp=%p pc=%p ra=%p\n",

447 current­>comm, current­>pid, frame, regs­>eip, frame­>pretcode);

448 #endif

449

450 return;

451

452 give_sigsegv:

453 if (sig == SIGSEGV)

454 ka­>sa.sa_handler = SIG_DFL;

455 force_sig(SIGSEGV, current);

456 }

sigframe arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 162 174 ====================
162 /*

163 * Do a signal return; undo the signal stack.

164 */

165

166 struct sigframe

167 {

168 char *pretcode;

169 int sig;

170 struct sigcontext sc;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

751

171 struct _fpstate fpstate;

172 unsigned long extramask[_NSIG_WORDS­1];

173 char retcode[8];

174 };

sigcontext include/asm­i386/sigcontext.h

==================== include/asm­i386/sigcontext.h 57 80 ====================
57 struct sigcontext {

58 unsigned short gs, __gsh;

59 unsigned short fs, __fsh;

60 unsigned short es, __esh;

61 unsigned short ds, __dsh;

62 unsigned long edi;

63 unsigned long esi;

64 unsigned long ebp;

65 unsigned long esp;

66 unsigned long ebx;

67 unsigned long edx;

68 unsigned long ecx;

69 unsigned long eax;

70 unsigned long trapno;

71 unsigned long err;

72 unsigned long eip;

73 unsigned short cs, __csh;

74 unsigned long eflags;

75 unsigned long esp_at_signal;

76 unsigned short ss, __ssh;

77 struct _fpstate * fpstate;

78 unsigned long oldmask;

79 unsigned long cr2;

80 };

sigframe

get_sigframe() arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 361 386 ====================
[ret_with_reschedule()>do_signal()>handle_signal()>setup_frame()>get_sigframe()]
361 /*

362 * Determine which stack to use..

363 */

364 static inline void *

365 get_sigframe(struct k_sigaction *ka, struct pt_regs * regs, size_t frame_size)

366 {

367 unsigned long esp;

368

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

752

369 /* Default to using normal stack */

370 esp = regs­>esp;

371

372 /* This is the X/Open sanctioned signal stack switching. */

373 if (ka­>sa.sa_flags & SA_ONSTACK) {

374 if (! on_sig_stack(esp))

375 esp = current­>sas_ss_sp + current­>sas_ss_size;

376 }

377

378 /* This is the legacy signal stack switching. */

379 else if ((regs­>xss & 0xffff) != __USER_DS &&

380 !(ka­>sa.sa_flags & SA_RESTORER) &&

381 ka­>sa.sa_restorer) {

382 esp = (unsigned long) ka­>sa.sa_restorer;

383 }

384

385 return (void *)((esp ­ frame_size) & ­8ul);

386 }

regs­>esp

sigaltstack()
flags SA_ONSTACK 1 task_struct sas_ss_sp

sas_ss_size (sas_ss_sp + sas_ss_size)
inline on_sig_stack()

include/linux/sched.h

==================== include/linux/sched.h 631 636 ====================
[ret_with_reschedule()>do_signal()>handle_signal()>setup_frame()>get_sigframe()>on_sig_stack()]
631 /* True if we are on the alternate signal stack. */

632

633 static inline int on_sig_stack(unsigned long sp)

634 {

635 return (sp ­ current­>sas_ss_sp < current­>sas_ss_size);

636 }

sigreturn()
sigaction()

sigaction sa_restorer
sigaction() “man sa_restorer

sa_restorer

frame_size frame_size sigframe

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

753

­8 0xffff fff8
sigframe

frame setup_frame()
__put_user()

frame­>sig
Unix 4

exec_domain signal_invmap
pt_regs

arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 314 359 ====================
[ret_with_reschedule()>do_signal()>handle_signal()>setup_frame()>setup_sigcontext()]
314 /*

315 * Set up a signal frame.

316 */

317

318 static int

319 setup_sigcontext(struct sigcontext *sc, struct _fpstate *fpstate,

320 struct pt_regs *regs, unsigned long mask)

321 {

322 int tmp, err = 0;

323

324 tmp = 0;

325 __asm__("movl %%gs,%0" : "=r"(tmp): "0"(tmp));

326 err |= __put_user(tmp, (unsigned int *)&sc­>gs);

327 __asm__("movl %%fs,%0" : "=r"(tmp): "0"(tmp));

328 err |= __put_user(tmp, (unsigned int *)&sc­>fs);

329

330 err |= __put_user(regs­>xes, (unsigned int *)&sc­>es);

331 err |= __put_user(regs­>xds, (unsigned int *)&sc­>ds);

332 err |= __put_user(regs­>edi, &sc­>edi);

333 err |= __put_user(regs­>esi, &sc­>esi);

334 err |= __put_user(regs­>ebp, &sc­>ebp);

335 err |= __put_user(regs­>esp, &sc­>esp);

336 err |= __put_user(regs­>ebx, &sc­>ebx);

337 err |= __put_user(regs­>edx, &sc­>edx);

338 err |= __put_user(regs­>ecx, &sc­>ecx);

339 err |= __put_user(regs­>eax, &sc­>eax);

340 err |= __put_user(current­>thread.trap_no, &sc­>trapno);

341 err |= __put_user(current­>thread.error_code, &sc­>err);

342 err |= __put_user(regs­>eip, &sc­>eip);

343 err |= __put_user(regs­>xcs, (unsigned int *)&sc­>cs);

344 err |= __put_user(regs­>eflags, &sc­>eflags);

345 err |= __put_user(regs­>esp, &sc­>esp_at_signal);

346 err |= __put_user(regs­>xss, (unsigned int *)&sc­>ss);

347

348 tmp = save_i387(fpstate);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

754

349 if (tmp < 0)

350 err = 1;

351 else

352 err |= __put_user(tmp ? fpstate : NULL, &sc­>fpstate);

353

354 /* non­iBCS2 extensions.. */

355 err |= __put_user(mask, &sc­>oldmask);

356 err |= __put_user(current­>thread.cr2, &sc­>cr2);

357

358 return err;

359 }

sigframe 8
retcode[] pretcode pretcode

pretcode
retcode[] 424 retcode[] 426 428

popl %eax;
movl $__NR_sigreturn, %eax;
int $0x80;

8 __NR_sigreturn sigreturn()
6.7

pretcode pretcode
ret

retcode[] sa_restorer
pretcode sig sigframe

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

755

6.7

“int $0x80 sigreturn()

sigreturn()

regs­>esp regs­>eip
__USER_DS __USER_CS %eax %ebx

regs­>eflags TF 0 ”

setup_frame() handle_signal()
do_signal() entry.S signal_return restore_all

3 regs­>esp regs­>eip ka­>sa.sa_handler
frame­>pretcode

call
sigreturn()

sys_sigreturn() arch/i386/kernel/signal.c

==================== arch/i386/kernel/signal.c 249 277 ====================
249 asmlinkage int sys_sigreturn(unsigned long __unused)

250 {

251 struct pt_regs *regs = (struct pt_regs *) &__unused;

252 struct sigframe *frame = (struct sigframe *)(regs­>esp ­ 8);

253 sigset_t set;

254 int eax;

255

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

756

256 if (verify_area(VERIFY_READ, frame, sizeof(*frame)))

257 goto badframe;

258 if (__get_user(set.sig[0], &frame­>sc.oldmask)

259 || (_NSIG_WORDS > 1

260 && __copy_from_user(&set.sig[1], &frame­>extramask,

261 sizeof(frame­>extramask))))

262 goto badframe;

263

264 sigdelsetmask(&set, ~_BLOCKABLE);

265 spin_lock_irq(¤t­>sigmask_lock);

266 current­>blocked = set;

267 recalc_sigpending(current);

268 spin_unlock_irq(¤t­>sigmask_lock);

269

270 if (restore_sigcontext(regs, &frame­>sc, &eax))

271 goto badframe;

272 return eax;

273

274 badframe:

275 force_sig(SIGSEGV, current);

276 return 0;

277 }

pt_regs sys_sigreturn()
__unused 3

SAVE_ALL pt_regs %ebx
sys_sigreturn() __unused

pt_regs
sigframe frame

pretcode
4 “popl %eax”

4 int
sigframe 8 regs­>esp­8

sigreturn()

ret

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

757

sigreturn()
unix 6

SAVE_ALL

SAVE_ALL RESTORE_ALL

sigreturn()

6.5 ptrace()

Unix
ptrace() ptrace()

GNU gdb
gdb gdb

gdb

ptrace()

ptrace()
ptrace()

int ptrace(int request, int pid, int addr, int data);

pid request include/linux/ptrace.h

==================== include/linux/ptrace.h 8 22 ====================
8 #define PTRACE_TRACEME 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

758

9 #define PTRACE_PEEKTEXT 1

10 #define PTRACE_PEEKDATA 2

11 #define PTRACE_PEEKUSR 3

12 #define PTRACE_POKETEXT 4

13 #define PTRACE_POKEDATA 5

14 #define PTRACE_POKEUSR 6

15 #define PTRACE_CONT 7

16 #define PTRACE_KILL 8

17 #define PTRACE_SINGLESTEP 9

18

19 #define PTRACE_ATTACH 0x10

20 #define PTRACE_DETACH 0x11

21

22 #define PTRACE_SYSCALL 24

gdb PTRACE_ATTACH “Attach
PEEK POKE

addr PTRACE_SINGLESTEP
PTRACE_KILL PTRACE_SYSCALL PTRACE_CONT

PTRACE_DETACH
PTRACE_TRACEME

ptrace() sys_ptrace() arch/i386/kernel/ptrace.c

==================== arch/i386/kernel/ptrace.c 137 153 ====================
[sys_ptrace()]
137 asmlinkage int sys_ptrace(long request, long pid, long addr, long data)

138 {

139 struct task_struct *child;

140 struct user * dummy = NULL;

141 int i, ret;

142

143 lock_kernel();

144 ret = ­EPERM;

145 if (request == PTRACE_TRACEME) {

146 /* are we already being traced? */

147 if (current­>ptrace & PT_PTRACED)

148 goto out;

149 /* set the ptrace bit in the process flags. */

150 current­>ptrace |= PT_PTRACED;

151 ret = 0;

152 goto out;

153 }

PTRACE_TRACEME task_struct PF_PTRACED

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

759

==================== arch/i386/kernel/ptrace.c 154 166 ====================
[sys_ptrace()]
154 ret = ­ESRCH;

155 read_lock(&tasklist_lock);

156 child = find_task_by_pid(pid);

157 if (child)

158 get_task_struct(child);

159 read_unlock(&tasklist_lock);

160 if (!child)

161 goto out;

162

163 ret = ­EPERM;

164 if (pid == 1) /* you may not mess with init */

165 goto out_tsk;

166

find_task_by_pid() task_struct
gdb gdb

fork() exec()

gdb prog

prog gdb gdb
prog gdb

“ps gdb

gdb prog 1234

gdb
1 init()

get_task_struct() task_struct
468 free_task_struct()

access_process_vm()
exit() task_struct

PTRACE_ATTACH

==================== arch/i386/kernel/ptrace.c 167 195 ====================
[sys_ptrace()]
167 if (request == PTRACE_ATTACH) {

168 if (child == current)

169 goto out_tsk;

170 if ((!child­>dumpable ||

171 (current­>uid != child­>euid) ||

172 (current­>uid != child­>suid) ||

173 (current­>uid != child­>uid) ||

174 (current­>gid != child­>egid) ||

175 (current­>gid != child­>sgid) ||

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

760

176 (!cap_issubset(child­>cap_permitted, current­>cap_permitted)) ||

177 (current­>gid != child­>gid)) && !capable(CAP_SYS_PTRACE))

178 goto out_tsk;

179 /* the same process cannot be attached many times */

180 if (child­>ptrace & PT_PTRACED)

181 goto out_tsk;

182 child­>ptrace |= PT_PTRACED;

183

184 write_lock_irq(&tasklist_lock);

185 if (child­>p_pptr != current) {

186 REMOVE_LINKS(child);

187 child­>p_pptr = current;

188 SET_LINKS(child);

189 }

190 write_unlock_irq(&tasklist_lock);

191

192 send_sig(SIGSTOP, child, 1);

193 ret = 0;

194 goto out_tsk;

195 }

170 if
capable() suser()

attach
PF_TRACED 1 182

185 189
SIGSTOP 192

PTRACE_ATTACH

==================== arch/i386/kernel/ptrace.c 196 204 ====================
[sys_ptrace()]
196 ret = ­ESRCH;

197 if (!(child­>ptrace & PT_PTRACED))

198 goto out_tsk;

199 if (child­>state != TASK_STOPPED) {

200 if (request != PTRACE_KILL)

201 goto out_tsk;

202 }

203 if (child­>p_pptr != current)

204 goto out_tsk;

PF_TRACED 1
TASK_STOPPED PTRAC_TRACEME

SIGSTOP

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

761

switch

==================== arch/i386/kernel/ptrace.c 205 219 ====================
[sys_ptrace()]
205 switch (request) {

206 /* when I and D space are separate, these will need to be fixed. */

207 case PTRACE_PEEKTEXT: /* read word at location addr. */

208 case PTRACE_PEEKDATA: {

209 unsigned long tmp;

210 int copied;

211

212 copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);

213 ret = ­EIO;

214 if (copied != sizeof(tmp))

215 break;

216 ret = put_user(tmp,(unsigned long *) data);

217 break;

218 }

219

PTRACE_PEEKTEXT addr
PTRACE_PEEKDATA 2
Linux
access_process_vm() kernel/ptrace.c 2
access_process_vm() find_extend_vma()

access_mm()
access_one_page() access_one_page()

vm_area_struct

put_user()

TASK_STOPPED
PTRACE_PEEKTEXT PTRACE_PEEKDATA

32 CPU
2 3

PTRAC_PEEKDATA

PTRACE_PEEKDATA PTRACE_PEEKTEXT
find_extend_vma()

pt_regs task_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

762

thread_struct ptrace.c

==================== arch/i386/kernel/ptrace.c 220 241 ====================
[sys_ptrace()]
220 /* read the word at location addr in the USER area. */

221 case PTRACE_PEEKUSR: {

222 unsigned long tmp;

223

224 ret = ­EIO;

225 if ((addr & 3) || addr < 0 ||

226 addr > sizeof(struct user) ­ 3)

227 break;

228

229 tmp = 0; /* Default return condition */

230 if(addr < 17*sizeof(long))

231 tmp = getreg(child, addr);

232 if(addr >= (long) &dummy­>u_debugreg[0] &&

233 addr <= (long) &dummy­>u_debugreg[7]){

234 addr ­= (long) &dummy­>u_debugreg[0];

235 addr = addr >> 2;

236 tmp = child­>thread.debugreg[addr];

237 }

238 ret = put_user(tmp,(unsigned long *) data);

239 break;

240 }

241

addr 4 i386 17
ptrace.h EAX

ORIG_EAX pt_regs EAX
addr 17 getreg()

arch/i386/kernel/ptrace.c

==================== arch/i386/kernel/ptrace.c 110 135 ====================
[sys_ptrace()>getreg()]
110 static unsigned long getreg(struct task_struct *child,

111 unsigned long regno)

112 {

113 unsigned long retval = ~0UL;

114

115 switch (regno >> 2) {

116 case FS:

117 retval = child­>thread.fs;

118 break;

119 case GS:

120 retval = child­>thread.gs;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

763

121 break;

122 case DS:

123 case ES:

124 case SS:

125 case CS:

126 retval = 0xffff;

127 /* fall through */

128 default:

129 if (regno > GS*4)

130 regno ­= 2*4;

131 regno = regno ­ sizeof(struct pt_regs);

132 retval &= get_stack_long(child, regno);

133 }

134 return retval;

135 }

FS GS thread_struct pt_regs
127 break get_stack_long()

==================== arch/i386/kernel/ptrace.c 41 54 ====================
[sys_ptrace()>getreg()>get_stack_long()]
41 /*

42 * this routine will get a word off of the processes privileged stack.

43 * the offset is how far from the base addr as stored in the TSS.

44 * this routine assumes that all the privileged stacks are in our

45 * data space.

46 */

47 static inline int get_stack_long(struct task_struct *task, int offset)

48 {

49 unsigned char *stack;

50

51 stack = (unsigned char *)task­>thread.esp0;

52 stack += offset;

53 return (*((int *)stack));

54 }

thread_struct esp0

PTRACE_PEEKUSR Intel i386
debug registers

1
debug 3 int 3 Linux vm86

do_debug() arch/i386/kernel/traps.c
Intel

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

764

==================== arch/i386/kernel/traps.c 488 575 ====================
488 /*

489 * Our handling of the processor debug registers is non­trivial.

490 * We do not clear them on entry and exit from the kernel. Therefore

491 * it is possible to get a watchpoint trap here from inside the kernel.

492 * However, the code in ./ptrace.c has ensured that the user can

493 * only set watchpoints on userspace addresses. Therefore the in­kernel

494 * watchpoint trap can only occur in code which is reading/writing

495 * from user space. Such code must not hold kernel locks (since it

496 * can equally take a page fault), therefore it is safe to call

497 * force_sig_info even though that claims and releases locks.

498 *

499 * Code in ./signal.c ensures that the debug control register

500 * is restored before we deliver any signal, and therefore that

501 * user code runs with the correct debug control register even though

502 * we clear it here.

503 *

504 * Being careful here means that we don't have to be as careful in a

505 * lot of more complicated places (task switching can be a bit lazy

506 * about restoring all the debug state, and ptrace doesn't have to

507 * find every occurrence of the TF bit that could be saved away even

508 * by user code)

509 */

510 asmlinkage void do_debug(struct pt_regs * regs, long error_code)

511 {

512 unsigned int condition;

513 struct task_struct *tsk = current;

514 siginfo_t info;

515

516 __asm__ __volatile__("movl %%db6,%0" : "=r" (condition));

517

518 /* Mask out spurious debug traps due to lazy DR7 setting */

519 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {

520 if (!tsk­>thread.debugreg[7])

521 goto clear_dr7;

522 }

523

524 if (regs­>eflags & VM_MASK)

525 goto debug_vm86;

526

527 /* Save debug status register where ptrace can see it */

528 tsk­>thread.debugreg[6] = condition;

529

530 /* Mask out spurious TF errors due to lazy TF clearing */

531 if (condition & DR_STEP) {

532 /*

533 * The TF error should be masked out only if the current

534 * process is not traced and if the TRAP flag has been set

535 * previously by a tracing process (condition detected by

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

765

536 * the PT_DTRACE flag); remember that the i386 TRAP flag

537 * can be modified by the process itself in user mode,

538 * allowing programs to debug themselves without the ptrace()

539 * interface.

540 */

541 if ((tsk­>ptrace & (PT_DTRACE|PT_PTRACED)) == PT_DTRACE)

542 goto clear_TF;

543 }

544

545 /* Ok, finally something we can handle */

546 tsk­>thread.trap_no = 1;

547 tsk­>thread.error_code = error_code;

548 info.si_signo = SIGTRAP;

549 info.si_errno = 0;

550 info.si_code = TRAP_BRKPT;

551

552 /* If this is a kernel mode trap, save the user PC on entry to

553 * the kernel, that's what the debugger can make sense of.

554 */

555 info.si_addr = ((regs­>xcs & 3) == 0) ? (void *)tsk­>thread.eip :

556 (void *)regs­>eip;

557 force_sig_info(SIGTRAP, &info, tsk);

558

559 /* Disable additional traps. They'll be re­enabled when

560 * the signal is delivered.

561 */

562 clear_dr7:

563 __asm__("movl %0,%%db7"

564 : /* no output */

565 : "r" (0));

566 return;

567

568 debug_vm86:

569 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);

570 return;

571

572 clear_TF:

573 regs­>eflags &= ~TF_MASK;

574 return;

575 }

SIGTRAP 557 siginfo_t 555

“­g
PTRACE_PEEKUSR dummy user

NULL 232 233 addr user 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

766

addr u_debugreg[] struct_user
abort dump include/asm­i386/user.c

==================== include/asm­i386/user.h 88 116 ====================
88 /* When the kernel dumps core, it starts by dumping the user struct ­

89 this will be used by gdb to figure out where the data and stack segments

90 are within the file, and what virtual addresses to use. */

91 struct user{

92 /* We start with the registers, to mimic the way that "memory" is returned

93 from the ptrace(3,...) function. */

94 struct user_regs_struct regs; /* Where the registers are actually stored */

95 /* ptrace does not yet supply these. Someday.... */

96 int u_fpvalid; /* True if math co­processor being used. */

97 /* for this mess. Not yet used. */

98 struct user_i387_struct i387; /* Math Co­processor registers. */

99 /* The rest of this junk is to help gdb figure out what goes where */

100 unsigned long int u_tsize; /* Text segment size (pages). */

101 unsigned long int u_dsize; /* Data segment size (pages). */

102 unsigned long int u_ssize; /* Stack segment size (pages). */

103 unsigned long start_code; /* Starting virtual address of text. */

104 unsigned long start_stack; /* Starting virtual address of stack area.

105 This is actually the bottom of the stack,

106 the top of the stack is always found in the

107 esp register. */

108 long int signal; /* Signal that caused the core dump. */

109 int reserved; /* No longer used */

110 struct user_pt_regs * u_ar0; /* Used by gdb to help find the values for */

111 /* the registers. */

112 struct user_i387_struct* u_fpstate; /* Math Co­processor pointer. */

113 unsigned long magic; /* To uniquely identify a core file */

114 char u_comm[32]; /* User command that was responsible */

115 int u_debugreg[8];

116 };

addr
thread_struct 236

PTRACE_POKETEXT PTRACE_POKEDATA
arch/i386/kernel/ptrace.c

==================== arch/i386/kernel/ptrace.c 242 250 ====================
[sys_ptrace()]
242 /* when I and D space are separate, this will have to be fixed. */

243 case PTRACE_POKETEXT: /* write the word at location addr. */

244 case PTRACE_POKEDATA:

245 ret = 0;

246 if (access_process_vm(child, addr, &data, sizeof(data), 1) == sizeof(data))

247 break;

248 ret = ­EIO;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

767

249 break;

250

PTRACE_POKEUSR

==================== arch/i386/kernel/ptrace.c 251 288 ====================
[sys_ptrace()]
251 case PTRACE_POKEUSR: /* write the word at location addr in the USER area */

252 ret = ­EIO;

253 if ((addr & 3) || addr < 0 ||

254 addr > sizeof(struct user) ­ 3)

255 break;

256

257 if (addr < 17*sizeof(long)) {

258 ret = putreg(child, addr, data);

259 break;

260 }

261 /* We need to be very careful here. We implicitly

262 want to modify a portion of the task_struct, and we

263 have to be selective about what portions we allow someone

264 to modify. */

265

266 ret = ­EIO;

267 if(addr >= (long) &dummy­>u_debugreg[0] &&

268 addr <= (long) &dummy­>u_debugreg[7]){

269

270 if(addr == (long) &dummy­>u_debugreg[4]) break;

271 if(addr == (long) &dummy­>u_debugreg[5]) break;

272 if(addr < (long) &dummy­>u_debugreg[4] &&

273 ((unsigned long) data) >= TASK_SIZE­3) break;

274

275 if(addr == (long) &dummy­>u_debugreg[7]) {

276 data &= ~DR_CONTROL_RESERVED;

277 for(i=0; i<4; i++)

278 if ((0x5f54 >> ((data >> (16 + 4*i)) & 0xf)) & 1)

279 goto out_tsk;

280 }

281

282 addr ­= (long) &dummy­>u_debugreg;

283 addr = addr >> 2;

284 child­>thread.debugreg[addr] = data;

285 ret = 0;

286 }

287 break;

288

addr data 0 3
data

7

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

768

PTRACE_SYSCALL PTRACE_CONT

==================== arch/i386/kernel/ptrace.c 289 308 ====================
[sys_ptrace()]
289 case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */

290 case PTRACE_CONT: { /* restart after signal. */

291 long tmp;

292

293 ret = ­EIO;

294 if ((unsigned long) data > _NSIG)

295 break;

296 if (request == PTRACE_SYSCALL)

297 child­>ptrace |= PT_TRACESYS;

298 else

299 child­>ptrace &= ~PT_TRACESYS;

300 child­>exit_code = data;

301 /* make sure the single step bit is not set. */

302 tmp = get_stack_long(child, EFL_OFFSET) & ~TRAP_FLAG;

303 put_stack_long(child, EFL_OFFSET,tmp);

304 wake_up_process(child);

305 ret = 0;

306 break;

307 }

308

PTRACE_SINGLESTEP TRAP_FLAG
0 302 303 get_stack_long() put_stack_long()

task_struct PF_TRACESYS

3 PF_TRACESYS
arch/i386/kernel/entry.S

==================== arch/i386/kernel/entry.S 195 203 ====================
195 ENTRY(system_call)

196 pushl %eax # save orig_eax

197 SAVE_ALL

198 GET_CURRENT(%ebx)

199 cmpl $(NR_syscalls),%eax

200 jae badsys

201 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

202 jne tracesys

203 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

.

==================== arch/i386/kernel/entry.S 244 254 ====================
244 tracesys:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

769

245 movl $­ENOSYS,EAX(%esp)

246 call SYMBOL_NAME(syscall_trace)

247 movl ORIG_EAX(%esp),%eax

248 cmpl $(NR_syscalls),%eax

249 jae tracesys_exit

250 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

251 movl %eax,EAX(%esp) # save the return value

252 tracesys_exit:

253 call SYMBOL_NAME(syscall_trace)

254 jmp ret_from_sys_call

PF_TRACESYS 1
tracesys tracesys syscall_trace() arch/i386/kernel/ptrace.c

==================== arch/i386/kernel/ptrace.c 474 495 ====================
[system_call()>syscall_trace()]
474 asmlinkage void syscall_trace(void)

475 {

476 if ((current­>ptrace & (PT_PTRACED|PT_TRACESYS)) !=

477 (PT_PTRACED|PT_TRACESYS))

478 return;

479 /* the 0x80 provides a way for the tracing parent to distinguish

480 between a syscall stop and SIGTRAP delivery */

481 current­>exit_code = SIGTRAP | ((current­>ptrace & PT_TRACESYSGOOD)

482 ? 0x80 : 0);

483 current­>state = TASK_STOPPED;

484 notify_parent(current, SIGCHLD);

485 schedule();

486 /*

487 * this isn't the same as continuing with a signal, but it will do

488 * for normal use. strace only continues with a signal if the

489 * stopping signal is not SIGTRAP. ­brl

490 */

491 if (current­>exit_code) {

492 send_sig(current­>exit_code, current, 1);

493 current­>exit_code = 0;

494 }

495 }

notify_parent() SIGCHLD 4
notify_parent() schedule() TASK_STOPPED

SIGCHLD PF_TRACESYS
SIGCHLD

PTRACE_PEEKUSR
SIGCONT sysycall_trace() schedule()

entry.S tracesys 250

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

770

PTRACE_POKEUSR ORIG_EAX NT_syscalls
249 tracesys_exit

syscall_trace()

arch/i386/kernel/ptrace.c sys_ptrace()

==================== arch/i386/kernel/ptrace.c 309 327 ====================
[sys_ptrace()]
309 /*

310 * make the child exit. Best I can do is send it a sigkill.

311 * perhaps it should be put in the status that it wants to

312 * exit.

313 */

314 case PTRACE_KILL: {

315 long tmp;

316

317 ret = 0;

318 if (child­>state == TASK_ZOMBIE) /* already dead */

319 break;

320 child­>exit_code = SIGKILL;

321 /* make sure the single step bit is not set. */

322 tmp = get_stack_long(child, EFL_OFFSET) & ~TRAP_FLAG;

323 put_stack_long(child, EFL_OFFSET, tmp);

324 wake_up_process(child);

325 break;

326 }

PTRACE_KILL PTRACE_ATTACH
PTRACE_KILL

200 201 wake_up_process()
TASK_RUNNING PF_TRACESYS

syscall_trace() SIGKILL
479 481

==================== arch/i386/kernel/ptrace.c 328 347 ====================
[sys_ptrace()]
328 case PTRACE_SINGLESTEP: { /* set the trap flag. */

329 long tmp;

330

331 ret = ­EIO;

332 if ((unsigned long) data > _NSIG)

333 break;

334 child­>ptrace &= ~PT_TRACESYS;

335 if ((child­>ptrace & PT_DTRACE) == 0) {

336 /* Spurious delayed TF traps may occur */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

771

337 child­>ptrace |= PT_DTRACE;

338 }

339 tmp = get_stack_long(child, EFL_OFFSET) | TRAP_FLAG;

340 put_stack_long(child, EFL_OFFSET, tmp);

341 child­>exit_code = data;

342 /* give it a chance to run. */

343 wake_up_process(child);

344 ret = 0;

345 break;

346 }

347

1 debug i386 CPU
TRAP_FLAG 1

debug

PF_TRACESYS 0 PF_TRACESYS
TRAP_FLAG task_struct flags

TRAP_FLAG
”EFL

CPU EFL
TRAP_FLAG

ptrace()
ptrace() PT_DTRACE ptrace()

PTRACE_SINGLESTEP 1
arch/i386/kernel/ptrace.c

==================== arch/i386/kernel/ptrace.c 348 463 ====================
[sys_ptrace()]
348 case PTRACE_DETACH: { /* detach a process that was attached. */

349 long tmp;

350

351 ret = ­EIO;

352 if ((unsigned long) data > _NSIG)

353 break;

354 child­>ptrace = 0;

355 child­>exit_code = data;

356 write_lock_irq(&tasklist_lock);

357 REMOVE_LINKS(child);

358 child­>p_pptr = child­>p_opptr;

359 SET_LINKS(child);

360 write_unlock_irq(&tasklist_lock);

361 /* make sure the single step bit is not set. */

362 tmp = get_stack_long(child, EFL_OFFSET) & ~TRAP_FLAG;

363 put_stack_long(child, EFL_OFFSET, tmp);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

772

364 wake_up_process(child);

365 ret = 0;

366 break;

367 }

368

369 case PTRACE_GETREGS: { /* Get all gp regs from the child. */

370 if (!access_ok(VERIFY_WRITE, (unsigned *)data, 17*sizeof(long))) {

371 ret = ­EIO;

372 break;

373 }

374 for (i = 0; i < 17*sizeof(long); i += sizeof(long)) {

375 __put_user(getreg(child, i),(unsigned long *) data);

376 data += sizeof(long);

377 }

378 ret = 0;

379 break;

380 }

381

382 case PTRACE_SETREGS: { /* Set all gp regs in the child. */

383 unsigned long tmp;

384 if (!access_ok(VERIFY_READ, (unsigned *)data, 17*sizeof(long))) {

385 ret = ­EIO;

386 break;

387 }

388 for (i = 0; i < 17*sizeof(long); i += sizeof(long)) {

389 __get_user(tmp, (unsigned long *) data);

390 putreg(child, i, tmp);

391 data += sizeof(long);

392 }

393 ret = 0;

394 break;

395 }

396

397 case PTRACE_GETFPREGS: { /* Get the child FPU state. */

398 if (!access_ok(VERIFY_WRITE, (unsigned *)data,

399 sizeof(struct user_i387_struct))) {

400 ret = ­EIO;

401 break;

402 }

403 ret = 0;

404 if (!child­>used_math) {

405 /* Simulate an empty FPU. */

406 set_fpu_cwd(child, 0x037f);

407 set_fpu_swd(child, 0x0000);

408 set_fpu_twd(child, 0xffff);

409 }

410 get_fpregs((struct user_i387_struct *)data, child);

411 break;

412 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

773

413

414 case PTRACE_SETFPREGS: { /* Set the child FPU state. */

415 if (!access_ok(VERIFY_READ, (unsigned *)data,

416 sizeof(struct user_i387_struct))) {

417 ret = ­EIO;

418 break;

419 }

420 child­>used_math = 1;

421 set_fpregs(child, (struct user_i387_struct *)data);

422 ret = 0;

423 break;

424 }

425

426 case PTRACE_GETFPXREGS: { /* Get the child extended FPU state. */

427 if (!access_ok(VERIFY_WRITE, (unsigned *)data,

428 sizeof(struct user_fxsr_struct))) {

429 ret = ­EIO;

430 break;

431 }

432 if (!child­>used_math) {

433 /* Simulate an empty FPU. */

434 set_fpu_cwd(child, 0x037f);

435 set_fpu_swd(child, 0x0000);

436 set_fpu_twd(child, 0xffff);

437 set_fpu_mxcsr(child, 0x1f80);

438 }

439 ret = get_fpxregs((struct user_fxsr_struct *)data, child);

440 break;

441 }

442

443 case PTRACE_SETFPXREGS: { /* Set the child extended FPU state. */

444 if (!access_ok(VERIFY_READ, (unsigned *)data,

445 sizeof(struct user_fxsr_struct))) {

446 ret = ­EIO;

447 break;

448 }

449 child­>used_math = 1;

450 ret = set_fpxregs(child, (struct user_fxsr_struct *)data);

451 break;

452 }

453

454 case PTRACE_SETOPTIONS: {

455 if (data & PTRACE_O_TRACESYSGOOD)

456 child­>ptrace |= PT_TRACESYSGOOD;

457 else

458 child­>ptrace &= ~PT_TRACESYSGOOD;

459 ret = 0;

460 break;

461 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

774

462

463 default:

464 ret = ­EIO;

465 break;

466 }

467 out_tsk:

468 free_task_struct(child);

469 out:

470 unlock_kernel();

471 return ret;

472 }

ptrace()
Unix Unix Linux

/proc

gdb

/proc ptrace() ptrace()
Linux

ptrace() Linux shell strace
strace

% strace ceho hello

6.6

Linux Unix V
Unix IPC

•

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

775

•
•

O_NONBLOCK

•

•

Unix IPC
IPC message

semaphore mutex
rendezvous AT&T Unix V

IPC V
BSD Unix IPC socket IPC IPC V

BSD Linux
BSD IPC AT&T V IPC Linux

Linux V IPC ipc() sysv_ipc()
API

int ipc(unsigned int call, int first, int second, int third, void *ptr, int forth);

call include/asm­i386/ipc.h

==================== include/asm­i386/ipc.h 14 24 ====================
14 #define SEMOP 1

15 #define SEMGET 2

16 #define SEMCTL 3

17 #define MSGSND 11

18 #define MSGRCV 12

19 #define MSGGET 13

20 #define MSGCTL 14

21 #define SHMAT 21

22 #define SHMDT 22

23 #define SHMGET 23

24 #define SHMCTL 24

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

776

“SEM “MSG
“SHM

C semget() msgget() msgsnd()
ipc()

sys_ipc() arch/i386/kernel/sys_i386.c

==================== arch/i386/kernel/sys_i386.c 127 205 ====================
127 /*

128 * sys_ipc() is the de­multiplexer for the SysV IPC calls..

129 *

130 * This is really horribly ugly.

131 */

132 asmlinkage int sys_ipc (uint call, int first, int second,

133 int third, void *ptr, long fifth)

134 {

135 int version, ret;

136

137 version = call >> 16; /* hack for backward compatibility */

138 call &= 0xffff;

139

140 switch (call) {

141 case SEMOP:

142 return sys_semop (first, (struct sembuf *)ptr, second);

143 case SEMGET:

144 return sys_semget (first, second, third);

145 case SEMCTL: {

146 union semun fourth;

147 if (!ptr)

148 return ­EINVAL;

149 if (get_user(fourth.__pad, (void **) ptr))

150 return ­EFAULT;

151 return sys_semctl (first, second, third, fourth);

152 }

153

154 case MSGSND:

155 return sys_msgsnd (first, (struct msgbuf *) ptr,

156 second, third);

157 case MSGRCV:

158 switch (version) {

159 case 0: {

160 struct ipc_kludge tmp;

161 if (!ptr)

162 return ­EINVAL;

163

164 if (copy_from_user(&tmp,

165 (struct ipc_kludge *) ptr,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

777

166 sizeof (tmp)))

167 return ­EFAULT;

168 return sys_msgrcv (first, tmp.msgp, second,

169 tmp.msgtyp, third);

170 }

171 default:

172 return sys_msgrcv (first,

173 (struct msgbuf *) ptr,

174 second, fifth, third);

175 }

176 case MSGGET:

177 return sys_msgget ((key_t) first, second);

178 case MSGCTL:

179 return sys_msgctl (first, second, (struct msqid_ds *) ptr);

180

181 case SHMAT:

182 switch (version) {

183 default: {

184 ulong raddr;

185 ret = sys_shmat (first, (char *) ptr, second, &raddr);

186 if (ret)

187 return ret;

188 return put_user (raddr, (ulong *) third);

189 }

190 case 1: /* iBCS2 emulator entry point */

191 if (!segment_eq(get_fs(), get_ds()))

192 return ­EINVAL;

193 return sys_shmat (first, (char *) ptr, second, (ulong *) third);

194 }

195 case SHMDT:

196 return sys_shmdt ((char *)ptr);

197 case SHMGET:

198 return sys_shmget (first, second, third);

199 case SHMCTL:

200 return sys_shmctl (first, second,

201 (struct shmid_ds *) ptr);

202 default:

203 return ­EINVAL;

204 }

205 }

sys_ipc 11

msgget() MSGGET ipc()
mail box

key msgget()
msgsnd()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

778

msgrcv()

msgctl()
ipc/msg.c

6.6.1 msgget()——

ipc/msg.c

==================== ipc/msg.c 303 330 ====================
[sys_ipc()>sys_msgget()]
303 asmlinkage long sys_msgget (key_t key, int msgflg)

304 {

305 int id, ret = ­EPERM;

306 struct msg_queue *msq;

307

308 down(&msg_ids.sem);

309 if (key == IPC_PRIVATE)

310 ret = newque(key, msgflg);

311 else if ((id = ipc_findkey(&msg_ids, key)) == ­1) { /* key not used */

312 if (!(msgflg & IPC_CREAT))

313 ret = ­ENOENT;

314 else

315 ret = newque(key, msgflg);

316 } else if (msgflg & IPC_CREAT && msgflg & IPC_EXCL) {

317 ret = ­EEXIST;

318 } else {

319 msq = msg_lock(id);

320 if(msq==NULL)

321 BUG();

322 if (ipcperms(&msq­>q_perm, msgflg))

323 ret = ­EACCES;

324 else

325 ret = msg_buildid(id, msq­>q_perm.seq);

326 msg_unlock(id);

327 }

328 up(&msg_ids.sem);

329 return ret;

330 }

MSGGET sys_msgget()
msgflg IPC_CREATE

1 0 msg_ids
ipc/msg.c

==================== ipc/msg.c 92 92 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

779

92 static struct ipc_ids msg_ids;

ipc_ids ipc/util.h

==================== ipc/util.h 15 24 ====================
15 struct ipc_ids {

16 int size;

17 int in_use;

18 int max_id;

19 unsigned short seq;

20 unsigned short seq_max;

21 struct semaphore sem;

22 spinlock_t ary;

23 struct ipc_id* entries;

24 };

entries ipc/util.h

==================== ipc/util.h 26 28 ====================
26 struct ipc_id {

27 struct kern_ipc_perm* p;

28 };

kern_ipc_perm kern_ipc_perm
include/linux/ipc.h

==================== include/linux/ipc.h 56 66 ====================
56 /* used by in­kernel data structures */

57 struct kern_ipc_perm

58 {

59 key_t key;

60 uid_t uid;

61 gid_t gid;

62 uid_t cuid;

63 gid_t cgid;

64 mode_t mode;

65 unsigned long seq;

66 };

msg_ids 4
key_t

0 IPC_PRIVATE
0

IPC_PRIVATE 309 newque()
310 ipc_findkey()

newque() ipc/msg.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

780

==================== ipc/msg.c 117 144 ====================
[sys_ipc()>sys_msgget()>newque()]
117 static int newque (key_t key, int msgflg)

118 {

119 int id;

120 struct msg_queue *msq;

121

122 msq = (struct msg_queue *) kmalloc (sizeof (*msq), GFP_KERNEL);

123 if (!msq)

124 return ­ENOMEM;

125 id = ipc_addid(&msg_ids, &msq­>q_perm, msg_ctlmni);

126 if(id == ­1) {

127 kfree(msq);

128 return ­ENOSPC;

129 }

130 msq­>q_perm.mode = (msgflg & S_IRWXUGO);

131 msq­>q_perm.key = key;

132

133 msq­>q_stime = msq­>q_rtime = 0;

134 msq­>q_ctime = CURRENT_TIME;

135 msq­>q_cbytes = msq­>q_qnum = 0;

136 msq­>q_qbytes = msg_ctlmnb;

137 msq­>q_lspid = msq­>q_lrpid = 0;

138 INIT_LIST_HEAD(&msq­>q_messages);

139 INIT_LIST_HEAD(&msq­>q_receivers);

140 INIT_LIST_HEAD(&msq­>q_senders);

141 msg_unlock(id);

142

143 return msg_buildid(id,msq­>q_perm.seq);

144 }

msg_queue ipc/msg.c

==================== ipc/msg.c 67 82 ====================
67 /* one msq_queue structure for each present queue on the system */

68 struct msg_queue {

69 struct kern_ipc_perm q_perm;

70 time_t q_stime; /* last msgsnd time */

71 time_t q_rtime; /* last msgrcv time */

72 time_t q_ctime; /* last change time */

73 unsigned long q_cbytes; /* current number of bytes on queue */

74 unsigned long q_qnum; /* number of messages in queue */

75 unsigned long q_qbytes; /* max number of bytes on queue */

76 pid_t q_lspid; /* pid of last msgsnd */

77 pid_t q_lrpid; /* last receive pid */

78

79 struct list_head q_messages;

80 struct list_head q_receivers;

81 struct list_head q_senders;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

781

82 };

msg_queue

• ipc_ids msg_ids
• msg_ids entries ipc_id ipc_id

p kern_ipc_perm
• kern_ipc_perm msg_queue

p

ipc_addid() ipc/util.c

==================== ipc/util.c 134 171 ====================
[sys_ipc()>sys_msgget()>newque()>ipc_addid()]
134 /**

135 * ipc_addid ­ add an IPC identifier

136 * @ids: IPC identifier set

137 * @new: new IPC permission set

138 * @size: new size limit for the id array

139 *

140 * Add an entry 'new' to the IPC arrays. The permissions object is

141 * initialised and the first free entry is set up and the id assigned

142 * is returned. The list is returned in a locked state on success.

143 * On failure the list is not locked and ­1 is returned.

144 */

145

146 int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size)

147 {

148 int id;

149

150 size = grow_ary(ids,size);

151 for (id = 0; id < size; id++) {

152 if(ids­>entries[id].p == NULL)

153 goto found;

154 }

155 return ­1;

156 found:

157 ids­>in_use++;

158 if (id > ids­>max_id)

159 ids­>max_id = id;

160

161 new­>cuid = new­>uid = current­>euid;

162 new­>gid = new­>cgid = current­>egid;

163

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

782

164 new­>seq = ids­>seq++;

165 if(ids­>seq > ids­>seq_max)

166 ids­>seq = 0;

167

168 spin_lock(&ids­>ary);

169 ids­>entries[id].p = new;

170 return id;

171 }

ipc_ids msg_ids
entries ipc_id ipc_id

kern_ipc_perm kern_ipc_perm
msg_queue msg_ids

msg_queue kern_ipc_perm ipc_id
169

ipc_ids size

ipc_addid() grow_ary() ipc/util.c

==================== ipc/util.c 105 132 ====================
[sys_ipc()>sys_msgget()>newque()>ipc_addid()>grow_ary()]
105 static int grow_ary(struct ipc_ids* ids, int newsize)

106 {

107 struct ipc_id* new;

108 struct ipc_id* old;

109 int i;

110

111 if(newsize > IPCMNI)

112 newsize = IPCMNI;

113 if(newsize <= ids­>size)

114 return newsize;

115

116 new = ipc_alloc(sizeof(struct ipc_id)*newsize);

117 if(new == NULL)

118 return ids­>size;

119 memcpy(new, ids­>entries, sizeof(struct ipc_id)*ids­>size);

120 for(i=ids­>size;i<newsize;i++) {

121 new[i].p = NULL;

122 }

123 spin_lock(&ids­>ary);

124

125 old = ids­>entries;

126 ids­>entries = new;

127 i = ids­>size;

128 ids­>size = newsize;

129 spin_unlock(&ids­>ary);

130 ipc_free(old, sizeof(struct ipc_id)*i);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

783

131 return ids­>size;

132 }

newsize
113 IPCMNI

include/linux/ipc.h 32768

54 #define IPCMNI 32768 /* <= MAX_INT limit for ipc arrays (including sysctl changes) */

newque() ipc_addid() msg_ctlmni newsize
MSGMNI MSGMNI msg.h 16

newque() msg_buildid()
ipc/msg.c

==================== ipc/msg.c 99 100 ====================
99 #define msg_buildid(id, seq) \

100 ipc_buildid(&msg_ids, id, seq)

ipc_buildid() ipc/util.h

==================== ipc/util.h 87 90 ====================
87 extern inline int ipc_buildid(struct ipc_ids* ids, int id, int seq)

88 {

89 return SEQ_MULTIPLIER*seq + id;

90 }

ipc_addid() msg_ids

msg_ids seq
ipc_addid() 164

sys_msgget() IPC_PRIVATE
ipc_findkey ipc/util.c

==================== ipc/util.c 82 101 ====================
[sys_msgget()>ipc_findkey()]
82 /**

83 * ipc_findkey ­ find a key in an ipc identifier set

84 * @ids: Identifier set

85 * @key: The key to find

86 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

784

87 * Returns the identifier if found or ­1 if not.

88 */

89

90 int ipc_findkey(struct ipc_ids* ids, key_t key)

91 {

92 int id;

93 struct kern_ipc_perm* p;

94

95 for (id = 0; id <= ids­>max_id; id++) {

96 p = ids­>entries[id].p;

97 if(p==NULL)

98 continue;

99 if (key == p­>key)

100 return id;

101 }

sys_msgget()

newque() IPC_EXCL 1

sys_msgget() ipcperms()
msg_buildid()

ipcperms() ipc/util.c

==================== ipc/util.c 242 267 ====================
[sys_msgget()>ipcperms()]
242 /**

243 * ipcperms ­ check IPC permissions

244 * @ipcp: IPC permission set

245 * @flag: desired permission set.

246 *

247 * Check user, group, other permissions for access

248 * to ipc resources. return 0 if allowed

249 */

250

251 int ipcperms (struct kern_ipc_perm *ipcp, short flag)

252 { /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */

253 int requested_mode, granted_mode;

254

255 requested_mode = (flag >> 6) | (flag >> 3) | flag;

256 granted_mode = ipcp­>mode;

257 if (current­>euid == ipcp­>cuid || current­>euid == ipcp­>uid)

258 granted_mode >>= 6;

259 else if (in_group_p(ipcp­>cgid) || in_group_p(ipcp­>gid))

260 granted_mode >>= 3;

261 /* is there some bit set in requested_mode but not in granted_mode? */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

785

262 if ((requested_mode & ~granted_mode & 0007) &&

263 !capable(CAP_IPC_OWNER))

264 return ­1;

265

266 return 0;

267 }

5

6.6.2 msgsnd()——

msgget()
ipc/msg.c

==================== ipc/msg.c 626 650 ====================
626 asmlinkage long sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg)

627 {

628 struct msg_queue *msq;

629 struct msg_msg *msg;

630 long mtype;

631 int err;

632

633 if (msgsz > msg_ctlmax || (long) msgsz < 0 || msqid < 0)

634 return ­EINVAL;

635 if (get_user(mtype, &msgp­>mtype))

636 return ­EFAULT;

637 if (mtype < 1)

638 return ­EINVAL;

639

640 msg = load_msg(msgp­>mtext, msgsz);

641 if(IS_ERR(msg))

642 return PTR_ERR(msg);

643

644 msg­>m_type = mtype;

645 msg­>m_ts = msgsz;

646

647 msq = msg_lock(msqid);

648 err=­EINVAL;

649 if(msq==NULL)

650 goto out_free;

msgp msgbuf
include/linux/msg.h

==================== include/linux/msg.h 34 38 ====================
34 /* message buffer for msgsnd and msgrcv calls */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

786

35 struct msgbuf {

36 long mtype; /* type of message */

37 char mtext[1]; /* message text */

38 };

get_user() load_msg() load_msg()
msg_msg msgbuf ipc/msg.c

==================== ipc/msg.c 55 62 ====================
55 /* one msg_msg structure for each message */

56 struct msg_msg {

57 struct list_head m_list;

58 long m_type;

59 int m_ts; /* message text size */

60 struct msg_msgseg* next;

61 /* the actual message follows immediately */

62 };

msg_msg
msg_msg msg_msg

msg_msg msg_msgseg
msg_msgseg ipc/msg.c

==================== ipc/msg.c 51 54 ====================
51 struct msg_msgseg {

52 struct msg_msgseg* next;

53 /* the next part of the message follows immediately */

54 };

load_msg() ipc/msg.c

==================== ipc/msg.c 158 208 ====================
[sys_msgsnd()>load_msg()]
158 static struct msg_msg* load_msg(void* src, int len)

159 {

160 struct msg_msg* msg;

161 struct msg_msgseg** pseg;

162 int err;

163 int alen;

164

165 alen = len;

166 if(alen > DATALEN_MSG)

167 alen = DATALEN_MSG;

168

169 msg = (struct msg_msg *) kmalloc (sizeof(*msg) + alen, GFP_KERNEL);

170 if(msg==NULL)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

787

171 return ERR_PTR(­ENOMEM);

172

173 msg­>next = NULL;

174

175 if (copy_from_user(msg+1, src, alen)) {

176 err = ­EFAULT;

177 goto out_err;

178 }

179

180 len ­= alen;

181 src = ((char*)src)+alen;

182 pseg = &msg­>next;

183 while(len > 0) {

184 struct msg_msgseg* seg;

185 alen = len;

186 if(alen > DATALEN_SEG)

187 alen = DATALEN_SEG;

188 seg = (struct msg_msgseg *) kmalloc (sizeof(*seg) + alen, GFP_KERNEL);

189 if(seg==NULL) {

190 err=­ENOMEM;

191 goto out_err;

192 }

193 *pseg = seg;

194 seg­>next = NULL;

195 if(copy_from_user (seg+1, src, alen)) {

196 err = ­EFAULT;

197 goto out_err;

198 }

199 pseg = &seg­>next;

200 len ­= alen;

201 src = ((char*)src)+alen;

202 }

203 return msg;

204

205 out_err:

206 free_msg(msg);

207 return ERR_PTR(err);

208 }

sys_msgsnd() 647 msg_lock()

ipc/msg.c

==================== ipc/msg.c 651 684 ====================
[sys_msgsnd()]
651 retry:

652 err= ­EIDRM;

653 if (msg_checkid(msq,msqid))

654 goto out_unlock_free;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

788

655

656 err=­EACCES;

657 if (ipcperms(&msq­>q_perm, S_IWUGO))

658 goto out_unlock_free;

659

660 if(msgsz + msq­>q_cbytes > msq­>q_qbytes ||

661 1 + msq­>q_qnum > msq­>q_qbytes) {

662 struct msg_sender s;

663

664 if(msgflg&IPC_NOWAIT) {

665 err=­EAGAIN;

666 goto out_unlock_free;

667 }

668 ss_add(msq, &s);

669 msg_unlock(msqid);

670 schedule();

671 current­>state= TASK_RUNNING;

672

673 msq = msg_lock(msqid);

674 err = ­EIDRM;

675 if(msq==NULL)

676 goto out_free;

677 ss_del(&s);

678

679 if (signal_pending(current)) {

680 err=­EINTR;

681 goto out_unlock_free;

682 }

683 goto retry;

684 }

msg_lock() msg_lock() msg_checkid()
ipc/msg.c

==================== ipc/msg.c 94 94 ====================
94 #define msg_lock(id) ((struct msg_queue*)ipc_lock(&msg_ids,id))

.

==================== ipc/msg.c 97 98 ====================
97 #define msg_checkid(msq, msgid) \

98 ipc_checkid(&msg_ids,&msq­>q_perm,msgid)

inline ipc/util.h

==================== ipc/util.h 68 80 ====================
[sys_msgsnd()>msg_lock()>ipc_lock()]
68 extern inline struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)

69 {

70 struct kern_ipc_perm* out;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

789

71 int lid = id % SEQ_MULTIPLIER;

72 if(lid > ids­>size)

73 return NULL;

74

75 spin_lock(&ids­>ary);

76 out = ids­>entries[lid].p;

77 if(out==NULL)

78 spin_unlock(&ids­>ary);

79 return out;

80 }

==================== ipc/util.h 92 97 ====================
[sys_msgsnd()>msg_checkid()>ipc_checkid()]
92 extern inline int ipc_checkid(struct ipc_ids* ids, struct kern_ipc_perm* ipcp, int uid)

93 {

94 if(uid/SEQ_MULTIPLIER != ipcp­>seq)

95 return 1;

96 return 0;

97 }

ipc_lock() ipc_checkid()
ipcperms() ipc_lock()

spin_lock() ipc_ids out 0
spin_unlock() msg_lock() msg_unlock() ipc_unlock()

ipc/util.h

==================== ipc/util.h 82 85 ====================
[sys_msgsnd()>msg_unlock()>ipc_unlock()]
82 extern inline void ipc_unlock(struct ipc_ids* ids, int id)

83 {

84 spin_unlock(&ids­>ary);

85 }

660 if msg­>q_qbytes
MSGCTL

msg­>q_qbytes
msg­>q_qnum

msg­>q_qbytes 0
IPC_NOWAIT 1

msg_sender q_senders
q_senders

—— 668
ss_add() inline ipc/msg.c

==================== ipc/msg.c 237 242 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

790

[sys_msgsnd()>ss_add()]
237 static inline void ss_add(struct msg_queue* msq, struct msg_sender* mss)

238 {

239 mss­>tsk=current;

240 current­>state=TASK_INTERRUPTIBLE;

241 list_add_tail(&mss­>list,&msq­>q_senders);

242 }

msg_sender ipc/msg.c

==================== ipc/msg.c 45 49 ====================
45 /* one msg_sender for each sleeping sender */

46 struct msg_sender {

47 struct list_head list;

48 struct task_struct* tsk;

49 };

msg_queue msg_msg
msg_msgseg 6.8

6.8

msg_msg
q_senders

q_receivers
msg_receive q_senders

q_receivers

670 schedule()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

791

­EINTR
­EINTR

683 goto retry

ipc/msg.c

==================== ipc/msg.c 686 706 ====================
[sys_msgsnd()]
686 if(!pipelined_send(msq,msg)) {

687 /* noone is waiting for this message, enqueue it */

688 list_add_tail(&msg­>m_list,&msq­>q_messages);

689 msq­>q_cbytes += msgsz;

690 msq­>q_qnum++;

691 atomic_add(msgsz,&msg_bytes);

692 atomic_inc(&msg_hdrs);

693 }

694

695 err = 0;

696 msg = NULL;

697 msq­>q_lspid = current­>pid;

698 msq­>q_stime = CURRENT_TIME;

699

700 out_unlock_free:

701 msg_unlock(msqid);

702 out_free:

703 if(msg!=NULL)

704 free_msg(msg);

705 return err;

706 }

pipelined_send() ipc/msg.c

==================== ipc/msg.c 600 624 ====================
[sys_msgsnd()>pipelined_send()]
600 int inline pipelined_send(struct msg_queue* msq, struct msg_msg* msg)

601 {

602 struct list_head* tmp;

603

604 tmp = msq­>q_receivers.next;

605 while (tmp != &msq­>q_receivers) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

792

606 struct msg_receiver* msr;

607 msr = list_entry(tmp,struct msg_receiver,r_list);

608 tmp = tmp­>next;

609 if(testmsg(msg,msr­>r_msgtype,msr­>r_mode)) {

610 list_del(&msr­>r_list);

611 if(msr­>r_maxsize < msg­>m_ts) {

612 msr­>r_msg = ERR_PTR(­E2BIG);

613 wake_up_process(msr­>r_tsk);

614 } else {

615 msr­>r_msg = msg;

616 msq­>q_lspid = msr­>r_tsk­>pid;

617 msq­>q_rtime = CURRENT_TIME;

618 wake_up_process(msr­>r_tsk);

619 return 1;

620 }

621 }

622 }

623 return 0;

624 }

q_receivers
msg_receiver msg_sender ipc/msg.c

==================== ipc/msg.c 33 43 ====================
33 /* one msg_receiver structure for each sleeping receiver */

34 struct msg_receiver {

35 struct list_head r_list;

36 struct task_struct* r_tsk;

37

38 int r_mode;

39 long r_msgtype;

40 long r_maxsize;

41

42 struct msg_msg* volatile r_msg;

43 };

r_msg pipelined_send() q_receivers

615
q_receivers pipelined_send() 0

sys_msgsnd() 688

6.6.3 msgrcv()——

ipc/msg.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

793

==================== ipc/msg.c 727 743 ====================
727 asmlinkage long sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz,

728 long msgtyp, int msgflg)

729 {

730 struct msg_queue *msq;

731 struct msg_receiver msr_d;

732 struct list_head* tmp;

733 struct msg_msg* msg, *found_msg;

734 int err;

735 int mode;

736

737 if (msqid < 0 || (long) msgsz < 0)

738 return ­EINVAL;

739 mode = convert_mode(&msgtyp,msgflg);

740

741 msq = msg_lock(msqid);

742 if(msq==NULL)

743 return ­EINVAL;

sys_msgsnd() 739 convert_mode() msgtyp msgflg
ipc/msg.c

==================== ipc/msg.c 708 725 ====================
[sys_msgrcv()>convert_mode()]
708 int inline convert_mode(long* msgtyp, int msgflg)

709 {

710 /*

711 * find message of correct type.

712 * msgtyp = 0 => get first.

713 * msgtyp > 0 => get first message of matching type.

714 * msgtyp < 0 => get message with least type must be < abs(msgtype).

715 */

716 if(*msgtyp==0)

717 return SEARCH_ANY;

718 if(*msgtyp<0) {

719 *msgtyp=­(*msgtyp);

720 return SEARCH_LESSEQUAL;

721 }

722 if(msgflg & MSG_EXCEPT)

723 return SEARCH_NOTEQUAL;

724 return SEARCH_EQUAL;

725 }

msg_lock()
sys_msgrcv() sys_msgsnd() ipc/msg.c

==================== ipc/msg.c 744 764 ====================
[sys_msgrcv()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

794

744 retry:

745 err=­EACCES;

746 if (ipcperms (&msq­>q_perm, S_IRUGO))

747 goto out_unlock;

748

749 tmp = msq­>q_messages.next;

750 found_msg=NULL;

751 while (tmp != &msq­>q_messages) {

752 msg = list_entry(tmp,struct msg_msg,m_list);

753 if(testmsg(msg,msgtyp,mode)) {

754 found_msg = msg;

755 if(mode == SEARCH_LESSEQUAL && msg­>m_type != 1) {

756 found_msg=msg;

757 msgtyp=msg­>m_type­1;

758 } else {

759 found_msg=msg;

760 break;

761 }

762 }

763 tmp = tmp­>next;

764 }

746 ipcperms()
S_IRUGO sys_msgsnd()

S_IWUGO
752 list_entry()

1
753 testmsg() ipc/msg.c

==================== ipc/msg.c 578 598 ====================
[sys_msgrcv()>testmsg()]
578 static int testmsg(struct msg_msg* msg,long type,int mode)

579 {

580 switch(mode)

581 {

582 case SEARCH_ANY:

583 return 1;

584 case SEARCH_LESSEQUAL:

585 if(msg­>m_type <=type)

586 return 1;

587 break;

588 case SEARCH_EQUAL:

589 if(msg­>m_type == type)

590 return 1;

591 break;

592 case SEARCH_NOTEQUAL:

593 if(msg­>m_type != type)

594 return 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

795

595 break;

596 }

597 return 0;

598 }

mode SEARCH_LESSEQUAL testmsg() msg­>m_type
<= msgtyp msgtyp SEARCH_LESSEQUAL

1
msg­>m_type <= msgtyp

msgtyp 757
SEARCH_ANY

760 break 751 while
found_msg ipc/msg.c

==================== ipc/msg.c 765 788 ====================
[sys_msgrcv()]
765 if(found_msg) {

766 msg=found_msg;

767 if ((msgsz < msg­>m_ts) && !(msgflg & MSG_NOERROR)) {

768 err=­E2BIG;

769 goto out_unlock;

770 }

771 list_del(&msg­>m_list);

772 msq­>q_qnum­­;

773 msq­>q_rtime = CURRENT_TIME;

774 msq­>q_lrpid = current­>pid;

775 msq­>q_cbytes ­= msg­>m_ts;

776 atomic_sub(msg­>m_ts,&msg_bytes);

777 atomic_dec(&msg_hdrs);

778 ss_wakeup(&msq­>q_senders,0);

779 msg_unlock(msqid);

780 out_success:

781 msgsz = (msgsz > msg­>m_ts) ? msg­>m_ts : msgsz;

782 if (put_user (msg­>m_type, &msgp­>mtype) ||

783 store_msg(msgp­>mtext, msg, msgsz)) {

784 msgsz = ­EFAULT;

785 }

786 free_msg(msg);

787 return msgsz;

788 } else

msgsz
771

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

796

ss_wakeup()
ipc/msg.c

==================== ipc/msg.c 250 264 ====================
[sys_msgrcv()>ss_wakeup()]
250 static void ss_wakeup(struct list_head* h, int kill)

251 {

252 struct list_head *tmp;

253

254 tmp = h­>next;

255 while (tmp != h) {

256 struct msg_sender* mss;

257

258 mss = list_entry(tmp,struct msg_sender,list);

259 tmp = tmp­>next;

260 if(kill)

261 mss­>list.next=NULL;

262 wake_up_process(mss­>tsk);

263 }

264 }

msg_sender
sys_msgsnd()

put_user() store_msg()
781

ipc/msg.c

==================== ipc/msg.c 788 844 ====================
[sys_msgrcv()]
788 } else

789 {

790 struct msg_queue *t;

791 /* no message waiting. Prepare for pipelined

792 * receive.

793 */

794 if (msgflg & IPC_NOWAIT) {

795 err=­ENOMSG;

796 goto out_unlock;

797 }

798 list_add_tail(&msr_d.r_list,&msq­>q_receivers);

799 msr_d.r_tsk = current;

800 msr_d.r_msgtype = msgtyp;

801 msr_d.r_mode = mode;

802 if(msgflg & MSG_NOERROR)

803 msr_d.r_maxsize = INT_MAX;

804 else

805 msr_d.r_maxsize = msgsz;

806 msr_d.r_msg = ERR_PTR(­EAGAIN);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

797

807 current­>state = TASK_INTERRUPTIBLE;

808 msg_unlock(msqid);

809

810 schedule();

811 current­>state = TASK_RUNNING;

812

813 msg = (struct msg_msg*) msr_d.r_msg;

814 if(!IS_ERR(msg))

815 goto out_success;

816

817 t = msg_lock(msqid);

818 if(t==NULL)

819 msqid=­1;

820 msg = (struct msg_msg*)msr_d.r_msg;

821 if(!IS_ERR(msg)) {

822 /* our message arived while we waited for

823 * the spinlock. Process it.

824 */

825 if(msqid!=­1)

826 msg_unlock(msqid);

827 goto out_success;

828 }

829 err = PTR_ERR(msg);

830 if(err == ­EAGAIN) {

831 if(msqid==­1)

832 BUG();

833 list_del(&msr_d.r_list);

834 if (signal_pending(current))

835 err=­EINTR;

836 else

837 goto retry;

838 }

839 }

840 out_unlock:

841 if(msqid!=­1)

842 msg_unlock(msqid);

843 return err;

844 }

IPC_NOWAIT 1 ­ENOMSG

msg_receiver
q_receiver msg_sender

msg_receiver
r_msg

pipelined_send()
pipelined_send()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

798

810 schedule()
pipelined_send()

msr_d.r_msg
msr_d.r_msg ­E2BIG pipelined_send() 612

msr_d.r_msg ­EAGAIN 806 msr_d.r_msg
schedule() msr_d.r_msg

827

837 goto
744 retry msg_lock()

spin_lock() CPU
msg_receiver

msr_d q_receivers 817 msg_lock()
pipelined_send()

msg_lock() msr_d.r_msg
out_success

msr_d.r_msg 806 msr_d.r_msg
­EAGAIN pipelined_send() msr_d.r_msg

­E2BIG pipelined_send()
­E2BIG ­EAGAIN ­E2BIG

842
­EAGAIN pipelined_send()

msg_receiver
­EINTR retry

msg_receiver msr_d

6.6.4 msgctl()——

MSGCTL
sys_msgctl() include/linux/msg.h

==================== include/linux/msg.h 69 69 ====================
69 asmlinkage long sys_msgctl (int msqid, int cmd, struct msqid_ds *buf);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

799

cmd include/linux/ipc.h

==================== include/linux/ipc.h 34 41 ====================
34 /*

35 * Control commands used with semctl, msgctl and shmctl

36 * see also specific commands in sem.h, msg.h and shm.h

37 */

38 #define IPC_RMID 0 /* remove resource */

39 #define IPC_SET 1 /* set ipc_perm options */

40 #define IPC_STAT 2 /* get ipc_perm options */

41 #define IPC_INFO 3 /* see ipcs */

SysV IPC
include/linux/msg.h

==================== include/linux/msg.h 6 8 ====================
6 /* ipcs ctl commands */

7 #define MSG_STAT 11

8 #define MSG_INFO 12

SysV IPC IPC_RMID
IPC_SET IPC

IPC_STAT IPC_INFO
buf msqid_ds IPC_STAT IPC_SET

include/linux/msg.h

==================== include/linux/msg.h 14 29 ====================
14 /* Obsolete, used only for backwards compatibility and libc5 compiles */

15 struct msqid_ds {

16 struct ipc_perm msg_perm;

17 struct msg *msg_first; /* first message on queue,unused */

18 struct msg *msg_last; /* last message in queue,unused */

19 __kernel_time_t msg_stime; /* last msgsnd time */

20 __kernel_time_t msg_rtime; /* last msgrcv time */

21 __kernel_time_t msg_ctime; /* last change time */

22 unsigned long msg_lcbytes; /* Reuse junk fields for 32 bit */

23 unsigned long msg_lqbytes; /* ditto */

24 unsigned short msg_cbytes; /* current number of bytes on queue */

25 unsigned short msg_qnum; /* number of messages in queue */

26 unsigned short msg_qbytes; /* max number of bytes on queue */

27 __kernel_ipc_pid_t msg_lspid; /* pid of last msgsnd */

28 __kernel_ipc_pid_t msg_lrpid; /* last receive pid */

29 };

msqid64_ds include/asm­i386/msgbuf.h 64

==================== include/asm­i386/msgbuf.h 4 29 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

800

4 /*

5 * The msqid64_ds structure for i386 architecture.

6 * Note extra padding because this structure is passed back and forth

7 * between kernel and user space.

8 *

9 * Pad space is left for:

10 * ­ 64­bit time_t to solve y2038 problem

11 * ­ 2 miscellaneous 32­bit values

12 */

13

14 struct msqid64_ds {

15 struct ipc64_perm msg_perm;

16 __kernel_time_t msg_stime; /* last msgsnd time */

17 unsigned long __unused1;

18 __kernel_time_t msg_rtime; /* last msgrcv time */

19 unsigned long __unused2;

20 __kernel_time_t msg_ctime; /* last change time */

21 unsigned long __unused3;

22 unsigned long msg_cbytes; /* current number of bytes on queue */

23 unsigned long msg_qnum; /* number of messages in queue */

24 unsigned long msg_qbytes; /* max number of bytes on queue */

25 __kernel_pid_t msg_lspid; /* pid of last msgsnd */

26 __kernel_pid_t msg_lrpid; /* last receive pid */

27 unsigned long __unused4;

28 unsigned long __unused5;

29 };

sys_msgctl() msqid_ds
msg_cbytes msg_lcbytes msg_qbytes msg_lqbytes

IPC_INFO buf msginfo include/linux/msg.h

==================== include/linux/msg.h 40 50 ====================
40 /* buffer for msgctl calls IPC_INFO, MSG_INFO */

41 struct msginfo {

42 int msgpool;

43 int msgmap;

44 int msgmax;

45 int msgmnb;

46 int msgmni;

47 int msgssz;

48 int msgtql;

49 unsigned short msgseg;

50 };

sys_msgsnd() sys_msgrcv() msg_msg

sys_msgctl()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

801

ipc/msg.c

==================== ipc/msg.c 539 566 ====================
[sys_msgctl()]
539 switch (cmd) {

540 case IPC_SET:

541 {

542 if (setbuf.qbytes > msg_ctlmnb && !capable(CAP_SYS_RESOURCE))

543 goto out_unlock_up;

544 msq­>q_qbytes = setbuf.qbytes;

545

546 ipcp­>uid = setbuf.uid;

547 ipcp­>gid = setbuf.gid;

548 ipcp­>mode = (ipcp­>mode & ~S_IRWXUGO) |

549 (S_IRWXUGO & setbuf.mode);

550 msq­>q_ctime = CURRENT_TIME;

551 /* sleeping receivers might be excluded by

552 * stricter permissions.

553 */

554 expunge_all(msq,­EAGAIN);

555 /* sleeping senders might be able to send

556 * due to a larger queue size.

557 */

558 ss_wakeup(&msq­>q_senders,0);

559 msg_unlock(msqid);

560 break;

561 }

562 case IPC_RMID:

563 freeque (msqid);

564 break;

565 }

566 err = 0;

setbuf msqid_ds IPC_SET

­EAGAIN expunge_all()
ss_wakeup()

expunge_all() ipc/msg.c

==================== ipc/msg.c 266 279 ====================
[sys_msgctl()>expunge_all()]
266 static void expunge_all(struct msg_queue* msq, int res)

267 {

268 struct list_head *tmp;

269

270 tmp = msq­>q_receivers.next;

271 while (tmp != &msq­>q_receivers) {

272 struct msg_receiver* msr;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

802

273

274 msr = list_entry(tmp,struct msg_receiver,r_list);

275 tmp = tmp­>next;

276 msr­>r_msg = ERR_PTR(res);

277 wake_up_process(msr­>r_tsk);

278 }

279 }

RMID freeqeue() ipc/msg.c

==================== ipc/msg.c 281 301 ====================
[sys_msgctl()>freeque()]
281 static void freeque (int id)

282 {

283 struct msg_queue *msq;

284 struct list_head *tmp;

285

286 msq = msg_rmid(id);

287

288 expunge_all(msq,­EIDRM);

289 ss_wakeup(&msq­>q_senders,1);

290 msg_unlock(id);

291

292 tmp = msq­>q_messages.next;

293 while(tmp != &msq­>q_messages) {

294 struct msg_msg* msg = list_entry(tmp,struct msg_msg,m_list);

295 tmp = tmp­>next;

296 atomic_dec(&msg_hdrs);

297 free_msg(msg);

298 }

299 atomic_sub(msq­>q_cbytes, &msg_bytes);

300 kfree(msq);

301 }

freeque()
ss_wakeup()

msg_rmid() ipc/msg.c

==================== ipc/msg.c 96 96 ====================
96 #define msg_rmid(id) ((struct msg_queue*)ipc_rmid(&msg_ids,id))

ipc_rmid() ipc/util.c

==================== ipc/util.c 173 205 ====================
[sys_msgctl()>freeque()>msg_rmid()>ipc_rmid()]
173 /**

174 * ipc_rmid ­ remove an IPC identifier

175 * @ids: identifier set

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

803

176 * @id: Identifier to remove

177 *

178 * The identifier must be valid, and in use. The kernel will panic if

179 * fed an invalid identifier. The entry is removed and internal

180 * variables recomputed. The object associated with the identifier

181 * is returned.

182 */

183

184 struct kern_ipc_perm* ipc_rmid(struct ipc_ids* ids, int id)

185 {

186 struct kern_ipc_perm* p;

187 int lid = id % SEQ_MULTIPLIER;

188 if(lid > ids­>size)

189 BUG();

190 p = ids­>entries[lid].p;

191 ids­>entries[lid].p = NULL;

192 if(p==NULL)

193 BUG();

194 ids­>in_use­­;

195

196 if (lid == ids­>max_id) {

197 do {

198 lid­­;

199 if(lid == ­1)

200 break;

201 } while (ids­>entries[lid].p == NULL);

202 ids­>max_id = lid;

203 }

204 return p;

205 }

sys_msgsnd() sys_msgrcv()
msg.c 673 817 schedule()
msg_lock() NULL sys_msgsnd() sys_msgrcv()

6.7

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

804

A
B A

A
Sys V IPC

SHMGET SHMAT SHMDT SHMCTL
shmget() shmat() shmdt() shmctl() sys_shmget() sys_shmat() sys_shmdt()

sys_shmctl()

attach
dettach

ipc/shm.c

6.7.1 shmget()——

shmget() ipc() SHMGET sys_shmget() ipc/shm.c

==================== ipc/shm.c 224 253 ====================
224 asmlinkage long sys_shmget (key_t key, size_t size, int shmflg)

225 {

226 struct shmid_kernel *shp;

227 int err, id = 0;

228

229 down(&shm_ids.sem);

230 if (key == IPC_PRIVATE) {

231 err = newseg(key, shmflg, size);

232 } else if ((id = ipc_findkey(&shm_ids, key)) == ­1) {

233 if (!(shmflg & IPC_CREAT))

234 err = ­ENOENT;

235 else

236 err = newseg(key, shmflg, size);

237 } else if ((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) {

238 err = ­EEXIST;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

805

239 } else {

240 shp = shm_lock(id);

241 if(shp==NULL)

242 BUG();

243 if (shp­>shm_segsz < size)

244 err = ­EINVAL;

245 else if (ipcperms(&shp­>shm_perm, shmflg))

246 err = ­EACCES;

247 else

248 err = shm_buildid(id, shp­>shm_perm.seq);

249 shm_unlock(id);

250 }

251 up(&shm_ids.sem);

252 return err;

253 }

sys_msgget()
newseg() ipc_ids

shm_ids

==================== ipc/shm.c 48 48 ====================
48 static struct ipc_ids shm_ids;

ipc_ids entries ipc_id ipc_id
p kern_ipc_perm kern_ipc_perm

msg_queue shmid_kernel

IPC_PRIVATE 0
IPC_CREAT

newseg() ipc/shm.c

==================== ipc/shm.c 173 222 ====================
[sys_shmget()>newseg()]
173 static int newseg (key_t key, int shmflg, size_t size)

174 {

175 int error;

176 struct shmid_kernel *shp;

177 int numpages = (size + PAGE_SIZE ­1) >> PAGE_SHIFT;

178 struct file * file;

179 char name[13];

180 int id;

181

182 if (size < SHMMIN || size > shm_ctlmax)

183 return ­EINVAL;

184

185 if (shm_tot + numpages >= shm_ctlall)

186 return ­ENOSPC;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

806

187

188 shp = (struct shmid_kernel *) kmalloc (sizeof (*shp), GFP_USER);

189 if (!shp)

190 return ­ENOMEM;

191 sprintf (name, "SYSV%08x", key);

192 file = shmem_file_setup(name, size);

193 error = PTR_ERR(file);

194 if (IS_ERR(file))

195 goto no_file;

196

197 error = ­ENOSPC;

198 id = shm_addid(shp);

199 if(id == ­1)

200 goto no_id;

201 shp­>shm_perm.key = key;

202 shp­>shm_flags = (shmflg & S_IRWXUGO);

203 shp­>shm_cprid = current­>pid;

204 shp­>shm_lprid = 0;

205 shp­>shm_atim = shp­>shm_dtim = 0;

206 shp­>shm_ctim = CURRENT_TIME;

207 shp­>shm_segsz = size;

208 shp­>shm_nattch = 0;

209 shp­>id = shm_buildid(id,shp­>shm_perm.seq);

210 shp­>shm_file = file;

211 file­>f_dentry­>d_inode­>i_ino = shp­>id;

212 file­>f_op = &shm_file_operations;

213 shm_tot += numpages;

214 shm_unlock (id);

215 return shp­>id;

216

217 no_id:

218 fput(file);

219 no_file:

220 kfree(shp);

221 return error;

222 }

numpages
shm_tot shm_ctlall

shm_ctlmax
SYSV 8 16

shmid_kernel ipc/shm.c

==================== ipc/shm.c 29 41 ====================
29 struct shmid_kernel /* private to the kernel */

30 {

31 struct kern_ipc_perm shm_perm;

32 struct file * shm_file;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

807

33 int id;

34 unsigned long shm_nattch;

35 unsigned long shm_segsz;

36 time_t shm_atim;

37 time_t shm_dtim;

38 time_t shm_ctim;

39 pid_t shm_cprid;

40 pid_t shm_lprid;

41 };

msq_queue kern_ipc_perm
file shm_file file

2

/proc /proc/<pid>/maps <pid>
“shm shmem_fs_type mm/shmem.c

==================== mm/shmem.c 702 702 ====================
702 static DECLARE_FSTYPE(shmem_fs_type, "shm", shmem_read_super, FS_LITTER);

DECLARE_FSTYPE

struct file_system_type shmem_fs_type = {

name: “shm”,

reda_super: shmem_read_super,

fs_flags: FS_LITTER,

owner: THIS_MODULE,

kern_mnt: NULL

kern_mount() devfs
shm init_shmem_fs() mm/shmem.c

==================== mm/shmem.c 704 723 ====================
704 static int __init init_shmem_fs(void)

705 {

706 int error;

707 struct vfsmount * res;

708

709 if ((error = register_filesystem(&shmem_fs_type))) {

710 printk (KERN_ERR "Could not register shmem fs\n");

711 return error;

712 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

808

713

714 res = kern_mount(&shmem_fs_type);

715 if (IS_ERR (res)) {

716 printk (KERN_ERR "could not kern_mount shmem fs\n");

717 unregister_filesystem(&shmem_fs_type);

718 return PTR_ERR(res);

719 }

720

721 devfs_mk_dir (NULL, "shm", NULL);

722 return 0;

723 }

kern_mount() shm devfs /dev
devfs shm

/proc kern_mount()
dentry inode vfsmount file_system_type

shmem_fs_type kern_mnt vfsmount

/proc kern_mount()
/proc /proc

FS_SINGLE 1 shm

shm
shm shm

kern_mount() /proc FS_SINGLE 0
FS_LITTER 1 702

/dev/devfsd
“shm

shmem_file_setup() mm/shmem.c

==================== mm/shmem.c 800 853 ====================
[sys_shmget()>newseg()>shmem_file_setup()]
800 /*

801 * shmem_file_setup ­ get an unlinked file living in shmem fs

802 *

803 * @name: name for dentry (to be seen in /proc/<pid>/maps

804 * @size: size to be set for the file

805 *

806 */

807 struct file *shmem_file_setup(char * name, loff_t size)

808 {

809 int error;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

809

810 struct file *file;

811 struct inode * inode;

812 struct dentry *dentry, *root;

813 struct qstr this;

814 int vm_enough_memory(long pages);

815

816 error = ­ENOMEM;

817 if (!vm_enough_memory((size) >> PAGE_SHIFT))

818 goto out;

819

820 this.name = name;

821 this.len = strlen(name);

822 this.hash = 0; /* will go */

823 root = shmem_fs_type.kern_mnt­>mnt_root;

824 dentry = d_alloc(root, &this);

825 if (!dentry)

826 goto out;

827

828 error = ­ENFILE;

829 file = get_empty_filp();

830 if (!file)

831 goto put_dentry;

832

833 error = ­ENOSPC;

834 inode = shmem_get_inode(root­>d_sb, S_IFREG | S_IRWXUGO, 0);

835 if (!inode)

836 goto close_file;

837

838 d_instantiate(dentry, inode);

839 dentry­>d_inode­>i_size = size;

840 file­>f_vfsmnt = mntget(shmem_fs_type.kern_mnt);

841 file­>f_dentry = dentry;

842 file­>f_op = &shmem_file_operations;

843 file­>f_mode = FMODE_WRITE | FMODE_READ;

844 inode­>i_nlink = 0; /* It is unlinked */

845 return(file);

846

847 close_file:

848 put_filp(file);

849 put_dentry:

850 dput (dentry);

851 out:

852 return ERR_PTR(error);

853 }

shmem_fs_type.kern_mnt­>mnt_root shm
dentry shm dentry

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

810

inode
842 file­>f_op file_operations shmem_file_operations

newseg() 212 shm_file_operations mmap
shmem_mmap() shm_mmap() mm/shmem.c

ipc/shm.c

==================== mm/shmem.c 662 664 ====================
662 static struct file_operations shmem_file_operations = {

663 mmap: shmem_mmap

664 };

==================== ipc/shm.c 163 165 ====================
163 static struct file_operations shm_file_operations = {

164 mmap: shm_mmap

165 };

shmem_file_setup() newseg()
shmem_file_setup() file­>f_op shmem_file_operations newseg()

shm_file_operations shm_mmap() shmem_mmap()
shm open close shm

open close
shm inode shmem_get_inode()
inode mm/shmem.c

==================== mm/shmem.c 341 385 ====================
[sys_shmget()>newseg()>shmem_get_inode()]
341 struct inode *shmem_get_inode(struct super_block *sb, int mode, int dev)

342 {

343 struct inode * inode;

344

345 spin_lock (&sb­>u.shmem_sb.stat_lock);

346 if (!sb­>u.shmem_sb.free_inodes) {

347 spin_unlock (&sb­>u.shmem_sb.stat_lock);

348 return NULL;

349 }

350 sb­>u.shmem_sb.free_inodes­­;

351 spin_unlock (&sb­>u.shmem_sb.stat_lock);

352

353 inode = new_inode(sb);

354 if (inode) {

355 inode­>i_mode = mode;

356 inode­>i_uid = current­>fsuid;

357 inode­>i_gid = current­>fsgid;

358 inode­>i_blksize = PAGE_CACHE_SIZE;

359 inode­>i_blocks = 0;

360 inode­>i_rdev = to_kdev_t(dev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

811

361 inode­>i_mapping­>a_ops = &shmem_aops;

362 inode­>i_atime = inode­>i_mtime = inode­>i_ctime = CURRENT_TIME;

363 spin_lock_init (&inode­>u.shmem_i.lock);

364 switch (mode & S_IFMT) {

365 default:

366 init_special_inode(inode, mode, dev);

367 break;

368 case S_IFREG:

369 inode­>i_op = &shmem_inode_operations;

370 inode­>i_fop = &shmem_file_operations;

371 break;

372 case S_IFDIR:

373 inode­>i_op = &shmem_dir_inode_operations;

374 inode­>i_fop = &shmem_dir_operations;

375 break;

376 case S_IFLNK:

377 inode­>i_op = &page_symlink_inode_operations;

378 break;

379 }

380 spin_lock (&shmem_ilock);

381 list_add (&inode­>u.shmem_i.list, &shmem_inodes);

382 spin_unlock (&shmem_ilock);

383 }

384 return inode;

385 }

dev 0 inode i_rdev 0 inode
inode i_mapping­>a_ops

address_space_operations shmem_aops mm/shmem.c

==================== mm/shmem.c 658 660 ====================
658 static struct address_space_operations shmem_aops = {

659 writepage: shmem_writepage

660 };

inode i_op
i_fop inode_operations file_operations shm

inode shmem_inodes shm inode
shm inode

newseg()
file file file

file
file

shmid_kernel shmid_kernel

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

812

shmid_kernel ipc_ids shm_ids
newseg() shm_addid() ipc/shm.c

==================== ipc/shm.c 89 92 ====================
[sys_shmget()>newseg()>shm_addid()]
89 static inline int shm_addid(struct shmid_kernel *shp)

90 {

91 return ipc_addid(&shm_ids, &shp­>shm_perm, shm_ctlmni+1);

92 }

ipc_addid() shm_ids
msg_ids shmid_kernel shm_perm

kern_ipc_perm shmid_kernel shm_ctlmni
msg_ctlmni shm_ids

newseg() sys_shmget()

sys_shmget() sys_msgget()
shm_buildid()

==================== ipc/shm.c 55 56 ====================
55 #define shm_buildid(id, seq) \

56 ipc_buildid(&shm_ids, id, seq)

ipc_buildid()
findkey() ipc_id

sys_msgget()

6.7.2 shmat()——

shmget()
shmat()

shmat() sys_shmat() ipc/shm.c

==================== ipc/shm.c 553 591 ====================
553 /*

554 * Fix shmaddr, allocate descriptor, map shm, add attach descriptor to lists.

555 */

556 asmlinkage long sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr)

557 {

558 struct shmid_kernel *shp;

559 unsigned long addr;

560 struct file * file;

561 int err;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

813

562 unsigned long flags;

563 unsigned long prot;

564 unsigned long o_flags;

565 int acc_mode;

566 void *user_addr;

567

568 if (shmid < 0)

569 return ­EINVAL;

570

571 if ((addr = (ulong)shmaddr)) {

572 if (addr & (SHMLBA­1)) {

573 if (shmflg & SHM_RND)

574 addr &= ~(SHMLBA­1); /* round down */

575 else

576 return ­EINVAL;

577 }

578 flags = MAP_SHARED | MAP_FIXED;

579 } else

580 flags = MAP_SHARED;

581

582 if (shmflg & SHM_RDONLY) {

583 prot = PROT_READ;

584 o_flags = O_RDONLY;

585 acc_mode = S_IRUGO;

586 } else {

587 prot = PROT_READ | PROT_WRITE;

588 o_flags = O_RDWR;

589 acc_mode = S_IRUGO | S_IWUGO;

590 }

591

shmaddr
SHMLBA

include/asm­i386/shmparam.h PAGE_SIZE
shmaddr SHMLBA shmflg SHM_RND 1 sys_shmat()

573 574 shmaddr 0
flags MAP_FIXED

1 0 shmflg SHM_RDONLY

==================== ipc/shm.c 592 606 ====================
[sys_shmat()]
592 /*

593 * We cannot rely on the fs check since SYSV IPC does have an

594 * aditional creator id...

595 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

814

596 shp = shm_lock(shmid);

597 if(shp == NULL)

598 return ­EINVAL;

599 if (ipcperms(&shp­>shm_perm, acc_mode)) {

600 shm_unlock(shmid);

601 return ­EACCES;

602 }

603 file = shp­>shm_file;

604 shp­>shm_nattch++;

605 shm_unlock(shmid);

606

shmid shm_lock()
shmid_kernel shm_lock() msg_lock()

==================== ipc/shm.c 50 50 ====================
50 #define shm_lock(id) ((struct shmid_kernel*)ipc_lock(&shm_ids,id))

ipcperms()
5

==================== ipc/shm.c 607 627 ====================
[sys_shmat()]
607 down(¤t­>mm­>mmap_sem);

608 user_addr = (void *) do_mmap (file, addr, file­>f_dentry­>d_inode­>i_size, prot, flags, 0);

609 up(¤t­>mm­>mmap_sem);

610

611 down (&shm_ids.sem);

612 if(!(shp = shm_lock(shmid)))

613 BUG();

614 shp­>shm_nattch­­;

615 if(shp­>shm_nattch == 0 &&

616 shp­>shm_flags & SHM_DEST)

617 shm_destroy (shp);

618 shm_unlock(shmid);

619 up (&shm_ids.sem);

620

621 *raddr = (unsigned long) user_addr;

622 err = 0;

623 if (IS_ERR(user_addr))

624 err = PTR_ERR(user_addr);

625 return err;

626

627 }

do_mmap()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

815

2 do_mmap()

do_mmap()
do_mmap_pgoff()

==================== mm/mmap.c 188 190 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()]
188 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, unsigned long len,

189 unsigned long prot, unsigned long flags, unsigned long pgoff)

190 {

.

/* */

.

==================== mm/mmap.c 250 260 ====================
250 /* Obtain the address to map to. we verify (or select) it and ensure

251 * that it represents a valid section of the address space.

252 */

253 if (flags & MAP_FIXED) {

254 if (addr & ~PAGE_MASK)

255 return ­EINVAL;

256 } else {

257 addr = get_unmapped_area(addr, len);

258 if (!addr)

259 return ­ENOMEM;

260 }

shmat() shmaddr 0 sys_shmat() flags
MAP_FIXED 0 get_unmapped_area()
get_unmapped_area() mm/mmap.c

==================== mm/mmap.c 374 398 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()>get_unmapped_area()]
374 /* Get an address range which is currently unmapped.

375 * For mmap() without MAP_FIXED and shmat() with addr=0.

376 * Return value 0 means ENOMEM.

377 */

378 #ifndef HAVE_ARCH_UNMAPPED_AREA

379 unsigned long get_unmapped_area(unsigned long addr, unsigned long len)

380 {

381 struct vm_area_struct * vmm;

382

383 if (len > TASK_SIZE)

384 return 0;

385 if (!addr)

386 addr = TASK_UNMAPPED_BASE;

387 addr = PAGE_ALIGN(addr);

388

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

816

389 for (vmm = find_vma(current­>mm, addr); ; vmm = vmm­>vm_next) {

390 /* At this point: (!vmm || addr < vmm­>vm_end). */

391 if (TASK_SIZE ­ len < addr)

392 return 0;

393 if (!vmm || addr + len <= vmm­>vm_start)

394 return addr;

395 addr = vmm­>vm_end;

396 }

397 }

398 #endif

TASK_UNMAPPED_BASE
include/asm­i386/processor.h

==================== include/asm­i386/processor.h 263 266 ====================
263 /* This decides where the kernel will search for a free chunk of vm

264 * space during mmap's.

265 */

266 #define TASK_UNMAPPED_BASE (TASK_SIZE / 3)

0 (TASK_SIZE/3) 1GB
0

find_vma() vma­>vm_end

0 addr
do_mmap_pgoff() mm/mmap.c

==================== mm/mmap.c 262 306 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()]
262 /* Determine the object being mapped and call the appropriate

263 * specific mapper. the address has already been validated, but

264 * not unmapped, but the maps are removed from the list.

265 */

266 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

267 if (!vma)

268 return ­ENOMEM;

269

270 vma­>vm_mm = mm;

271 vma­>vm_start = addr;

272 vma­>vm_end = addr + len;

273 vma­>vm_flags = vm_flags(prot,flags) | mm­>def_flags;

274

275 if (file) {

276 VM_ClearReadHint(vma);

277 vma­>vm_raend = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

817

278

279 if (file­>f_mode & FMODE_READ)

280 vma­>vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

281 if (flags & MAP_SHARED) {

282 vma­>vm_flags |= VM_SHARED | VM_MAYSHARE;

283

284 /* This looks strange, but when we don't have the file open

285 * for writing, we can demote the shared mapping to a simpler

286 * private mapping. That also takes care of a security hole

287 * with ptrace() writing to a shared mapping without write

288 * permissions.

289 *

290 * We leave the VM_MAYSHARE bit on, just to get correct output

291 * from /proc/xxx/maps..

292 */

293 if (!(file­>f_mode & FMODE_WRITE))

294 vma­>vm_flags &= ~(VM_MAYWRITE | VM_SHARED);

295 }

296 } else {

297 vma­>vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

298 if (flags & MAP_SHARED)

299 vma­>vm_flags |= VM_SHARED | VM_MAYSHARE;

300 }

301 vma­>vm_page_prot = protection_map[vma­>vm_flags & 0x0f];

302 vma­>vm_ops = NULL;

303 vma­>vm_pgoff = pgoff;

304 vma­>vm_file = NULL;

305 vma­>vm_private_data = NULL;

306

vm_area_struct kmem_cache_alloc()
do_mmap_pgoff() file 0

mm_struct

==================== mm/mmap.c 307 322 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()]
307 /* Clear old maps */

308 error = ­ENOMEM;

309 if (do_munmap(mm, addr, len))

310 goto free_vma;

311

312 /* Check against address space limit. */

313 if ((mm­>total_vm << PAGE_SHIFT) + len

314 > current­>rlim[RLIMIT_AS].rlim_cur)

315 goto free_vma;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

818

316

317 /* Private writable mapping? Check memory availability.. */

318 if ((vma­>vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&

319 !(flags & MAP_NORESERVE) &&

320 !vm_enough_memory(len >> PAGE_SHIFT))

321 goto free_vma;

322

vm_area_struct
do_munmap()

free_vma vm_area_struct do_munmap()
mm/mmap.c 2
get_unmapped_area()

shmaddr 0 shmaddr 0
vm_area_struct

313 315
318 321

vm_area_struct
kmem_cache_alloc() vm_area_struct

slab
kmem_cache_alloc()

clone()

do_mmap_pgoff() mm/mmap.c

==================== mm/mmap.c 323 340 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()]
323 if (file) {

324 if (vma­>vm_flags & VM_DENYWRITE) {

325 error = deny_write_access(file);

326 if (error)

327 goto free_vma;

328 correct_wcount = 1;

329 }

330 vma­>vm_file = file;

331 get_file(file);

332 error = file­>f_op­>mmap(file, vma);

333 if (error)

334 goto unmap_and_free_vma;

335 } else if (flags & MAP_SHARED) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

819

336 error = shmem_zero_setup(vma);

337 if (error)

338 goto free_vma;

339 }

340

do_mmap() flags
MAP_DENYWRITE 1 273 vm_flags()
VM_DENYWRITE
deny_write_access() shm

sys_shmat() 0 shm

get_file() file
file_operations mmap

shm file_operations
mmap shm_mmap() ipc/shm.c

==================== ipc/shm.c 155 161 ====================
[sys_shmat()>do_mmap()>do_mmap_pgoff()>shm_mmap()]
155 static int shm_mmap(struct file * file, struct vm_area_struct * vma)

156 {

157 UPDATE_ATIME(file­>f_dentry­>d_inode);

158 vma­>vm_ops = &shm_vm_ops;

159 shm_inc(file­>f_dentry­>d_inode­>i_ino);

160 return 0;

161 }

158
vm_ops shm_vm_ops

==================== ipc/shm.c 167 171 ====================
167 static struct vm_operations_struct shm_vm_ops = {

168 open: shm_open, /* callback for a new vm­area open */

169 close: shm_close, /* callback for when the vm­area is released */

170 nopage: shmem_nopage,

171 };

“lazy computation

100

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

820

99

shm_nopage()

do_mmap_pgoff() vm_area_struct

sys_shmat() raddr sys_shmat()

sys_shmat()

2 do_page_fault()
handle_mm_fault() handle_pte_fault() do_no_page() do_no_page()

vm_ops vm_operations_struct nopage
do_no_page()

==================== mm/memory.c 1097 1105 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()]
1097 if (!vma­>vm_ops || !vma­>vm_ops­>nopage)

1098 return do_anonymous_page(mm, vma, page_table, write_access, address);

1099

1100 /*

1101 * The third argument is "no_share", which tells the low­level code

1102 * to copy, not share the page even if sharing is possible. It's

1103 * essentially an early COW detection.

1104 */

1105 new_page = vma­>vm_ops­>nopage(vma, address & PAGE_MASK, (vma­>vm_flags &

VM_SHARED)?0:write_access);

.

==================== mm/memory.c 1123 1123 ====================
1123 entry = mk_pte(new_page, vma­>vm_page_prot);

.

==================== mm/memory.c 1129 1129 ====================
1129 set_pte(page_table, entry);

shmem_nopage()
mm/shmem.c

==================== mm/shmem.c 237 271 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()>shmem_nopage()]
237 /*

238 * shmem_nopage ­ either get the page from swap or allocate a new one

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

821

239 *

240 * If we allocate a new one we do not mark it dirty. That's up to the

241 * vm. If we swap it in we mark it dirty since we also free the swap

242 * entry since a page cannot live in both the swap and page cache

243 */

244 struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int no_share)

245 {

246 unsigned long size;

247 struct page * page;

248 unsigned int idx;

249 swp_entry_t *entry;

250 struct inode * inode = vma­>vm_file­>f_dentry­>d_inode;

251 struct address_space * mapping = inode­>i_mapping;

252 struct shmem_inode_info *info;

253

254 idx = (address ­ vma­>vm_start) >> PAGE_SHIFT;

255 idx += vma­>vm_pgoff;

256

257 down (&inode­>i_sem);

258 size = (inode­>i_size + PAGE_CACHE_SIZE ­ 1) >> PAGE_CACHE_SHIFT;

259 page = NOPAGE_SIGBUS;

260 if ((idx >= size) && (vma­>vm_mm == current­>mm))

261 goto out;

262

263 /* retry, we may have slept */

264 page = __find_lock_page(mapping, idx, page_hash (mapping, idx));

265 if (page)

266 goto cached_page;

267

268 info = &inode­>u.shmem_i;

269 entry = shmem_swp_entry (info, idx);

270 if (!entry)

271 goto oom;

idx
255

__find_lock_page() page
shmem_swp_entry()
mm/shmem.c

==================== mm/shmem.c 52 72 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()>shmem_nopagc()>shmem_swp_entry()]
51 static swp_entry_t * shmem_swp_entry (struct shmem_inode_info *info, unsigned long index)

52 {

53 if (index < SHMEM_NR_DIRECT)

54 return info­>i_direct+index;

55

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

822

56 index ­= SHMEM_NR_DIRECT;

57 if (index >= ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)

58 return NULL;

59

60 if (!info­>i_indirect) {

61 info­>i_indirect = (swp_entry_t **) get_zeroed_page(GFP_USER);

62 if (!info­>i_indirect)

63 return NULL;

64 }

65 if(!(info­>i_indirect[index/ENTRIES_PER_PAGE])) {

66 info­>i_indirect[index/ENTRIES_PER_PAGE] = (swp_entry_t *) get_zeroed_page(GFP_USER);

67 if (!info­>i_indirect[index/ENTRIES_PER_PAGE])

68 return NULL;

69 }

70

71 return info­>i_indirect[index/ENTRIES_PER_PAGE]+index%ENTRIES_PER_PAGE;

72 }

inode union
shm union shmem_inode_info

include/linux/shmem_fs.h

==================== include/linux/shmem_fs.h 16 27 ====================
16 typedef struct {

17 unsigned long val;

18 } swp_entry_t;

19

20 struct shmem_inode_info {

21 spinlock_t lock;

22 swp_entry_t i_direct[SHMEM_NR_DIRECT]; /* for the first blocks */

23 swp_entry_t **i_indirect; /* doubly indirect blocks */

24 unsigned long swapped;

25 int locked; /* into memory */

26 struct list_head list;

27 };

swp_entry_t 32 0
i_direct[] 16 64K

SHMEM_NR_DIRECT 16
i_indirect 1024

swp_entry_t 1024 swp_entry_t
1M 4G Ext2

shmem_swp_entry()
swp_entry_t 0 0 oom
“Out­Of­Memory swp_entry_t

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

823

==================== mm/shmem.c 272 297 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()>shmem_nopage()]
272 if (entry­>val) {

273 unsigned long flags;

274

275 /* Look it up and read it in.. */

276 page = lookup_swap_cache(*entry);

277 if (!page) {

278 lock_kernel();

279 swapin_readahead(*entry);

280 page = read_swap_cache(*entry);

281 unlock_kernel();

282 if (!page)

283 goto oom;

284 }

285

286 /* We have to this with page locked to prevent races */

287 spin_lock (&info­>lock);

288 swap_free(*entry);

289 lock_page(page);

290 delete_from_swap_cache_nolock(page);

291 *entry = (swp_entry_t) {0};

292 flags = page­>flags & ~((1 << PG_uptodate) | (1 << PG_error) | (1 << PG_referenced) | (1 <<

PG_arch_1));

293 page­>flags = flags | (1 << PG_dirty);

294 add_to_page_cache_locked(page, mapping, idx);

295 info­>swapped­­;

296 spin_unlock (&info­>lock);

297 } else {

swp_entry_t 0
2 291

swp_entry_t 0 swp_entry_t 0

__find_lock_page()
268

swp_entry_t 0

==================== mm/shmem.c 297 339 ====================
[do_page_fault()>handle_mm_fault()>handle_pte_fault()>do_no_page()>shmem_nopage()]
297 } else {

298 spin_lock (&inode­>i_sb­>u.shmem_sb.stat_lock);

299 if (inode­>i_sb­>u.shmem_sb.free_blocks == 0)

300 goto no_space;

301 inode­>i_sb­>u.shmem_sb.free_blocks­­;

302 spin_unlock (&inode­>i_sb­>u.shmem_sb.stat_lock);

303 /* Ok, get a new page */

304 page = page_cache_alloc();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

824

305 if (!page)

306 goto oom;

307 clear_user_highpage(page, address);

308 inode­>i_blocks++;

309 add_to_page_cache (page, mapping, idx);

310 }

311 /* We have the page */

312 SetPageUptodate (page);

313

314 cached_page:

315 UnlockPage (page);

316 up(&inode­>i_sem);

317

318 if (no_share) {

319 struct page *new_page = page_cache_alloc();

320

321 if (new_page) {

322 copy_user_highpage(new_page, page, address);

323 flush_page_to_ram(new_page);

324 } else

325 new_page = NOPAGE_OOM;

326 page_cache_release(page);

327 return new_page;

328 }

329

330 flush_page_to_ram (page);

331 return(page);

332 no_space:

333 spin_unlock (&inode­>i_sb­>u.shmem_sb.stat_lock);

334 oom:

335 page = NOPAGE_OOM;

336 out:

337 up(&inode­>i_sem);

338 return page;

339 }

272 swp_entry_t 0
page_cache_alloc() clear_user_highpage()

0
cached_page

shmem_nopage() no_share 0 do_no_page() 1105
copy_user_highpage()

page do_no_page() do_no_page()

2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

825

P 0 0
do_mmap()

0 2 try_to_swap_out()
83 125 135 101 107 inode

inode

CPU _PAGE_ACCESSED 1
_PAGE_DIRTY 1

2 kswapd() page_launder()
inactive_dirty_list
kswapd() bdflush() page_launder() block_write()
block_read() bread() ext2_getblk() getblk() refill_freelist()
page_launder() page_launder() page_launder()

==================== mm/vmscan.c 537 547 ====================
[kswapd()>do_try_to_free_pages()>page_launder()]
537 /*

538 * Dirty swap­cache page? Write it out if

539 * last copy..

540 */

541 if (PageDirty(page)) {

542 int (*writepage)(struct page *) = page­>mapping­>a_ops­>writepage;

543 int result;

544

545 if (!writepage)

546 goto page_active;

547

.

==================== mm/vmscan.c 561 561 ====================
561 result = writepage(page);

.

==================== mm/vmscan.c 571 571 ====================
571 }

2
page mapping address_space

inode address_space clean_pages dirty_pages
locked_pages dirty_pages address_space

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

826

a_ops address_space_operations
inode shm shmem_aops shm

writepage shmem_writepage() mm/shmem.c

==================== mm/shmem.c 194 235 ====================
[kswapd()>do_try_to_free_pages()>page_launder()>shmem_writepage()]
194 /*

195 * Move the page from the page cache to the swap cache

196 */

197 static int shmem_writepage(struct page * page)

198 {

199 int error;

200 struct shmem_inode_info *info;

201 swp_entry_t *entry, swap;

202

203 info = &page­>mapping­>host­>u.shmem_i;

204 if (info­>locked)

205 return 1;

206 swap = __get_swap_page(2);

207 if (!swap.val)

208 return 1;

209

210 spin_lock(&info­>lock);

211 entry = shmem_swp_entry (info, page­>index);

212 if (!entry) /* this had been allocted on page allocation */

213 BUG();

214 error = ­EAGAIN;

215 if (entry­>val) {

216 __swap_free(swap, 2);

217 goto out;

218 }

219

220 *entry = swap;

221 error = 0;

222 /* Remove the from the page cache */

223 lru_cache_del(page);

224 remove_inode_page(page);

225

226 /* Add it to the swap cache */

227 add_to_swap_cache(page, swap);

228 page_cache_release(page);

229 set_page_dirty(page);

230 info­>swapped++;

231 out:

232 spin_unlock(&info­>lock);

233 UnlockPage(page);

234 return error;

235 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

827

__get_swap_page() 2
2 shmem_swp_entry()

swp_entry_t 0
__swap_free()

LRU swapper_space page
mapping swapper_space page_launder()

writepage swapper_space swap_aops swap_writepage()

==================== mm/swap_state.c 20 24 ====================
[kswapd()>do_try_to_free_pages()>page_launder()>swap_writepage()]
20 static int swap_writepage(struct page *page)

21 {

22 rw_swap_page(WRITE, page, 0);

23 return 0;

24 }

==================== mm/swap_state.c 20 24 ====================
[kswapd()>do_try_to_free_pages()>page_launder()>swap_writepage()>rw_swap_page()]
107 void rw_swap_page(int rw, struct page *page, int wait)

108 {

109 swp_entry_t entry;

110

111 entry.val = page­>index;

112

113 if (!PageLocked(page))

114 PAGE_BUG(page);

115 if (!PageSwapCache(page))

116 PAGE_BUG(page);

117 if (page­>mapping != &swapper_space)

118 PAGE_BUG(page);

119 if (!rw_swap_page_base(rw, entry, page, wait))

120 UnlockPage(page);

121 }

shm_vm_ops open close
sys_shmget() sys_shmat() open fork()

ipc/shm.c

==================== ipc/shm.c 107 111 ====================
107 /* This is called by fork, once for every shm attach. */

108 static void shm_open (struct vm_area_struct *shmd)

109 {

110 shm_inc (shmd­>vm_file­>f_dentry­>d_inode­>i_ino);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

828

111 }

112

fork() vm_area_struct
vm_area_struct attaches

shm_open()
4 do_fork() do_fork() copy_mm() dup_mmap()

dup_mmap() kernel/fork.c

==================== kernel/fork.c 171 174 ====================
[sys_fork()>do_fork()>copy_mm()>dup_mmap()]
171 /* Copy the pages, but defer checking for errors */

172 retval = copy_page_range(mm, current­>mm, tmp);

173 if (!retval && tmp­>vm_ops && tmp­>vm_ops­>open)

174 tmp­>vm_ops­>open(tmp);

vm_area_struct tmp vm_ops vm_operations_struct
open shm_open()

exit()
shm_close()

6.7.3 shmdt()——

SHMAT
ipc() SHMDT

sys_shmdt() fork()

shm_vm_ops close shm_close()
sys_shmdt() ipc/shm.c

==================== ipc/shm.c 629 647 ====================
629 /*

630 * detach and kill segment if marked destroyed.

631 * The work is done in shm_close.

632 */

633 asmlinkage long sys_shmdt (char *shmaddr)

634 {

635 struct mm_struct *mm = current­>mm;

636 struct vm_area_struct *shmd, *shmdnext;

637

638 down(&mm­>mmap_sem);

639 for (shmd = mm­>mmap; shmd; shmd = shmdnext) {

640 shmdnext = shmd­>vm_next;

641 if (shmd­>vm_ops == &shm_vm_ops

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

829

642 && shmd­>vm_start ­ (shmd­>vm_pgoff << PAGE_SHIFT) == (ulong) shmaddr)

643 do_munmap(mm, shmd­>vm_start, shmd­>vm_end ­ shmd­>vm_start);

644 }

645 up(&mm­>mmap_sem);

646 return 0;

647 }

do_munmap() 2 vm_area_struct

vm_area_struct vm_operations_struct shm_vm_ops

6.7.4 shmctl()——

ipc() SHMCTL
sys_shmctl() SysV IPC

IPC_RMID
SHMCTL SHM_LOCK SHM_UNLOCK

SHMCTL shmid_kernel
SHM_LOCKED 1 shm inode shmem_inode_info

locked 1 shm inode union
shmem_inode_info

shmem_writepage() shm inode 1
shmem_writepage() 203 205 writepage

6.8

tty printf()

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

830

SysV IPC

SEMGT SEMOP SEMCTL sys_semget() sys_semop()
sys_semctl() ipc/sem.c include/linux/sem.h

6.8.1 semget()——

sys_semget() sys_msgget() sys_msgget()
newque() newary() newary() ipc/sem.c

==================== ipc/sem.c 112 148 ====================
112 static int newary (key_t key, int nsems, int semflg)

113 {

114 int id;

115 struct sem_array *sma;

116 int size;

117

118 if (!nsems)

119 return ­EINVAL;

120 if (used_sems + nsems > sc_semmns)

121 return ­ENOSPC;

122

123 size = sizeof (*sma) + nsems * sizeof (struct sem);

124 sma = (struct sem_array *) ipc_alloc(size);

125 if (!sma) {

126 return ­ENOMEM;

127 }

128 memset (sma, 0, size);

129 id = ipc_addid(&sem_ids, &sma­>sem_perm, sc_semmni);

130 if(id == ­1) {

131 ipc_free(sma, size);

132 return ­ENOSPC;

133 }

134 used_sems += nsems;

135

136 sma­>sem_perm.mode = (semflg & S_IRWXUGO);

137 sma­>sem_perm.key = key;

138

139 sma­>sem_base = (struct sem *) &sma[1];

140 /* sma­>sem_pending = NULL; */

141 sma­>sem_pending_last = &sma­>sem_pending;

142 /* sma­>undo = NULL; */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

831

143 sma­>sem_nsems = nsems;

144 sma­>sem_ctime = CURRENT_TIME;

145 sem_unlock(id);

146

147 return sem_buildid(id, sma­>sem_perm.seq);

148 }

sys_msgget() key semflg
nsems

sys_semget()
sem_array

include/linux/sem.h

==================== include/linux/sem.h 87 97 ====================
87 /* One sem_array data structure for each set of semaphores in the system. */

88 struct sem_array {

89 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */

90 time_t sem_otime; /* last semop time */

91 time_t sem_ctime; /* last change time */

92 struct sem *sem_base; /* ptr to first semaphore in array */

93 struct sem_queue *sem_pending; /* pending operations to be processed */

94 struct sem_queue **sem_pending_last; /* last pending operation */

95 struct sem_undo *undo; /* undo requests on this array */

96 unsigned long sem_nsems; /* no. of semaphores in array */

97 };

ipc_perm sem_array ipc_ids
sem_ids

==================== ipc/sem.c 74 74 ====================
74 static struct ipc_ids sem_ids;

entries ipc_id ipc_id p
ipc_perm sem_array SysV IPC

sem_array sem_base
sem

==================== include/linux/sem.h 81 85 ====================
81 /* One semaphore structure for each semaphore in the system. */

82 struct sem {

83 int semval; /* current value */

84 int sempid; /* pid of last operation */

85 };

nsems sem_array 123 124
sem_array &sma[1] 139

sys_semget()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

832

sys_semget()
SEMOP

sys_msgget() newary()

6.8.2 semop()——

SEMOP
sys_semop() ipc/sem.c

==================== ipc/sem.c 826 848 ====================
826 asmlinkage long sys_semop (int semid, struct sembuf *tsops, unsigned nsops)

827 {

828 int error = ­EINVAL;

829 struct sem_array *sma;

830 struct sembuf fast_sops[SEMOPM_FAST];

831 struct sembuf* sops = fast_sops, *sop;

832 struct sem_undo *un;

833 int undos = 0, decrease = 0, alter = 0;

834 struct sem_queue queue;

835

836 if (nsops < 1 || semid < 0)

837 return ­EINVAL;

838 if (nsops > sc_semopm)

839 return ­E2BIG;

840 if(nsops > SEMOPM_FAST) {

841 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);

842 if(sops==NULL)

843 return ­ENOMEM;

844 }

845 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {

846 error=­EFAULT;

847 goto out_free;

848 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

833

tsops sembuf nsops

sembuf include/linux/sem.h

==================== include/linux/sem.h 37 42 ====================
37 /* semop system calls takes an array of these. */

38 struct sembuf {

39 unsigned short sem_num; /* semaphore index in array */

40 short sem_op; /* semaphore operation */

41 short sem_flg; /* operation flags */

42 };

sem_num SEMGET sem_op

+1 ­1

sem_op 0
0 0 0

SEMOP SEMOP
sem_op ­1 +1 sembuf sem_flg
IPC_NOWAIT ­EAGAIN

SEM_UNDO exit()

sys_shmop() ipc/sem.c

==================== ipc/sem.c 849 892 ====================
849 sma = sem_lock(semid);

850 error=­EINVAL;

851 if(sma==NULL)

852 goto out_free;

853 error = ­EIDRM;

854 if (sem_checkid(sma,semid))

855 goto out_unlock_free;

856 error = ­EFBIG;

857 for (sop = sops; sop < sops + nsops; sop++) {

858 if (sop­>sem_num >= sma­>sem_nsems)

859 goto out_unlock_free;

860 if (sop­>sem_flg & SEM_UNDO)

861 undos++;

862 if (sop­>sem_op < 0)

863 decrease = 1;

864 if (sop­>sem_op > 0)

865 alter = 1;

866 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

834

867 alter |= decrease;

868

869 error = ­EACCES;

870 if (ipcperms(&sma­>sem_perm, alter ? S_IWUGO : S_IRUGO))

871 goto out_unlock_free;

872 if (undos) {

873 /* Make sure we have an undo structure

874 * for this process and this semaphore set.

875 */

876 un=current­>semundo;

877 while(un != NULL) {

878 if(un­>semid==semid)

879 break;

880 if(un­>semid==­1)

881 un=freeundos(sma,un);

882 else

883 un=un­>proc_next;

884 }

885 if (!un) {

886 error = alloc_undo(sma,&un,semid,alter);

887 if(error)

888 goto out_free;

889 }

890 } else

891 un = NULL;

892

sem_lock() sem_checkid() msg_lock() msg_checkid()
SEM_UNDO

ipcperms()
sys_semop() SEM_UNDO sem_undo

task_struct
sem_undo task_struct semundo

sem_undo include/linux/sem.h

==================== include/linux/sem.h 114 122 ====================
114 /* Each task has a list of undo requests. They are executed automatically

115 * when the process exits.

116 */

117 struct sem_undo {

118 struct sem_undo * proc_next; /* next entry on this process */

119 struct sem_undo * id_next; /* next entry on this semaphore set */

120 int semid; /* semaphore set identifier */

121 short * semadj; /* array of adjustments, one per semaphore */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

835

122 };

sem_array undo sem_undo sem_undo
proc_next id_next task_struct sem_array

6.9 alloc_undo() sem_undo

6.9

ipc/sem.c

==================== ipc/sem.c 893 896 ====================
[sys_semop()]
893 error = try_atomic_semop (sma, sops, nsops, un, current­>pid, 0);

894 if (error <= 0)

895 goto update;

896

try_atomic_semop()
ipc/sem.c

==================== ipc/sem.c 236 299 ====================
[sys_semop()>try_atomic_semop()]
236 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

836

237 * Determine whether a sequence of semaphore operations would succeed

238 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.

239 */

240

241 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,

242 int nsops, struct sem_undo *un, int pid,

243 int do_undo)

244 {

245 int result, sem_op;

246 struct sembuf *sop;

247 struct sem * curr;

248

249 for (sop = sops; sop < sops + nsops; sop++) {

250 curr = sma­>sem_base + sop­>sem_num;

251 sem_op = sop­>sem_op;

252

253 if (!sem_op && curr­>semval)

254 goto would_block;

255

256 curr­>sempid = (curr­>sempid << 16) | pid;

257 curr­>semval += sem_op;

258 if (sop­>sem_flg & SEM_UNDO)

259 un­>semadj[sop­>sem_num] ­= sem_op;

260

261 if (curr­>semval < 0)

262 goto would_block;

263 if (curr­>semval > SEMVMX)

264 goto out_of_range;

265 }

266

267 if (do_undo)

268 {

269 sop­­;

270 result = 0;

271 goto undo;

272 }

273

274 sma­>sem_otime = CURRENT_TIME;

275 return 0;

276

277 out_of_range:

278 result = ­ERANGE;

279 goto undo;

280

281 would_block:

282 if (sop­>sem_flg & IPC_NOWAIT)

283 result = ­EAGAIN;

284 else

285 result = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

837

286

287 undo:

288 while (sop >= sops) {

289 curr = sma­>sem_base + sop­>sem_num;

290 curr­>semval ­= sop­>sem_op;

291 curr­>sempid >>= 16;

292

293 if (sop­>sem_flg & SEM_UNDO)

294 un­>semadj[sop­>sem_num] += sop­>sem_op;

295 sop­­;

296 }

297

298 return result;

299 }

do_undo 0 sys_shmop() 893
for semval

0 for

SEMVMX
out_of_range ­ERANGE undo

while for
semval sempid

SEM_UNDO 1 sem_undo

would_block IPC_NOWAIT
undo while

sem_op 0 0
would_block

do_undo
for

try_atomic_semop() sys_semop() 0

“update
1

ipc/sem.c

==================== ipc/sem.c 897 964 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

838

[sys_semop()]
897 /* We need to sleep on this operation, so we put the current

898 * task into the pending queue and go to sleep.

899 */

900

901 queue.sma = sma;

902 queue.sops = sops;

903 queue.nsops = nsops;

904 queue.undo = un;

905 queue.pid = current­>pid;

906 queue.alter = decrease;

907 queue.id = semid;

908 if (alter)

909 append_to_queue(sma ,&queue);

910 else

911 prepend_to_queue(sma ,&queue);

912 current­>semsleeping = &queue;

913

914 for (;;) {

915 struct sem_array* tmp;

916 queue.status = ­EINTR;

917 queue.sleeper = current;

918 current­>state = TASK_INTERRUPTIBLE;

919 sem_unlock(semid);

920

921 schedule();

922

923 tmp = sem_lock(semid);

924 if(tmp==NULL) {

925 if(queue.status != ­EIDRM)

926 BUG();

927 current­>semsleeping = NULL;

928 error = ­EIDRM;

929 goto out_free;

930 }

931 /*

932 * If queue.status == 1 we where woken up and

933 * have to retry else we simply return.

934 * If an interrupt occurred we have to clean up the

935 * queue

936 *

937 */

938 if (queue.status == 1)

939 {

940 error = try_atomic_semop (sma, sops, nsops, un,

941 current­>pid,0);

942 if (error <= 0)

943 break;

944 } else {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

839

945 error = queue.status;

946 if (queue.prev) /* got Interrupt */

947 break;

948 /* Everything done by update_queue */

949 current­>semsleeping = NULL;

950 goto out_unlock_free;

951 }

952 }

953 current­>semsleeping = NULL;

954 remove_from_queue(sma,&queue);

955 update:

956 if (alter)

957 update_queue (sma);

958 out_unlock_free:

959 sem_unlock(semid);

960 out_free:

961 if(sops != fast_sops)

962 kfree(sops);

963 return error;

964 }

sem_queue sem_array
sem_pending sem_queue include/linux/sem.h

==================== include/linux/sem.h 99 112 ====================
99 /* One queue for each sleeping process in the system. */

100 struct sem_queue {

101 struct sem_queue * next; /* next entry in the queue */

102 struct sem_queue ** prev; /* previous entry in the queue, *(q­>prev) == q */

103 struct task_struct* sleeper; /* this process */

104 struct sem_undo * undo; /* undo structure */

105 int pid; /* process id of requesting process */

106 int status; /* completion status of operation */

107 struct sem_array * sma; /* semaphore array for operations */

108 int id; /* internal sem id */

109 struct sembuf * sops; /* array of pending operations */

110 int nsops; /* number of operations */

111 int alter; /* operation will alter semaphore */

112 };

sem_pending

tasks_struct semsleeping
sem_queue

921 schedule()
try_atomic_semop() 0 update

956

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

840

update_queue()
ipc/sem.c

==================== ipc/sem.c 301 330 ====================
[sys_semop()>update_queue()]
301 /* Go through the pending queue for the indicated semaphore

302 * looking for tasks that can be completed.

303 */

304 static void update_queue (struct sem_array * sma)

305 {

306 int error;

307 struct sem_queue * q;

308

309 for (q = sma­>sem_pending; q; q = q­>next) {

310

311 if (q­>status == 1)

312 continue; /* this one was woken up before */

313

314 error = try_atomic_semop(sma, q­>sops, q­>nsops,

315 q­>undo, q­>pid, q­>alter);

316

317 /* Does q­>sleeper still need to sleep? */

318 if (error <= 0) {

319 /* Found one, wake it up */

320 wake_up_process(q­>sleeper);

321 if (error == 0 && q­>alter) {

322 /* if q­> alter let it self try */

323 q­>status = 1;

324 return;

325 }

326 q­>status = error;

327 remove_from_queue(sma,q);

328 }

329 }

330 }

311 if (q­>status == 1) for
try_atomic_semop()

q­>alter

q­>status
try_atomic_semop()

q­>status 1
for

sem_queue

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

841

update_queue() q­>status 1
311 if

update_queue()

Linux
Linux

updat_queue()
916 q­>status ­EINTR

­EINTR
q­>status ­EIDRM

sys_semop() schedule() sem_lock()
sem_array

NULL queue.status
1 update_queue()

940 try_atomic_semop()
for 914

try_atomic_semop() 0
for sem_queue update
queue.status 1

sem_queue queue.prev 0 for 947
sem_queue update sys_semop()
­EINTR 916 963 update_queue()

for 950 out_lock_free
update_queue()

sys_semop() SEM_UNDO 1
exit()

exit()

sem_undo exit() sem_undo
4 do_exit()

sem_exit() exit()
semundo sem_undo

update_queue()
sem.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

842

6.8.3 semctl()——

msgctl() sys_semctl()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

843

7 socket

7.1 socket()

Unix IPC socket ”)

socket
Linux

Unix AT&T BSD
AT&T Unix SysV IPC

BSD BSD
TCP/IP Unix BSD

socket

AT&T BSD AT&T
Unix IPC Unix IPC

AT&T
BSD Unix

socket AT&T

SysV IPC socket
Linux

socket
socket

socket

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

844

address family protocol family
AF_INET IP AF_IPX Novell IPX

AF_X25 X.25
BSD AF_UNIX POSIX

AF_LOCAL

connection oriented connectionless
virtual circuit

”

”

datagram message oriented

”

”

AF_INET UDP

Linux
Unix

Unix

Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

845

Unix

Sys V IPC Linux socket
C c.1ib

socket sys_socketcall() net/socket.c

==================== net/socket.c 1512 1596 ====================
1512 /*

1513 * System call vectors.

1514 *

1515 * Argument checking cleaned up. Saved 20% in size.

1516 * This function doesn't need to set the kernel lock because

1517 * it is set by the callees.

1518 */

1519

1520 asmlinkage long sys_socketcall(int call, unsigned long *args)

1521 {

1522 unsigned long a[6];

1523 unsigned long a0,a1;

1524 int err;

1525

1526 if(call<1||call>SYS_RECVMSG)

1527 return ­EINVAL;

1528

1529 /* copy_from_user should be SMP safe. */

1530 if (copy_from_user(a, args, nargs[call]))

1531 return ­EFAULT;

1532

1533 a0=a[0];

1534 a1=a[1];

1535

1536 switch(call)

1537 {

1538 case SYS_SOCKET:

1539 err = sys_socket(a0,a1,a[2]);

1540 break;

1541 case SYS_BIND:

1542 err = sys_bind(a0,(struct sockaddr *)a1, a[2]);

1543 break;

1544 case SYS_CONNECT:

1545 err = sys_connect(a0, (struct sockaddr *)a1, a[2]);

1546 break;

1547 case SYS_LISTEN:

1548 err = sys_listen(a0,a1);

1549 break;

1550 case SYS_ACCEPT:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

846

1551 err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]);

1552 break;

1553 case SYS_GETSOCKNAME:

1554 err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]);

1555 break;

1556 case SYS_GETPEERNAME:

1557 err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]);

1558 break;

1559 case SYS_SOCKETPAIR:

1560 err = sys_socketpair(a0,a1, a[2], (int *)a[3]);

1561 break;

1562 case SYS_SEND:

1563 err = sys_send(a0, (void *)a1, a[2], a[3]);

1564 break;

1565 case SYS_SENDTO:

1566 err = sys_sendto(a0,(void *)a1, a[2], a[3],

1567 (struct sockaddr *)a[4], a[5]);

1568 break;

1569 case SYS_RECV:

1570 err = sys_recv(a0, (void *)a1, a[2], a[3]);

1571 break;

1572 case SYS_RECVFROM:

1573 err = sys_recvfrom(a0, (void *)a1, a[2], a[3],

1574 (struct sockaddr *)a[4], (int *)a[5]);

1575 break;

1576 case SYS_SHUTDOWN:

1577 err = sys_shutdown(a0,a1);

1578 break;

1579 case SYS_SETSOCKOPT:

1580 err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]);

1581 break;

1582 case SYS_GETSOCKOPT:

1583 err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]);

1584 break;

1585 case SYS_SENDMSG:

1586 err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]);

1587 break;

1588 case SYS_RECVMSG:

1589 err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]);

1590 break;

1591 default:

1592 err = ­EINVAL;

1593 break;

1594 }

1595 return err;

1596 }

call args

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

847

net/socket.c nargs[]

==================== net/socket.c 1505 1510 ====================
1505 /* Argument list sizes for sys_socketcall */

1506 #define AL(x) ((x) * sizeof(unsigned long))

1507 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),

1508 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),

1509 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};

1510 #undef AL

include/linux/net.h

==================== include/linux/net.h 30 46 ====================
30 #define SYS_SOCKET 1 /* sys_socket(2) */

31 #define SYS_BIND 2 /* sys_bind(2) */

32 #define SYS_CONNECT 3 /* sys_connect(2) */

33 #define SYS_LISTEN 4 /* sys_listen(2) */

34 #define SYS_ACCEPT 5 /* sys_accept(2) */

35 #define SYS_GETSOCKNAME 6 /* sys_getsockname(2) */

36 #define SYS_GETPEERNAME 7 /* sys_getpeername(2) */

37 #define SYS_SOCKETPAIR 8 /* sys_socketpair(2) */

38 #define SYS_SEND 9 /* sys_send(2) */

39 #define SYS_RECV 10 /* sys_recv(2) */

40 #define SYS_SENDTO 11 /* sys_sendto(2) */

41 #define SYS_RECVFROM 12 /* sys_recvfrom(2) */

42 #define SYS_SHUTDOWN 13 /* sys_shutdown(2) */

43 #define SYS_SETSOCKOPT 14 /* sys_setsockopt(2) */

44 #define SYS_GETSOCKOPT 15 /* sys_getsockopt(2) */

45 #define SYS_SENDMSG 16 /* sys_sendmsg(2) */

46 #define SYS_RECVMSG 17 /* sys_recvmsg(2) */

“2

7.1.1

• SYS_SOCKET libc
int socket(int domain, int type, int protocol);

protocol 0
0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

848

• SYS_BIND
IP

IP
Unix

int bind(int soekfd, struct sockaddr *my_addr, socklen_t addrlen);
sockfd socket() bind

socket() bind()

• SYS_SOCKETPAIR pipe()

int socketpair(int domain, int type, int protocal, int sv[2]);
socket() sv[]

• SYS_SHUTDOWN
int shutdown(int s, int how);
s how 0 1 2

close()

7.1.2

client/server

• SYS_LISTEN server listen()
server client

int listen(int s, int backlog)
s

server backlog
• SYS_CONNECT client connect() server

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);
sockfd client serv_addr server

server bind() server
addrlen

connect() server
• SYS_ACCEPT server accept()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

849

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);
s server addr addrlen

client accept()

server

server accept()
client fork()

server client
accept()

client/server

7.1.3

client server

read() write()

recv()/send() recvfrom()/sendto() recvmsg()/sendmsg()
”

7.1.4

read()
write()

read() write()

• SYS_SENDTO bind

sendto()
int sendto(int s, const void *msg, size_t len, int flags, const struct sockaddr *to, socklen_t
tolen);

to sockaddr

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

850

tolen
to NULL

tolen 0
SYS_SENDTO sys_sendto()

• SYS_SEND send()
int send(int s, const void *msg, size_t len, int flags);

sendto()

send()
connect() send()

connect()
connect() connect()

connect()

connect() connect()

SYS_SEND sys_send() sys_send() sys_sendto()
net/socket.c

==================== net/socket.c 1207 1210 ====================
[sys_socketcall()>sys_send()]
1207 asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags)

1208 {

1209 return sys_sendto(fd, buff, len, flags, NULL, 0);

1210 }

• SYS_SENDMSG sendmsg()

int sendmsg(int s, const struct msghdr *msg, int flags);
msg msghdr include/linux/net.h

==================== include/linux/socket.h 33 41 ====================
33 #define SYS_LISTEN 4 /* sys_listen(2) */

34 #define SYS_ACCEPT 5 /* sys_accept(2) */

35 #define SYS_GETSOCKNAME 6 /* sys_getsockname(2) */

36 #define SYS_GETPEERNAME 7 /* sys_getpeername(2) */

37 #define SYS_SOCKETPAIR 8 /* sys_socketpair(2) */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

851

38 #define SYS_SEND 9 /* sys_send(2) */

39 #define SYS_RECV 10 /* sys_recv(2) */

40 #define SYS_SENDTO 11 /* sys_sendto(2) */

41 #define SYS_RECVFROM 12 /* sys_recvfrom(2) */

msghdr msghdr msg_name
msg_iov

msg_control msg_controllen
Unix

sendto()
msg_name NULL msg_namelen 0

• SYS_RECV SYS_RECVFROM SYS_RECVMSG

int recv(int s, void *bur, size_t len, int flags);
int recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen);
int recvmsg(int s, struct msghdr *msg, int flags);

recv()
connect() recvfrom() from

from fromlen
SYS_RECV sys_recv() SYS_RECVFROM

sys_recvfrom() sys_send() sys_sendto() sys_recv()
sys_recvfrom() net/socket.c

==================== net/socket.c 1258 1261 ====================
[sys_socketcall()>sys_recv()]
1258 asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags)

1259 {

1260 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);

1261 }

recvfrom() from fromlen NULL recv()
recvmsg() sendmsg()

7.1.5

• SYS_GETSOCKNAME getsockname() s bind

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

852

int getsockname(int s, struct sockaddr *name, socklen_t *namelen);
• SYS_GETPEERNAME client server

getpeername() s

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);
• SYS_SETSOCKOPT SYS_GETSOCKOPT setsockopt() getsockopt()

s
Unix

socket Unix
(7.1)

7.1

7.2 sys_socket()——

SYS_SOCKET sys_socket() net/socket.c

==================== net/socket.c 889 909 ====================
[sys_socketcall()>sys_socket()]
889 asmlinkage long sys_socket(int family, int type, int protocol)

890 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

853

891 int retval;

892 struct socket *sock;

893

894 retval = sock_create(family, type, protocol, &sock);

895 if (retval < 0)

896 goto out;

897

898 retval = sock_map_fd(sock);

899 if (retval < 0)

900 goto out_release;

901

902 out:

903 /* It may be already another descriptor 8) Not kernel problem. */

904 return retval;

905

906 out_release:

907 sock_release(sock);

908 return retval;

909 }

sockfs net/socket.c

==================== net/socket.c 301 303 ====================
301 static struct vfsmount *sock_mnt;

302 static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super,

303 FS_NOMOUNT|FS_SINGLE);

kern_mount() vfsmount
sock_mnt sockfs

socket sock_create()
net/socket.c

==================== net/socket.c 814 859 ====================
[sys_socketcall()>sys_socket()>sock_create()]
814 int sock_create(int family, int type, int protocol, struct socket **res)

815 {

816 int i;

817 struct socket *sock;

818

819 /*

820 * Check protocol is in range

821 */

822 if(family<0 || family>=NPROTO)

823 return ­EAFNOSUPPORT;

824

825 /* Compatibility.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

854

826

827 This uglymoron is moved from INET layer to here to avoid

828 deadlock in module load.

829 */

830 if (family == PF_INET && type == SOCK_PACKET) {

831 static int warned;

832 if (!warned) {

833 warned = 1;

834 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current­>comm);

835 }

836 family = PF_PACKET;

837 }

838

839 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)

840 /* Attempt to load a protocol module if the find failed.

841 *

842 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user

843 * requested real, full­featured networking support upon configuration.

844 * Otherwise module support will break!

845 */

846 if (net_families[family]==NULL)

847 {

848 char module_name[30];

849 sprintf(module_name,"net­pf­%d",family);

850 request_module(module_name);

851 }

852 #endif

853

854 net_family_read_lock();

855 if (net_families[family] == NULL) {

856 i = ­EAFNOSUPPORT;

857 goto out;

858 }

859

Unix family
AF_UNIX

family
request_module() Unix

file_operations
Unix net_proto_family

net_families[]
Unix net_proto_family unix_family_ops net/unix/af_unix.c

==================== net/unix/af_unix.c 1844 1847 ====================
1844 struct net_proto_family unix_family_ops = {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

855

1845 PF_UNIX,

1846 unix_create

1847 };

Unix PF_UNIX unix_create PF_UNIX
net_families[]

sys_socket() net/socket.c

==================== net/socket.c 860 887 ====================
[sys_socketcall()>sys_socket()>sock_create()]
860 /*

861 * Allocate the socket and allow the family to set things up. if

862 * the protocol is 0, the family is instructed to select an appropriate

863 * default.

864 */

865

866 if (!(sock = sock_alloc()))

867 {

868 printk(KERN_WARNING "socket: no more sockets\n");

869 i = ­ENFILE; /* Not exactly a match, but its the

870 closest posix thing */

871 goto out;

872 }

873

874 sock­>type = type;

875

876 if ((i = net_families[family]­>create(sock, protocol)) < 0)

877 {

878 sock_release(sock);

879 goto out;

880 }

881

882 *res = sock;

883

884 out:

885 net_family_read_unlock();

886 return i;

887 }

socket include/linux/net.h

==================== include/linux/net.h 65 79 ====================
65 struct socket

66 {

67 socket_state state;

68

69 unsigned long flags;

70 struct proto_ops *ops;

71 struct inode *inode;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

856

72 struct fasync_struct *fasync_list; /* Asynchronous wake up list */

73 struct file *file; /* File back pointer for gc */

74 struct sock *sk;

75 wait_queue_head_t wait;

76

77 short type;

78 unsigned char passcred;

79 };

sock_alloc() socket net/socket.c

==================== net/socket.c 427 463 ====================
[sys_socketcall()>sys_socket()>sock_create()>sock_alloc()]
427 /**

428 * sock_alloc ­ allocate a socket

429 *

430 * Allocate a new inode and socket object. The two are bound together

431 * and initialised. The socket is then returned. If we are out of inodes

432 * NULL is returned.

433 */

434

435 struct socket *sock_alloc(void)

436 {

437 struct inode * inode;

438 struct socket * sock;

439

440 inode = get_empty_inode();

441 if (!inode)

442 return NULL;

443

444 inode­>i_sb = sock_mnt­>mnt_sb;

445 sock = socki_lookup(inode);

446

447 inode­>i_mode = S_IFSOCK|S_IRWXUGO;

448 inode­>i_sock = 1;

449 inode­>i_uid = current­>fsuid;

450 inode­>i_gid = current­>fsgid;

451

452 sock­>inode = inode;

453 init_waitqueue_head(&sock­>wait);

454 sock­>fasync_list = NULL;

455 sock­>state = SS_UNCONNECTED;

456 sock­>flags = 0;

457 sock­>ops = NULL;

458 sock­>sk = NULL;

459 sock­>file = NULL;

460

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

857

461 sockets_in_use[smp_processor_id()].counter++;

462 return sock;

463 }

inodc socket socket inode
inode inode

u union Linux
20 union 20 socket

445 socki_lookup() inode union socket net/socket.c

==================== net/socket.c 377 380 ====================
[sys_socketcall()>sys_socket()>sock_alloc()>socki_lookup()]
377 extern __inline__ struct socket *socki_lookup(struct inode *inode)

378 {

379 return &inode­>u.socket_i;

380 }

inode i_mode S_IFSOCK 1 i_sock 1
inode

socket unix_family_ops
create Unix unix_create() net/unix/af_unix.c

==================== net/unix/af_unix.c 498 523 ====================
[sys_socketcall()>sys_socket()>sock_create()>unix_create()]
498 static int unix_create(struct socket *sock, int protocol)

499 {

500 if (protocol && protocol != PF_UNIX)

501 return ­EPROTONOSUPPORT;

502

503 sock­>state = SS_UNCONNECTED;

504

505 switch (sock­>type) {

506 case SOCK_STREAM:

507 sock­>ops = &unix_stream_ops;

508 break;

509 /*

510 * Believe it or not BSD has AF_UNIX, SOCK_RAW though

511 * nothing uses it.

512 */

513 case SOCK_RAW:

514 sock­>type=SOCK_DGRAM;

515 case SOCK_DGRAM:

516 sock­>ops = &unix_dgram_ops;

517 break;

518 default:

519 return ­ESOCKTNOSUPPORT;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

858

520 }

521

522 return unix_create1(sock) ? 0 : ­ENOMEM;

523 }

protocol 0 Unix
SS_UNCONNECTED SOCK_STREAM

proto_ops
socket unix_stream_ops

unix_dgram_ops net/unix/af_unix.c

==================== net/unix/af_unix.c 1804 1842 ====================
1804 struct proto_ops unix_stream_ops = {

1805 family: PF_UNIX,

1806

1807 release: unix_release,

1808 bind: unix_bind,

1809 connect: unix_stream_connect,

1810 socketpair: unix_socketpair,

1811 accept: unix_accept,

1812 getname: unix_getname,

1813 poll: unix_poll,

1814 ioctl: unix_ioctl,

1815 listen: unix_listen,

1816 shutdown: unix_shutdown,

1817 setsockopt: sock_no_setsockopt,

1818 getsockopt: sock_no_getsockopt,

1819 sendmsg: unix_stream_sendmsg,

1820 recvmsg: unix_stream_recvmsg,

1821 mmap: sock_no_mmap,

1822 };

1823

1824 struct proto_ops unix_dgram_ops = {

1825 family: PF_UNIX,

1826

1827 release: unix_release,

1828 bind: unix_bind,

1829 connect: unix_dgram_connect,

1830 socketpair: unix_socketpair,

1831 accept: sock_no_accept,

1832 getname: unix_getname,

1833 poll: datagram_poll,

1834 ioctl: unix_ioctl,

1835 listen: sock_no_listen,

1836 shutdown: unix_shutdown,

1837 setsockopt: sock_no_setsockopt,

1838 getsockopt: sock_no_getsockopt,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

859

1839 sendmsg: unix_dgram_sendmsg,

1840 recvmsg: unix_dgram_recvmsg,

1841 mmap: sock_no_mmap,

1842 };

accept
sock_no_accept() ­EOPNOTSUPP

listen Unix setsockopt getsockopt mmap

unix_poll() unix_ioctl() sys_socketcall()

SOCK_STREAM SOCK_DGRAM SOCK_RAW
Unix SOCK_DGRAM 514 SOCK_DGRAM

514 break
unix_create() unix_create1() net/unix/af_unix.c

==================== net/unix/af_unix.c 464 496 ====================
[sys_socketcall()>sys_socket()>sock_create()>unix_create()>unix_create1()]
464 static struct sock * unix_create1(struct socket *sock)

465 {

466 struct sock *sk;

467

468 if (atomic_read(&unix_nr_socks) >= 2*files_stat.max_files)

469 return NULL;

470

471 MOD_INC_USE_COUNT;

472 sk = sk_alloc(PF_UNIX, GFP_KERNEL, 1);

473 if (!sk) {

474 MOD_DEC_USE_COUNT;

475 return NULL;

476 }

477

478 atomic_inc(&unix_nr_socks);

479

480 sock_init_data(sock,sk);

481

482 sk­>write_space = unix_write_space;

483

484 sk­>max_ack_backlog = sysctl_unix_max_dgram_qlen;

485 sk­>destruct = unix_sock_destructor;

486 sk­>protinfo.af_unix.dentry=NULL;

487 sk­>protinfo.af_unix.mnt=NULL;

488 sk­>protinfo.af_unix.lock = RW_LOCK_UNLOCKED;

489 atomic_set(&sk­>protinfo.af_unix.inflight, 0);

490 init_MUTEX(&sk­>protinfo.af_unix.readsem);/* single task reading lock */

491 init_waitqueue_head(&sk­>protinfo.af_unix.peer_wait);

492 sk­>protinfo.af_unix.list=NULL;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

860

493 unix_insert_socket(&unix_sockets_unbound, sk);

494

495 return sk;

496 }

socket sock
socket sk sock sock

socket socket sock
180

include/linux/net/sock.h
sock slab

sock sock_init_data()
net/socket.c

==================== net/core/sock.c 1117 1157 ====================
[sys_socketcall()>sys_socket()>sock_create()>unix_create()>unix_create1()>sock_init_data()]
1117

1118 asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)

1119 {

1120 struct socket *sock;

1121 char address[MAX_SOCK_ADDR];

1122 int len, err;

1123

1124 sock = sockfd_lookup(fd, &err);

1125 if (!sock)

1126 goto out;

1127 err = sock­>ops­>getname(sock, (struct sockaddr *)address, &len, 0);

1128 if (err)

1129 goto out_put;

1130 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);

1131

1132 out_put:

1133 sockfd_put(sock);

1134 out:

1135 return err;

1136 }

1137

1138 /*

1139 * Get the remote address ('name') of a socket object. Move the obtained

1140 * name to user space.

1141 */

1142

1143 asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)

1144 {

1145 struct socket *sock;

1146 char address[MAX_SOCK_ADDR];

1147 int len, err;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

861

1148

1149 if ((sock = sockfd_lookup(fd, &err))!=NULL)

1150 {

1151 err = sock­>ops­>getname(sock, (struct sockaddr *)address, &len, 1);

1152 if (!err)

1153 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);

1154 sockfd_put(sock);

1155 }

1156 return err;

1157 }

sock receive_queue write_queue error_queue
list_head

sk_buff_head include/linux/skbuff.h

==================== include/linux/skbuff.h 51 58 ====================
51 struct sk_buff_head {

52 /* These two members must be first. */

53 struct sk_buff * next;

54 struct sk_buff * prev;

55

56 __u32 qlen;

57 spinlock_t lock;

58 };

sk_buff ISO 7
4 3

packet

Unix
sk_buff receive_queue sk_buff

write_queue

sock sk_buff

sock
timer (1125 1130)

sock_init_data() sock
rcvbuf sndbuf 64K sock

state_change data_ready sock_def_wakeup() sock_def_readable()

unix_create1() sock sock socket
sk sock

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

862

sk­>write_space unix_write_space() sock
protinfo union Unix

union unix_opt af_unix include/net/sock.h

==================== include/net/sock.h 106 118 ====================
106 /* The AF_UNIX specific socket options */

107 struct unix_opt {

108 struct unix_address *addr;

109 struct dentry * dentry;

110 struct vfsmount * mnt;

111 struct semaphore readsem;

112 struct sock * other;

113 struct sock ** list;

114 struct sock * gc_tree;

115 atomic_t inflight;

116 rwlock_t lock;

117 wait_queue_head_t peer_wait;

118 };

addr unix_address bind
include/net/af_unix.h

==================== include/net/af_unix.h 20 26 ====================
20 struct unix_address

21 {

22 atomic_t refcnt;

23 int len;

24 unsigned hash;

25 struct sockaddr_un name[0];

26 };

sockaddr_un include/linux/un.h

==================== include/linux/un.h 4 9 ====================
4 #define UNIX_PATH_MAX 108

5

6 struct sockaddr_un {

7 sa_family_t sun_family; /* AF_UNIX */

8 char sun_path[UNIX_PATH_MAX]; /* pathname */

9 };

Unix unix_address name[]
0 unix_address sockaddr_un

108

addr af_unix readsem init_ MUTEX()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

863

1
sock unix_insert_socket() inline

==================== net/unix/af_unix.c 241 246 ====================
[sys_socketcall()>sys_socket()>sock_create()>unix_create()>unix_create1()>unix_insert_socket()]
241 static __inline__ void unix_insert_socket(unix_socket **list, unix_socket *sk)

242 {

243 write_lock(&unix_table_lock);

244 __unix_insert_socket(list, sk);

245 write_unlock(&unix_table_lock);

246 }

__unix_insert_socket() sock unix_socket sock
1 unix_socket_table[]

UNIX_HASH_SIZE+1 257 net/unix/af_unix.c

==================== net/unix/af_unix.c 118 118 ====================
118 unix_socket *unix_socket_table[UNIX_HASH_SIZE+1];

unix_socket include/net/afunix.h
unix_socket

==================== include/net/af_unix.h 6 6 ====================
6 typedef struct sock unix_socket;

unix_socket sock sock

unix_socket_table[UNIX_HASH_SIZE] [0,
UNIX_HASH_SIZE­1] unix_sockets_unbound net/unix/af_unix.c

==================== net/unix/af_unix.c 122 122 ====================
122 #define unix_sockets_unbound (unix_socket_table[UNIX_HASH_SIZE])

bind()
sock

socket sock socket
sock

socket inode inode union
socket

socket inode union inode
union inode

inode socket
socket

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

864

sock

socket sock sock_create() sys_socket()
sock_map_fd() net/socket.c

==================== net/socket.c 312 375 ====================
[sys_socketcall()>sys_socket()>sock_map_fd()]
312 /*

313 * Obtains the first available file descriptor and sets it up for use.

314 *

315 * This functions creates file structure and maps it to fd space

316 * of current process. On success it returns file descriptor

317 * and file struct implicitly stored in sock­>file.

318 * Note that another thread may close file descriptor before we return

319 * from this function. We use the fact that now we do not refer

320 * to socket after mapping. If one day we will need it, this

321 * function will inincrement ref. count on file by 1.

322 *

323 * In any case returned fd MAY BE not valid!

324 * This race condition is inavoidable

325 * with shared fd spaces, we cannot solve is inside kernel,

326 * but we take care of internal coherence yet.

327 */

328

329 static int sock_map_fd(struct socket *sock)

330 {

331 int fd;

332 struct qstr this;

333 char name[32];

334

335 /*

336 * Find a file descriptor suitable for return to the user.

337 */

338

339 fd = get_unused_fd();

340 if (fd >= 0) {

341 struct file *file = get_empty_filp();

342

343 if (!file) {

344 put_unused_fd(fd);

345 fd = ­ENFILE;

346 goto out;

347 }

348

349 sprintf(name, "[%lu]", sock­>inode­>i_ino);

350 this.name = name;

351 this.len = strlen(name);

352 this.hash = sock­>inode­>i_ino;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

865

353

354 file­>f_dentry = d_alloc(sock_mnt­>mnt_sb­>s_root, &this);

355 if (!file­>f_dentry) {

356 put_filp(file);

357 put_unused_fd(fd);

358 fd = ­ENOMEM;

359 goto out;

360 }

361 file­>f_dentry­>d_op = &sockfs_dentry_operations;

362 d_add(file­>f_dentry, sock­>inode);

363 file­>f_vfsmnt = mntget(sock_mnt);

364

365 sock­>file = file;

366 file­>f_op = sock­>inode­>i_fop = &socket_file_ops;

367 file­>f_mode = 3;

368 file­>f_flags = O_RDWR;

369 file­>f_pos = 0;

370 fd_install(fd, file);

371 }

372

373 out:

374 return fd;

375 }

socket sock
socket inode

file dentry
inode file f_dentry dentry

dentry inode
349

354 d_alloc() sockfs
362 d_add() dentry inodc deniry d_op

sockfs_dentry_operations
net/socket.c

==================== net/socket.c 308 310 ====================
308 static struct dentry_operations sockfs_dentry_operations = {

309 d_delete: sockfs_delete_dentry,

310 };

vfs
file f_op inode i_fop

socket_fs_ops fd file
socket_file_ops net/socket.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

866

==================== net/socket.c 114 126 ====================
114 static struct file_operations socket_file_ops = {

115 llseek: sock_lseek,

116 read: sock_read,

117 write: sock_write,

118 poll: sock_poll,

119 ioctl: sock_ioctl,

120 mmap: sock_mmap,

121 open: sock_no_open, /* special open code to disallow open via /proc */

122 release: sock_close,

123 fasync: sock_fasync,

124 readv: sock_readv,

125 writev: sock_writev

126 };

sys_socketcall() recv() socket
unix_stream_ops unix_dgram_ops

read() socket_fs_ops
sock_mapfd()

7.2
task_struct inode

unix_socket_table sock packet packet

unix_socke_table sock
sock socket inode

SYS_SOCKET SYS_SOCKETPAIR
SYS_SOCKETPAIR

fork() Unix

sock sock
pair sock

SYS_SOCKETPAIR sys_socketpair()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

867

7.2 socket

7.3 sys_bind()——

SYS_BIND sys_bind() net/socket.c

==================== net/socket.c 977 998 ====================
[sys_socketcall()>sys_bind()]
977 /*

978 * Bind a name to a socket. Nothing much to do here since it's

979 * the protocol's responsibility to handle the local address.

980 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

868

981 * We move the socket address to kernel space before we call

982 * the protocol layer (having also checked the address is ok).

983 */

984

985 asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)

986 {

987 struct socket *sock;

988 char address[MAX_SOCK_ADDR];

989 int err;

990

991 if((sock = sockfd_lookup(fd,&err))!=NULL)

992 {

993 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0)

994 err = sock­>ops­>bind(sock, (struct sockaddr *)address, addrlen);

995 sockfd_put(sock);

996 }

997 return err;

998 }

socket sockfd_lookup()
7.2 net/socket.c

==================== net/socket.c 382 420 ====================
[sys_socketcall()>sys_bind()>sockfd_lookup()]
382 /**

383 * sockfd_lookup ­ Go from a file number to its socket slot

384 * @fd: file handle

385 * @err: pointer to an error code return

386 *

387 * The file handle passed in is locked and the socket it is bound

388 * too is returned. If an error occurs the err pointer is overwritten

389 * with a negative errno code and NULL is returned. The function checks

390 * for both invalid handles and passing a handle which is not a socket.

391 *

392 * On a success the socket object pointer is returned.

393 */

394

395 struct socket *sockfd_lookup(int fd, int *err)

396 {

397 struct file *file;

398 struct inode *inode;

399 struct socket *sock;

400

401 if (!(file = fget(fd)))

402 {

403 *err = ­EBADF;

404 return NULL;

405 }

406

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

869

407 inode = file­>f_dentry­>d_inode;

408 if (!inode­>i_sock || !(sock = socki_lookup(inode)))

409 {

410 *err = ­ENOTSOCK;

411 fput(file);

412 return NULL;

413 }

414

415 if (sock­>file != file) {

416 printk(KERN_ERR "socki_lookup: socket file changed!\n");

417 sock­>file = file;

418 }

419 return sock;

420 }

socket ops
unix_stream_ops unix_dgram_ops bind unix_bind() Unix
bind unix_bind()

umyaddr
sys_socketcall()

988 address[] MAX_SOCK_ADDR 128
move_addr_to_kernel() addrlen

umyaddr sockaddr
include/linux/socket.h

==================== include/linux/socket.h 11 20 ====================
11 typedef unsigned short sa_family_t;

12

13 /*

14 * 1003.1g requires sa_family_t and that sa_data is char.

15 */

16

17 struct sockaddr {

18 sa_family_t sa_family; /* address family, AF_xxx */

19 char sa_data[14]; /* 14 bytes of protocol address */

20 };

sockaddr sa_data[] 14
addrlen sa_family

sa_data[] strlen()
Unix internet 4

IP 0 Unix
“\0 Unix

14
sa_family BSD Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

870

addrlen sa_family
sa_data[]

Unix sockaddr_un sockaddr
UNIX_PATH_MAX 108 address[]

MAX_SOCK_ADDR 128 address[]
sockaddr_un MAX_SOCK_ADDR

move_addr_to_kernel() net/socket.c

==================== net/socket.c 194 223 ====================
194 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain ­

195 16 for IP, 16 for IPX,

196 24 for IPv6,

197 about 80 for AX.25

198 must be at least one bigger than

199 the AF_UNIX size (see net/unix/af_unix.c

200 :unix_mkname()).

201 */

202

203 /**

204 * move_addr_to_kernel ­ copy a socket address into kernel space

205 * @uaddr: Address in user space

206 * @kaddr: Address in kernel space

207 * @ulen: Length in user space

208 *

209 * The address is copied into kernel space. If the provided address is

210 * too long an error code of ­EINVAL is returned. If the copy gives

211 * invalid addresses ­EFAULT is returned. On a success 0 is returned.

212 */

213

214 int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)

215 {

216 if(ulen<0||ulen>MAX_SOCK_ADDR)

217 return ­EINVAL;

218 if(ulen==0)

219 return 0;

220 if(copy_from_user(kaddr,uaddr,ulen))

221 return ­EFAULT;

222 return 0;

223 }

copy_from_user()
Unix bind unix_bind() net/unix/af_unix.c

==================== net/unix/af_unix.c 636 768 ====================
[sys_socketcall()>sys_bind()>unix_bind()]
636 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)

637 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

871

638 struct sock *sk = sock­>sk;

639 struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr;

640 struct dentry * dentry = NULL;

641 struct nameidata nd;

642 int err;

643 unsigned hash;

644 struct unix_address *addr;

645 unix_socket **list;

646

647 err = ­EINVAL;

648 if (sunaddr­>sun_family != AF_UNIX)

649 goto out;

650

651 if (addr_len==sizeof(short)) {

652 err = unix_autobind(sock);

653 goto out;

654 }

655

656 err = unix_mkname(sunaddr, addr_len, &hash);

657 if (err < 0)

658 goto out;

659 addr_len = err;

660

661 down(&sk­>protinfo.af_unix.readsem);

662

663 err = ­EINVAL;

664 if (sk­>protinfo.af_unix.addr)

665 goto out_up;

666

667 err = ­ENOMEM;

668 addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL);

669 if (!addr)

670 goto out_up;

671

672 memcpy(addr­>name, sunaddr, addr_len);

673 addr­>len = addr_len;

674 addr­>hash = hash^sk­>type;

675 atomic_set(&addr­>refcnt, 1);

676

677 if (sunaddr­>sun_path[0]) {

678 err = 0;

679 /*

680 * Get the parent directory, calculate the hash for last

681 * component.

682 */

683 if (path_init(sunaddr­>sun_path, LOOKUP_PARENT, &nd))

684 err = path_walk(sunaddr­>sun_path, &nd);

685 if (err)

686 goto out_mknod_parent;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

872

687 /*

688 * Yucky last component or no last component at all?

689 * (foo/., foo/.., /////)

690 */

691 err = ­EEXIST;

692 if (nd.last_type != LAST_NORM)

693 goto out_mknod;

694 /*

695 * Lock the directory.

696 */

697 down(&nd.dentry­>d_inode­>i_sem);

698 /*

699 * Do the final lookup.

700 */

701 dentry = lookup_hash(&nd.last, nd.dentry);

702 err = PTR_ERR(dentry);

703 if (IS_ERR(dentry))

704 goto out_mknod_unlock;

705 err = ­ENOENT;

706 /*

707 * Special case ­ lookup gave negative, but... we had foo/bar/

708 * From the vfs_mknod() POV we just have a negative dentry ­

709 * all is fine. Let's be bastards ­ you had / on the end, you've

710 * been asking for (non­existent) directory. ­ENOENT for you.

711 */

712 if (nd.last.name[nd.last.len] && !dentry­>d_inode)

713 goto out_mknod_dput;

714 /*

715 * All right, let's create it.

716 */

717 err = vfs_mknod(nd.dentry­>d_inode, dentry,

718 S_IFSOCK|sock­>inode­>i_mode, 0);

719 if (err)

720 goto out_mknod_dput;

721 up(&nd.dentry­>d_inode­>i_sem);

722 dput(nd.dentry);

723 nd.dentry = dentry;

724

725 addr­>hash = UNIX_HASH_SIZE;

726 }

727

728 write_lock(&unix_table_lock);

729

730 if (!sunaddr­>sun_path[0]) {

731 err = ­EADDRINUSE;

732 if (__unix_find_socket_byname(sunaddr, addr_len,

733 sk­>type, hash)) {

734 unix_release_addr(addr);

735 goto out_unlock;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

873

736 }

737

738 list = &unix_socket_table[addr­>hash];

739 } else {

740 list = &unix_socket_table[dentry­>d_inode­>i_ino & (UNIX_HASH_SIZE­1)];

741 sk­>protinfo.af_unix.dentry = nd.dentry;

742 sk­>protinfo.af_unix.mnt = nd.mnt;

743 }

744

745 err = 0;

746 __unix_remove_socket(sk);

747 sk­>protinfo.af_unix.addr = addr;

748 __unix_insert_socket(list, sk);

749

750 out_unlock:

751 write_unlock(&unix_table_lock);

752 out_up:

753 up(&sk­>protinfo.af_unix.readsem);

754 out:

755 return err;

756

757 out_mknod_dput:

758 dput(dentry);

759 out_mknod_unlock:

760 up(&nd.dentry­>d_inode­>i_sem);

761 out_mknod:

762 path_release(&nd);

763 out_mknod_parent:

764 if (err==­EEXIST)

765 err=­EADDRINUSE;

766 unix_release_addr(addr);

767 goto out_up;

768 }

Unix sockaddr sockaddr_un 638
UNIX_PATH_MAX 108 sys_bind()

address[] 128
addrlen 2 sa_family_t

652 unix_autobind()
af_unix.c unix_bind() unix_autobind()

move_addr_to_kernel()
unix_mkname() “sunaddr s socket un unix “Sun”

unix_mkname() net/unix/af_unix.c

==================== net/unix/af_unix.c 170 202 ====================
170 /*

171 * Check unix socket name:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

874

172 * ­ should be not zero length.

173 * ­ if started by not zero, should be NULL terminated (FS object)

174 * ­ if started by zero, it is abstract name.

175 */

176

177 static int unix_mkname(struct sockaddr_un * sunaddr, int len, unsigned *hashp)

178 {

179 if (len <= sizeof(short) || len > sizeof(*sunaddr))

180 return ­EINVAL;

181 if (!sunaddr || sunaddr­>sun_family != AF_UNIX)

182 return ­EINVAL;

183 if (sunaddr­>sun_path[0])

184 {

185 /*

186 * This may look like an off by one error but it is

187 * a bit more subtle. 108 is the longest valid AF_UNIX

188 * path for a binding. sun_path[108] doesnt as such

189 * exist. However in kernel space we are guaranteed that

190 * it is a valid memory location in our kernel

191 * address buffer.

192 */

193 if (len > sizeof(*sunaddr))

194 len = sizeof(*sunaddr);

195 ((char *)sunaddr)[len]=0;

196 len = strlen(sunaddr­>sun_path)+1+sizeof(short);

197 return len;

198 }

199

200 *hashp = unix_hash_fold(csum_partial((char*)sunaddr, len, 0));

201 return len;

202 }

Unix 0
0 “\0 unix_mkname()

0 195 196
unix_mkname() hashp

unix_bind()

pathwalk() inode
sock

Unix

unix_bind() 677 726 path_init()
path_walk()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

875

vfs_mknod() 717
fs/namei.c

==================== fs/namei.c 1176 1203 ====================
[sys_socketcall()>sys_bind()>unix_bind()>vfs_mknod()]
1176 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)

1177 {

1178 int error = ­EPERM;

1179

1180 mode &= ~current­>fs­>umask;

1181

1182 down(&dir­>i_zombie);

1183 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))

1184 goto exit_lock;

1185

1186 error = may_create(dir, dentry);

1187 if (error)

1188 goto exit_lock;

1189

1190 error = ­EPERM;

1191 if (!dir­>i_op || !dir­>i_op­>mknod)

1192 goto exit_lock;

1193

1194 DQUOT_INIT(dir);

1195 lock_kernel();

1196 error = dir­>i_op­>mknod(dir, dentry, mode, dev);

1197 unlock_kernel();

1198 exit_lock:

1199 up(&dir­>i_zombie);

1200 if (!error)

1201 inode_dir_notify(dir, DN_CREATE);

1202 return error;

1203 }

inode_operations
Ext2 Ext2

Ext2 Ext2 mknod ext2_mknod() ”

inode
vfs_mknod()

open()
inode inode inode

init_special_inodc() inode
vfs_mknod() S_IFSOCK

init_special_inode()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

876

==================== fs/devices.c 200 216 ====================
200 void init_special_inode(struct inode *inode, umode_t mode, int rdev)

201 {

202 inode­>i_mode = mode;

203 if (S_ISCHR(mode)) {

204 inode­>i_fop = &def_chr_fops;

205 inode­>i_rdev = to_kdev_t(rdev);

206 } else if (S_ISBLK(mode)) {

207 inode­>i_fop = &def_blk_fops;

208 inode­>i_rdev = to_kdev_t(rdev);

209 inode­>i_bdev = bdget(rdev);

210 } else if (S_ISFIFO(mode))

211 inode­>i_fop = &def_fifo_fops;

212 else if (S_ISSOCK(mode))

213 inode­>i_fop = &bad_sock_fops;

214 else

215 printk(KERN_DEBUG "init_special_inode: bogus imode (%o)\n", mode);

216 }

S_ISSOCK() S_IFSOCK inode
inode_operations i_fop bad_sock_fops fs/devices.c

==================== fs/devices.c 196 198 ====================
196 static struct file_operations bad_sock_fops = {

197 open: sock_no_open

198 };

==================== fs/devices.c 191 194 ====================
191 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)

192 {

193 return ­ENXIO;

194 }

open() Unix

unix_bind()
EADDRINUSE bind() unlink()

exit()
exit()

inode
sock

sock
socket inode

Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

877

0
sock unix_socket_table

sock
i i 8 740

i 8 ”

__unix_find_socket_byname()
net/unix/af_unix.c

==================== net/unix/af_unix.c 248 259 ====================
[sys_socketcall()>sys_bind()>unix_bind()>__unix_find_socket_byname()]
248 static unix_socket *__unix_find_socket_byname(struct sockaddr_un *sunname,

249 int len, int type, unsigned hash)

250 {

251 unix_socket *s;

252

253 for (s=unix_socket_table[hash^type]; s; s=s­>next) {

254 if(s­>protinfo.af_unix.addr­>len==len &&

255 memcmp(s­>protinfo.af_unix.addr­>name, sunname, len) == 0)

256 return s;

257 }

258 return NULL;

259 }

sock 746 748
sys_bind() sockfd_put() file

sockfd_lookup() fget() 0

7.4 sys_listen()—— server

client/server server
client

listen() server server
accept() client client accept()

connect()
sys_listen() net/socket.c

==================== net/socket.c 1003 1019 ====================
[sys_socketcall()>sys_listen()]
1003 * necessary for a listen, and if that works, we mark the socket as

1004 * ready for listening.

1005 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

878

1006

1007 asmlinkage long sys_listen(int fd, int backlog)

1008 {

1009 struct socket *sock;

1010 int err;

1011

1012 if ((sock = sockfd_lookup(fd, &err)) != NULL) {

1013 if ((unsigned) backlog > SOMAXCONN)

1014 backlog = SOMAXCONN;

1015 err=sock­>ops­>listen(sock, backlog);

1016 sockfd_put(sock);

1017 }

1018 return err;

1019 }

1020

1021

sys_bind() backlog
fd socket inode ops

proto_ops unix_stream_ops unix_dgram_ops
unix_dgram_ops listen sock_no_listen()

listen() unix_stream_ops listem unix_listen() net/unix/af_unix.c

==================== net/unix/af_unix.c 431 459 ====================
[sys_socketcall()>sys_listen()>unix_listen()]
431 static int unix_listen(struct socket *sock, int backlog)

432 {

433 int err;

434 struct sock *sk = sock­>sk;

435

436 err = ­EOPNOTSUPP;

437 if (sock­>type!=SOCK_STREAM)

438 goto out; /* Only stream sockets accept */

439 err = ­EINVAL;

440 if (!sk­>protinfo.af_unix.addr)

441 goto out; /* No listens on an unbound socket */

442 unix_state_wlock(sk);

443 if (sk­>state != TCP_CLOSE && sk­>state != TCP_LISTEN)

444 goto out_unlock;

445 if (backlog > sk­>max_ack_backlog)

446 wake_up_interruptible_all(&sk­>protinfo.af_unix.peer_wait);

447 sk­>max_ack_backlog=backlog;

448 sk­>state=TCP_LISTEN;

449 /* set credentials so connect can copy them */

450 sk­>peercred.pid = current­>pid;

451 sk­>peercred.uid = current­>euid;

452 sk­>peercred.gid = current­>egid;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

879

453 err = 0;

454

455 out_unlock:

456 unix_state_wunlock(sk);

457 out:

458 return err;

459 }

SOCK_STREAM bind()
listen() listen()

sock state TCP_CLOSE
TCP_LISTEN listen() seek_create()

sock_init_data() sock state
TCP_CLOSE TCP_CLOSE server TCP_LISTEN

server client

TCP TCP sock
TCP TCP

listen() 447 452
max_ack_backlog

credentials server

445 446

7.5 sys_accept()——

listen() server accept()
client accept()

accept() net/socket.c sys_accept() net/socket.c

==================== net/socket.c 1022 1078 ====================
[sys_socketcall()>sys_accept()]
1022 /*

1023 * For accept, we attempt to create a new socket, set up the link

1024 * with the client, wake up the client, then return the new

1025 * connected fd. We collect the address of the connector in kernel

1026 * space and move it to user at the very end. This is unclean because

1027 * we open the socket then return an error.

1028 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

880

1029 * 1003.1g adds the ability to recvmsg() to query connection pending

1030 * status to recvmsg. We need to add that support in a way thats

1031 * clean when we restucture accept also.

1032 */

1033

1034 asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)

1035 {

1036 struct socket *sock, *newsock;

1037 int err, len;

1038 char address[MAX_SOCK_ADDR];

1039

1040 sock = sockfd_lookup(fd, &err);

1041 if (!sock)

1042 goto out;

1043

1044 err = ­EMFILE;

1045 if (!(newsock = sock_alloc()))

1046 goto out_put;

1047

1048 newsock­>type = sock­>type;

1049 newsock­>ops = sock­>ops;

1050

1051 err = sock­>ops­>accept(sock, newsock, sock­>file­>f_flags);

1052 if (err < 0)

1053 goto out_release;

1054

1055 if (upeer_sockaddr) {

1056 if(newsock­>ops­>getname(newsock, (struct sockaddr *)address, &len, 2)<0) {

1057 err = ­ECONNABORTED;

1058 goto out_release;

1059 }

1060 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);

1061 if (err < 0)

1062 goto out_release;

1063 }

1064

1065 /* File flags are not inherited via accept() unlike another OSes. */

1066

1067 if ((err = sock_map_fd(newsock)) < 0)

1068 goto out_release;

1069

1070 out_put:

1071 sockfd_put(sock);

1072 out:

1073 return err;

1074

1075 out_release:

1076 sock_release(newsock);

1077 goto out_put;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

881

1078 }

listen() server

server accept()
server

sys_accept()
upeer_sockaddr

sockfd_lookup() server socket sock_alloc()
socket proto_ops Unix unix_stream_ops

unix_dgram_ops accept unix_dgram_ops
accept sock_no_accept() accept()

accept unix_accept() net/unix/af_unix.c

==================== net/unix/af_unix.c 1038 1074 ====================
[sys_socketcall()>sys_accept()>unix_accept()]
1038 static int unix_accept(struct socket *sock, struct socket *newsock, int flags)

1039 {

1040 unix_socket *sk = sock­>sk;

1041 unix_socket *tsk;

1042 struct sk_buff *skb;

1043 int err;

1044

1045 err = ­EOPNOTSUPP;

1046 if (sock­>type!=SOCK_STREAM)

1047 goto out;

1048

1049 err = ­EINVAL;

1050 if (sk­>state!=TCP_LISTEN)

1051 goto out;

1052

1053 /* If socket state is TCP_LISTEN it cannot change (for now...),

1054 * so that no locks are necessary.

1055 */

1056

1057 skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err);

1058 if (!skb)

1059 goto out;

1060

1061 tsk = skb­>sk;

1062 skb_free_datagram(sk, skb);

1063 wake_up_interruptible(&sk­>protinfo.af_unix.peer_wait);

1064

1065 /* attach accepted sock to socket */

1066 unix_state_wlock(tsk);

1067 newsock­>state = SS_CONNECTED;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

882

1068 sock_graft(tsk, newsock);

1069 unix_state_wunlock(tsk);

1070 return 0;

1071

1072 out:

1073 return err;

1074 }

sock
receive_queue packet sk_buff receive_queue

sk_buff

”

skb_recv_datagram() receive_queue
datagram

skb_recv_datagram() net/core/datagram.c

==================== net/core/datagram.c 109 179 ====================
[sys_socketcall()>sys_accept()>unix_accept()>skb_recv_datagram()]
109 /*

110 * Get a datagram skbuff, understands the peeking, nonblocking wakeups and possible

111 * races. This replaces identical code in packet,raw and udp, as well as the IPX

112 * AX.25 and Appletalk. It also finally fixes the long standing peek and read

113 * race for datagram sockets. If you alter this routine remember it must be

114 * re­entrant.

115 *

116 * This function will lock the socket if a skb is returned, so the caller

117 * needs to unlock the socket in that case (usually by calling skb_free_datagram)

118 *

119 * * It does not lock socket since today. This function is

120 * * free of race conditions. This measure should/can improve

121 * * significantly datagram socket latencies at high loads,

122 * * when data copying to user space takes lots of time.

123 * * (BTW I've just killed the last cli() in IP/IPv6/core/netlink/packet

124 * * 8) Great win.)

125 * * ­­ANK (980729)

126 *

127 * The order of the tests when we find no data waiting are specified

128 * quite explicitly by POSIX 1003.1g, don't change them without having

129 * the standard around please.

130 */

131

132 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err)

133 {

134 int error;

135 struct sk_buff *skb;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

883

136 long timeo;

137

138 /* Caller is allowed not to check sk­>err before skb_recv_datagram() */

139 error = sock_error(sk);

140 if (error)

141 goto no_packet;

142

143 timeo = sock_rcvtimeo(sk, noblock);

144

145 do {

146 /* Again only user level code calls this function, so nothing interrupt level

147 will suddenly eat the receive_queue.

148

149 Look at current nfs client by the way...

150 However, this function was corrent in any case. 8)

151 */

152 if (flags & MSG_PEEK)

153 {

154 unsigned long cpu_flags;

155

156 spin_lock_irqsave(&sk­>receive_queue.lock, cpu_flags);

157 skb = skb_peek(&sk­>receive_queue);

158 if(skb!=NULL)

159 atomic_inc(&skb­>users);

160 spin_unlock_irqrestore(&sk­>receive_queue.lock, cpu_flags);

161 } else

162 skb = skb_dequeue(&sk­>receive_queue);

163

164 if (skb)

165 return skb;

166

167 /* User doesn't want to wait */

168 error = ­EAGAIN;

169 if (!timeo)

170 goto no_packet;

171

172 } while (wait_for_packet(sk, err, &timeo) == 0);

173

174 return NULL;

175

176 no_packet:

177 *err = error;

178 return NULL;

179 }

sock err

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

884

0 sock_error() inline include/net/sock.h

==================== include/net/sock.h 1197 1205 ====================
[sys_socketcall()>sys_accept()>unix_accept()>skb_recv_datagram()>sock_error()]
1197 /*

1198 * Recover an error report and clear atomically

1199 */

1200

1201 static inline int sock_error(struct sock *sk)

1202 {

1203 int err=xchg(&sk­>err,0);

1204 return ­err;

1205 }

sk_buff
MSG_PEEK recv() recvfrom() flags

MSG_PEEK 1
O_NONBLOCK

accept()
noblock

skb_peek() skb_dequeue()
include/linux/skbuff.h

==================== include/linux/skbuff.h 513 531 ====================
[sys_socketcall()>sys_accept()>unix_accept()>skb_recv_datagram()>skb_dequeue()]
513 /**

514 * skb_dequeue ­ remove from the head of the queue

515 * @list: list to dequeue from

516 *

517 * Remove the head of the list. The list lock is taken so the function

518 * may be used safely with other locking list functions. The head item is

519 * returned or %NULL if the list is empty.

520 */

521

522 static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)

523 {

524 long flags;

525 struct sk_buff *result;

526

527 spin_lock_irqsave(&list­>lock, flags);

528 result = __skb_dequeue(list);

529 spin_unlock_irqrestore(&list­>lock, flags);

530 return result;

531 }

__skb_dequeue()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

885

==================== include/linux/skbuff.h 484 511 ====================
[sys_socketcall()>sys_accept()>unix_accept()>skb_recv_datagram()>skb_dequeue()>__skb_dequeue()]
484 /**

485 * __skb_dequeue ­ remove from the head of the queue

486 * @list: list to dequeue from

487 *

488 * Remove the head of the list. This function does not take any locks

489 * so must be used with appropriate locks held only. The head item is

490 * returned or %NULL if the list is empty.

491 */

492

493 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)

494 {

495 struct sk_buff *next, *prev, *result;

496

497 prev = (struct sk_buff *) list;

498 next = prev­>next;

499 result = NULL;

500 if (next != prev) {

501 result = next;

502 next = next­>next;

503 list­>qlen­­;

504 next­>prev = prev;

505 prev­>next = next;

506 result­>next = NULL;

507 result­>prev = NULL;

508 result­>list = NULL;

509 }

510 return result;

511 }

165 accept()
O_NONBLOCK 1 170 ­EAGAIN

wait_for_packet() net/core/datagram.c

==================== net/core/datagram.c 63 107 ====================
[sys_socketcall()>sys_accept()>unix_accept()>skb_recv_datagram()>wait_for_packet()]
63 static int wait_for_packet(struct sock * sk, int *err, long *timeo_p)

64 {

65 int error;

66

67 DECLARE_WAITQUEUE(wait, current);

68

69 __set_current_state(TASK_INTERRUPTIBLE);

70 add_wait_queue_exclusive(sk­>sleep, &wait);

71

72 /* Socket errors? */

73 error = sock_error(sk);

74 if (error)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

886

75 goto out;

76

77 if (!skb_queue_empty(&sk­>receive_queue))

78 goto ready;

79

80 /* Socket shut down? */

81 if (sk­>shutdown & RCV_SHUTDOWN)

82 goto out;

83

84 /* Sequenced packets can come disconnected. If so we report the problem */

85 error = ­ENOTCONN;

86 if(connection_based(sk) && !(sk­>state==TCP_ESTABLISHED || sk­>state==TCP_LISTEN))

87 goto out;

88

89 /* handle signals */

90 if (signal_pending(current))

91 goto interrupted;

92

93 *timeo_p = schedule_timeout(*timeo_p);

94

95 ready:

96 current­>state = TASK_RUNNING;

97 remove_wait_queue(sk­>sleep, &wait);

98 return 0;

99

100 interrupted:

101 error = sock_intr_errno(*timeo_p);

102 out:

103 current­>state = TASK_RUNNING;

104 remove_wait_queue(sk­>sleep, &wait);

105 *err = error;

106 return error;

107 }

sock sleep socket wait sock_init_data()
wait DECLARE_WAITQUEUE()

wait_for_packet()
wait_for_packet() wait sock sleep

schedule_timeout()
schedule_timeout()

wait_for_packet() 0 skb_recv_datagram() do­while
wait_for_packet() timeo_p

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

887

skb_dequeue()

165 timeo 0 170

wait_for_packet() 91 interrupted do­while

sys_accept() connect()
wait_for_packet()

unix_accept() 1058 skb sk_buff
include/linux/skbuff.h 100

Unix Unix sk_buff
sock sk sock tsk sock

tsk “task “target sock”

sys_accept() 1045 sock_alloc() socket
inode unix_accept() newsock sock_alloc() sock_create()
socket sock
sock client connect()

sk_buff tsk sock_graft() client tsk server
newsock 1068

==================== include/net/sock.h 1014 1021 ====================
[sys_socketcall()>sys_accept()>unix_accept()>sock_graft()]
1014 static inline void sock_graft(struct sock *sk, struct socket *parent)

1015 {

1016 write_lock_bh(&sk­>callback_lock);

1017 sk­>sleep = &parent­>wait;

1018 parent­>sk = sk;

1019 sk­>socket = parent;

1020 write_unlock_bh(&sk­>callback_lock);

1021 }

tsk client sock
socket SS_CONNECTED socket

sk_buff
server receive_queue

receive_queue
connect() Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

888

receive_queue
client server receive_queue

1063 wake_up_interruptible()
include/linux/sched.h

==================== include/linux/sched.h 558 558 ====================
558 #define wake_up_interruptible(x) __wake_up((x),TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

WQ_FLAG_EXCLUSIVE
sys_accept()

upeer_sockaddr proto_ops getname
unix_stream_ops getname unix_getname() net/unix/af_unix.c

==================== net/unix/af_unix.c 1077 1109 ====================
[sys_socketcall()>sys_accept()>unix_getname()]
1077 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer)

1078 {

1079 struct sock *sk = sock­>sk;

1080 struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr;

1081 int err = 0;

1082

1083 if (peer) {

1084 sk = unix_peer_get(sk);

1085

1086 err = ­ENOTCONN;

1087 if (!sk)

1088 goto out;

1089 err = 0;

1090 } else {

1091 sock_hold(sk);

1092 }

1093

1094 unix_state_rlock(sk);

1095 if (!sk­>protinfo.af_unix.addr) {

1096 sunaddr­>sun_family = AF_UNIX;

1097 sunaddr­>sun_path[0] = 0;

1098 *uaddr_len = sizeof(short);

1099 } else {

1100 struct unix_address *addr = sk­>protinfo.af_unix.addr;

1101

1102 *uaddr_len = addr­>len;

1103 memcpy(sunaddr, addr­>name, *uaddr_len);

1104 }

1105 unix_state_runlock(sk);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

889

1106 sock_put(sk);

1107 out:

1108 return err;

1109 }

peer
1 unix_peer_get() sock

pair sock newsock sock connect()
pair unix_peer_get()

sk sock

==================== net/unix/af_unix.c 152 162 ====================
[sys_socketcall()>sys_accept()>unix_getname()>unix_peer_get()]
152 static __inline__ unix_socket * unix_peer_get(unix_socket *s)

153 {

154 unix_socket *peer;

155

156 unix_state_rlock(s);

157 peer = unix_peer(s);

158 if (peer)

159 sock_hold(peer);

160 unix_state_runlock(s);

161 return peer;

162 }

==================== net/unix/af_unix.c 140 140 ====================
140 #define unix_peer(sk) ((sk)­>pair) sock_hold()

sock_hold() sock include/net/sock.h

==================== include/net/sock.h 972 981 ====================
[sys_socketcall()>sys_accept()>unix_getname()>sock_hold()]
972 /* Grab socket reference count. This operation is valid only

973 when sk is ALREADY grabbed f.e. it is found in hash table

974 or a list and the lookup is made under lock preventing hash table

975 modifications.

976 */

977

978 static inline void sock_hold(struct sock *sk)

979 {

980 atomic_inc(&sk­>refcnt);

981 }

server client server
bind() client

server Unix
client

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

890

unix_getname() sock
1095 1099

sys_accept()
file sock_map_fd() sys_socket()

7.6 sys_connect()——

connect()
sys_connect() proto_ops

sys_connect() net/socket.c

==================== net/socket.c 1081 1111 ====================
[sys_socketcall()>sys_connect()]
1081 /*

1082 * Attempt to connect to a socket with the server address. The address

1083 * is in user space so we verify it is OK and move it to kernel space.

1084 *

1085 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to

1086 * break bindings

1087 *

1088 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and

1089 * other SEQPACKET protocols that take time to connect() as it doesn't

1090 * include the ­EINPROGRESS status for such sockets.

1091 */

1092

1093 asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)

1094 {

1095 struct socket *sock;

1096 char address[MAX_SOCK_ADDR];

1097 int err;

1098

1099 sock = sockfd_lookup(fd, &err);

1100 if (!sock)

1101 goto out;

1102 err = move_addr_to_kernel(uservaddr, addrlen, address);

1103 if (err < 0)

1104 goto out_put;

1105 err = sock­>ops­>connect(sock, (struct sockaddr *) address, addrlen,

1106 sock­>file­>f_flags);

1107 out_put:

1108 sockfd_put(sock);

1109 out:

1110 return err;

1111 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

891

socket ops proto_ops unix
proto_ops unis_stream_ops
connect unix_stream_connect() unix_dgram_ops unix_dgram_connect()

client connect()
server server

unix_stream_connect() net/unix/af_unix.c

==================== net/unix/af_unix.c 852 892 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()]
852 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,

853 int addr_len, int flags)

854 {

855 struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr;

856 struct sock *sk = sock­>sk;

857 struct sock *newsk = NULL;

858 unix_socket *other = NULL;

859 struct sk_buff *skb = NULL;

860 unsigned hash;

861 int st;

862 int err;

863 long timeo;

864

865 err = unix_mkname(sunaddr, addr_len, &hash);

866 if (err < 0)

867 goto out;

868 addr_len = err;

869

870 if (sock­>passcred && !sk­>protinfo.af_unix.addr &&

871 (err = unix_autobind(sock)) != 0)

872 goto out;

873

874 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);

875

876 /* First of all allocate resources.

877 If we will make it after state is locked,

878 we will have to recheck all again in any case.

879 */

880

881 err = ­ENOMEM;

882

883 /* create new sock for complete connection */

884 newsk = unix_create1(NULL);

885 if (newsk == NULL)

886 goto out;

887

888 /* Allocate skb for sending to listening sock */

889 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

892

890 if (skb == NULL)

891 goto out;

892

unix_mkname()
sys_socket()

socket passcred “pass credentials
0 setsockopt() 1

unix_autobind()
871

accept() connect() server
server flags

O_NONBLOCK sock_sndtimeo()
inline include/net/sock.h

==================== include/net/sock.h 1249 1252 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock+sndtimeo()]
1249 static inline long sock_sndtimeo(struct sock *sk, int noblock)

1250 {

1251 return noblock ? 0 : sk­>sndtimeo;

1252 }

unix_create1() sock sys_socket()
sock server accept()

socket inode
sock Unix client

newsk server sk_buff
sock_wmalloc() net/core/sock.c

==================== net/core/sock.c 654 667 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_wmalloc()]
654 /*

655 * Allocate a skb from the socket's send buffer.

656 */

657 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, int priority)

658 {

659 if (force || atomic_read(&sk­>wmem_alloc) < sk­>sndbuf) {

660 struct sk_buff * skb = alloc_skb(size, priority);

661 if (skb) {

662 skb_set_owner_w(skb, sk);

663 return skb;

664 }

665 }

666 return NULL;

667 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

893

sk­>wmem_alloc sock sk_buff
sk­>sndbuf force 1

size sk_buff 1
16 16 skb_owner_w() sk_buff

include/net/sock.h

==================== include/net/sock.h 1125 1140 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_wmalloc()>skb_owner_w()]
1125 /*

1126 * Queue a received datagram if it will fit. Stream and sequenced

1127 * protocols can't normally use this as they need to fit buffers in

1128 * and play with them.

1129 *

1130 * Inlined as it's very short and called for pretty much every

1131 * packet ever received.

1132 */

1133

1134 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)

1135 {

1136 sock_hold(sk);

1137 skb­>sk = sk;

1138 skb­>destructor = sock_wfree;

1139 atomic_add(skb­>truesize, &sk­>wmem_alloc);

1140 }

sk server sock
destructor sock_wfree() server

skb­>truesize alloc_skb()
unix_stream_connect() sock sk_huff

net/unix/af_unix.c

==================== net/unix/af_unix.c 893 926 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()]
893 restart:

894 /* Find listening sock. */

895 other=unix_find_other(sunaddr, addr_len, sk­>type, hash, &err);

896 if (!other)

897 goto out;

898

899 /* Latch state of peer */

900 unix_state_rlock(other);

901

902 /* Apparently VFS overslept socket death. Retry. */

903 if (other­>dead) {

904 unix_state_runlock(other);

905 sock_put(other);

906 goto restart;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

894

907 }

908

909 err = ­ECONNREFUSED;

910 if (other­>state != TCP_LISTEN)

911 goto out_unlock;

912

913 if (skb_queue_len(&other­>receive_queue) > other­>max_ack_backlog) {

914 err = ­EAGAIN;

915 if (!timeo)

916 goto out_unlock;

917

918 timeo = unix_wait_for_peer(other, timeo);

919

920 err = sock_intr_errno(timeo);

921 if (signal_pending(current))

922 goto out;

923 sock_put(other);

924 goto restart;

925 }

926

unix_find_other() sock net/unix/af_unix.c

==================== net/unix/af_unix.c 589 633 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>unix_find_other()]
589 static unix_socket *unix_find_other(struct sockaddr_un *sunname, int len,

590 int type, unsigned hash, int *error)

591 {

592 unix_socket *u;

593 struct nameidata nd;

594 int err = 0;

595

596 if (sunname­>sun_path[0]) {

597 if (path_init(sunname­>sun_path,

598 LOOKUP_POSITIVE|LOOKUP_FOLLOW, &nd))

599 err = path_walk(sunname­>sun_path, &nd);

600 if (err)

601 goto fail;

602 err = permission(nd.dentry­>d_inode,MAY_WRITE);

603 if (err)

604 goto put_fail;

605

606 err = ­ECONNREFUSED;

607 if (!S_ISSOCK(nd.dentry­>d_inode­>i_mode))

608 goto put_fail;

609 u=unix_find_socket_byinode(nd.dentry­>d_inode);

610 if (!u)

611 goto put_fail;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

895

612

613 path_release(&nd);

614

615 err=­EPROTOTYPE;

616 if (u­>type != type) {

617 sock_put(u);

618 goto fail;

619 }

620 } else {

621 err = ­ECONNREFUSED;

622 u=unix_find_socket_byname(sunname, len, type, hash);

623 if (!u)

624 goto fail;

625 }

626 return u;

627

628 put_fail:

629 path_release(&nd);

630 fail:

631 *error=err;

632 return NULL;

633 }

path_init()
path_walk() dentry inode

unix_find_sock_byinode() unix_socket_table
sock unix_find_socket_byname()

unix_socket_table sock sock_hold()
refcnt 1

unix_stream_connect() 895 server sock other
sock sock

Unix server client SMP

client server sock
server

client server sock other
receive_queue server sock

(1) sock refcnt
sock_hold() 1

client unix_socket_table server sock
sock_hold() refcnt 1

(2)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

896

inline sock_put() sock refcnt 1 0
sock

==================== include/net/sock.h 991 996 ====================
991 /* Ungrab socket and destroy it, if it was the last reference. */

992 static inline void sock_put(struct sock *sk)

993 {

994 if (atomic_dec_and_test(&sk­>refcnt))

995 sk_free(sk);

996 }

==================== net/core/sock.c 585 606 ====================
[sock_put()>sk_free()]
585 void sk_free(struct sock *sk)

586 {

587 #ifdef CONFIG_FILTER

588 struct sk_filter *filter;

589 #endif

590

591 if (sk­>destruct)

592 sk­>destruct(sk);

593

594 #ifdef CONFIG_FILTER

595 filter = sk­>filter;

596 if (filter) {

597 sk_filter_release(sk, filter);

598 sk­>filter = NULL;

599 }

600 #endif

601

602 if (atomic_read(&sk­>omem_alloc))

603 printk(KERN_DEBUG "sk_free: optmem leakage (%d bytes) detected.\n",

atomic_read(&sk­>omem_alloc));

604

605 kmem_cache_free(sk_cachep, sk);

606 }

592 destruct sock
605 kmem_cache_free() sock

slab
(3) sock refcnt 1

refcnt 1
0 refcnt

sock dead sock refcnt 0

(4) sock sock

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

897

sock sock

receive_queue
unix_state_rlock()/unix_state_runlock()

unix_state_wlock()/unix_state_wunlock() sock
dead unix_state_rlock() sock

dead 1
sock unix_state_wlock()

unix_state_rlock()
unix_state_wlock() unix_state_rlock() unix_state_wlock()

spinlock
unix_stream_connect()

other­>dead unix_state_rlock() server sock
unix_state_wlock() unix_state_rlock()

sock sock refcnt 2
unix_socket_table server

sock other­>dead 0
sock_put() refcnt 1 1 refcnt 0

restart
sock 897

TCP_LISTEN
server accept() accept()

server sock
sys_listen()

client
918 unix_wait_for_peer() net/unix/af_unix.c

==================== net/unix/af_unix.c 830 850 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>unix_wait_for_peer()]
830 static long unix_wait_for_peer(unix_socket *other, long timeo)

831 {

832 int sched;

833 DECLARE_WAITQUEUE(wait, current);

834

835 __set_current_state(TASK_INTERRUPTIBLE);

836 add_wait_queue_exclusive(&other­>protinfo.af_unix.peer_wait, &wait);

837

838 sched = (!other­>dead &&

839 !(other­>shutdown&RCV_SHUTDOWN) &&

840 skb_queue_len(&other­>receive_queue) > other­>max_ack_backlog);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

898

841

842 unix_state_runlock(other);

843

844 if (sched)

845 timeo = schedule_timeout(timeo);

846

847 __set_current_state(TASK_RUNNING);

848 remove_wait_queue(&other­>protinfo.af_unix.peer_wait, &wait);

849 return timeo;

850 }

server wait_for_packet()
wait_queue_t peer_wait schedule_timeout()

unix_accept() server

unix_wait_for_peer() sock_put()

restart 924

server

server client
unix_stream_connect() net/unix/af_unix.c

==================== net/unix/af_unix.c 927 961 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()]
927 /* Latch our state.

928

929 It is tricky place. We need to grab write lock and cannot

930 drop lock on peer. It is dangerous because deadlock is

931 possible. Connect to self case and simultaneous

932 attempt to connect are eliminated by checking socket

933 state. other is TCP_LISTEN, if sk is TCP_LISTEN we

934 check this before attempt to grab lock.

935

936 Well, and we have to recheck the state after socket locked.

937 */

938 st = sk­>state;

939

940 switch (st) {

941 case TCP_CLOSE:

942 /* This is ok... continue with connect */

943 break;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

899

944 case TCP_ESTABLISHED:

945 /* Socket is already connected */

946 err = ­EISCONN;

947 goto out_unlock;

948 default:

949 err = ­EINVAL;

950 goto out_unlock;

951 }

952

953 unix_state_wlock(sk);

954

955 if (sk­>state != st) {

956 unix_state_wunlock(sk);

957 unix_state_runlock(other);

958 sock_put(other);

959 goto restart;

960 }

961

940 switch client TCP_CLOSE
sys_connect() unix_stream_connect()

fork()
client sock unix_stream_connect()

client unix_state_wlock()
952 955

unix_state_wlock() CPU
sock

938 960

net/unix/af_unix.c

==================== net/unix/af_unix.c 962 993 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()]
962 /* The way is open! Fastly set all the necessary fields... */

963

964 sock_hold(sk);

965 unix_peer(newsk)=sk;

966 newsk­>state=TCP_ESTABLISHED;

967 newsk­>type=SOCK_STREAM;

968 newsk­>peercred.pid = current­>pid;

969 newsk­>peercred.uid = current­>euid;

970 newsk­>peercred.gid = current­>egid;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

900

971 newsk­>sleep = &newsk­>protinfo.af_unix.peer_wait;

972

973 /* copy address information from listening to new sock*/

974 if (other­>protinfo.af_unix.addr)

975 {

976 atomic_inc(&other­>protinfo.af_unix.addr­>refcnt);

977 newsk­>protinfo.af_unix.addr=other­>protinfo.af_unix.addr;

978 }

979 if (other­>protinfo.af_unix.dentry) {

980 newsk­>protinfo.af_unix.dentry=dget(other­>protinfo.af_unix.dentry);

981 newsk­>protinfo.af_unix.mnt=mntget(other­>protinfo.af_unix.mnt);

982 }

983

984 /* Set credentials */

985 sk­>peercred = other­>peercred;

986

987 sock_hold(newsk);

988 unix_peer(sk)=newsk;

989 sock­>state=SS_CONNECTED;

990 sk­>state=TCP_ESTABLISHED;

991

992 unix_state_wunlock(sk);

993

sock client socket sk client
sock other server socket newsk sock

sock server accept() unix_peer()
net/unix/af_unix.c

==================== net/unix/af_unix.c 140 140 ====================
140 #define unix_peer(sk) ((sk)­>pair)

newsk­>pair sk sk­>pair newsk Unix
newsk server

accept() client sock
TCP_ESTABLISHED connect()
944

980 dget() dentry d_count ”

981 mntget()
sk_buff server sock receive_queue

skb net/unix/af_unix.c

==================== net/unix/af_unix.c 994 1013 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()]
994 /* take ten and and send info to listening sock */

995 skb_queue_tail(&other­>receive_queue,skb);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

901

996 unix_state_runlock(other);

997 other­>data_ready(other, 0);

998 sock_put(other);

999 return 0;

1000

1001 out_unlock:

1002 if (other)

1003 unix_state_runlock(other);

1004

1005 out:

1006 if (skb)

1007 kfree_skb(skb);

1008 if (newsk)

1009 unix_release_sock(newsk, 0);

1010 if (other)

1011 sock_put(other);

1012 return err;

1013 }

skb_queue_tail() inline include/linux/skbuff.h

==================== include/linux/skbuff.h 463 482 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>skb_queue_tail()]
463 /**

464 * skb_queue_tail ­ queue a buffer at the list tail

465 * @list: list to use

466 * @newsk: buffer to queue

467 *

468 * Queue a buffer at the tail of the list. This function takes the

469 * list lock and can be used safely with other locking &sk_buff functions

470 * safely.

471 *

472 * A buffer cannot be placed on two lists at the same time.

473 */

474

475 static inline void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)

476 {

477 unsigned long flags;

478

479 spin_lock_irqsave(&list­>lock, flags);

480 __skb_queue_tail(list, newsk);

481 spin_unlock_irqrestore(&list­>lock, flags);

482 }

==================== include/linux/skbuff.h 449 461 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>skb_queue_tail()>__skb_queue_tail()]
449 static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)

450 {

451 struct sk_buff *prev, *next;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

902

452

453 newsk­>list = list;

454 list­>qlen++;

455 next = (struct sk_buff *)list;

456 prev = next­>prev;

457 newsk­>next = next;

458 newsk­>prev = prev;

459 next­>prev = newsk;

460 prev­>next = newsk;

461 }

sock data_ready
sock receive_queue

997 “call back sock_init_data()
data_ready sock_def_readable() “call back

net/core/sock.c

==================== net/core/sock.c 1083 1090 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_def_readable()]
1083 void sock_def_readable(struct sock *sk, int len)

1084 {

1085 read_lock(&sk­>callback_lock);

1086 if (sk­>sleep && waitqueue_active(sk­>sleep))

1087 wake_up_interruptible(sk­>sleep);

1088 sk_wake_async(sk,1,POLL_IN);

1089 read_unlock(&sk­>callback_lock);

1090 }

server 1094 sock_wake_async()
server accept() accept() server

server accept()
accept() server

O_NONBLOCK accept() server
accept() server

server server O_NONBLOCK 1 server
server

O_NONBLOCK accept()
server

accept()

server server
accept()

ioctl()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

903

FIOASYNC
socket

fasync_list server ioctl() FIOASYNC
fasync_struct

file f_op file_operations socket_file_ops
fasync sock_fasync() server ioctl() FIOASYNC

fasync_struct
“call back sock_def_readable() sk_wake_async()

fasync_list include/net/sock.h

==================== include/net/sock.h 1219 1223 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_def_readable()>sk_wake_async()]
1219 static inline void sk_wake_async(struct sock *sk, int how, int band)

1220 {

1221 if (sk­>socket && sk­>socket­>fasync_list)

1222 sock_wake_async(sk­>socket, how, band);

1223 }

==================== net/socket.c 786 811 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_def_readable()>sk_wake_async()>sock_wake_async()]
786 /* This function may be called only under socket lock or callback_lock */

787

788 int sock_wake_async(struct socket *sock, int how, int band)

789 {

790 if (!sock || !sock­>fasync_list)

791 return ­1;

792 switch (how)

793 {

794 case 1:

795

796 if (test_bit(SOCK_ASYNC_WAITDATA, &sock­>flags))

797 break;

798 goto call_kill;

799 case 2:

800 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock­>flags))

801 break;

802 /* fall through */

803 case 0:

804 call_kill:

805 __kill_fasync(sock­>fasync_list, SIGIO, band);

806 break;

807 case 3:

808 __kill_fasync(sock­>fasync_list, SIGURG, band);

809 }

810 return 0;

811 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

904

how 1 band POLL_IN
__kill_fasync() fs/fcntl.c fasync_list

==================== fs/fcntl.c 482 499 ====================
[sys_socketcall()>sys_connect()>unix_stream_connect()>sock_def_readable()>sk_wake_async()>sock_wake_async()
>__kill_fasync()]
482 void __kill_fasync(struct fasync_struct *fa, int sig, int band)

483 {

484 while (fa) {

485 struct fown_struct * fown;

486 if (fa­>magic != FASYNC_MAGIC) {

487 printk(KERN_ERR "kill_fasync: bad magic number in "

488 "fasync_struct!\n");

489 return;

490 }

491 fown = &fa­>fa_file­>f_owner;

492 /* Don't send SIGURG to processes which have not set a

493 queued signum: SIGURG has its own default signalling

494 mechanism. */

495 if (fown­>pid && !(sig == SIGURG && fown­>signum == 0))

496 send_sigio(fown, fa­>fa_fd, band);

497 fa = fa­>fa_next;

498 }

499 }

server
sys_connect() sockfd_put() server accept()

socket sk_buff
sock unix_accept() 1068 newsock accept()

socket tsk sys_connect() sock unix
server accept() accept() server

receive_queue
connect() Unix proto_ops

unix_dgram_ops connect unix_dgram_connect()
connect()

(1)
(2)

(3) Unix
sock

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

905

sys_connect() Unix
unxi_dgram_connect() net/unix/af_unix.c

==================== net/unix/af_unix.c 770 828 ====================
[sys_socketcall()>sys_connect()>unix_dgram_connect()]
770 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,

771 int alen, int flags)

772 {

773 struct sock *sk = sock­>sk;

774 struct sockaddr_un *sunaddr=(struct sockaddr_un*)addr;

775 struct sock *other;

776 unsigned hash;

777 int err;

778

779 if (addr­>sa_family != AF_UNSPEC) {

780 err = unix_mkname(sunaddr, alen, &hash);

781 if (err < 0)

782 goto out;

783 alen = err;

784

785 if (sock­>passcred && !sk­>protinfo.af_unix.addr &&

786 (err = unix_autobind(sock)) != 0)

787 goto out;

788

789 other=unix_find_other(sunaddr, alen, sock­>type, hash, &err);

790 if (!other)

791 goto out;

792

793 unix_state_wlock(sk);

794

795 err = ­EPERM;

796 if (!unix_may_send(sk, other))

797 goto out_unlock;

798 } else {

799 /*

800 * 1003.1g breaking connected state with AF_UNSPEC

801 */

802 other = NULL;

803 unix_state_wlock(sk);

804 }

805

806 /*

807 * If it was connected, reconnect.

808 */

809 if (unix_peer(sk)) {

810 struct sock *old_peer = unix_peer(sk);

811 unix_peer(sk)=other;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

906

812 unix_state_wunlock(sk);

813

814 if (other != old_peer)

815 unix_dgram_disconnected(sk, old_peer);

816 sock_put(old_peer);

817 } else {

818 unix_peer(sk)=other;

819 unix_state_wunlock(sk);

820 }

821 return 0;

822

823 out_unlock:

824 unix_state_wunlock(sk);

825 sock_put(other);

826 out:

827 return err;

828 }

accept() connect()

unix_may_send() net/unix/af_unix.c

==================== net/unix/af_unix.c 140 150 ====================
[sys_socketcall()>sys_connect()>unix_dgram_connect()>unix_may_send()]
140 #define unix_peer(sk) ((sk)­>pair)

141

142 extern __inline__ int unix_our_peer(unix_socket *sk, unix_socket *osk)

143 {

144 return unix_peer(osk) == sk;

145 }

146

147 extern __inline__ int unix_may_send(unix_socket *sk, unix_socket *osk)

148 {

149 return (unix_peer(osk) == NULL || unix_our_peer(sk, osk));

150 }

unix_may_send() sock pair sock
sock sock

pair sock unix_dgram_conncct()
­EPERM

809 816 sock
pair sock

server unix_dgram_connect()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

907

unix_stream_connect()

7.7

libc recv()/send() recvfrom()/sendto() recvmsg()/sendmsg()
sys_socketcall()

send()
connect()

connect() send() sendto()
sendto()

NULL 0 sys_recv()
sys_recvfrom() sys_send() sys_sendto() NULL

0
sock_recvmsg() sock_sendmsg()

read() write() readv()
writev() recvmsg() sendmsg() 7.1
task_struct file file f_op

file_operations socket_file_ops socket.c

==================== net/socket.c 114 126 ====================
114 static struct file_operations socket_file_ops = {

115 llseek: sock_lseek,

116 read: sock_read,

117 write: sock_write,

118 poll: sock_poll,

119 ioctl: sock_ioctl,

120 mmap: sock_mmap,

121 open: sock_no_open, /* special open code to disallow open via /proc */

122 release: sock_close,

123 fasync: sock_fasync,

124 readv: sock_readv,

125 writev: sock_writev

126 };

sock_read() sock_write() net/socket.c
open()

open sock_no_open()
sock_write() sys_sendto() sock_write() sys_sendto()

sock_write()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

908

==================== net/socket.c 571 603 ====================
[sys_write()>sock_write()]
571 /*

572 * Write data to a socket. We verify that the user area ubuf..ubuf+size­1

573 * is readable by the user process.

574 */

575

576 static ssize_t sock_write(struct file *file, const char *ubuf,

577 size_t size, loff_t *ppos)

578 {

579 struct socket *sock;

580 struct msghdr msg;

581 struct iovec iov;

582

583 if (ppos != &file­>f_pos)

584 return ­ESPIPE;

585 if(size==0) /* Match SYS5 behaviour */

586 return 0;

587

588 sock = socki_lookup(file­>f_dentry­>d_inode);

589

590 msg.msg_name=NULL;

591 msg.msg_namelen=0;

592 msg.msg_iov=&iov;

593 msg.msg_iovlen=1;

594 msg.msg_control=NULL;

595 msg.msg_controllen=0;

596 msg.msg_flags=!(file­>f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;

597 if (sock­>type == SOCK_SEQPACKET)

598 msg.msg_flags |= MSG_EOR;

599 iov.iov_base=(void *)ubuf;

600 iov.iov_len=size;

601

602 return sock_sendmsg(sock, &msg, size);

603 }

sys_sendto()

==================== net/socket.c 1159 1201 ====================
[sys_socketcall()>sys_sendto()]
1159 /*

1160 * Send a datagram to a given address. We move the address into kernel

1161 * space and check the user space data area is readable before invoking

1162 * the protocol.

1163 */

1164

1165 asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,

1166 struct sockaddr *addr, int addr_len)

1167 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

909

1168 struct socket *sock;

1169 char address[MAX_SOCK_ADDR];

1170 int err;

1171 struct msghdr msg;

1172 struct iovec iov;

1173

1174 sock = sockfd_lookup(fd, &err);

1175 if (!sock)

1176 goto out;

1177 iov.iov_base=buff;

1178 iov.iov_len=len;

1179 msg.msg_name=NULL;

1180 msg.msg_iov=&iov;

1181 msg.msg_iovlen=1;

1182 msg.msg_control=NULL;

1183 msg.msg_controllen=0;

1184 msg.msg_namelen=addr_len;

1185 if(addr)

1186 {

1187 err = move_addr_to_kernel(addr, addr_len, address);

1188 if (err < 0)

1189 goto out_put;

1190 msg.msg_name=address;

1191 }

1192 if (sock­>file­>f_flags & O_NONBLOCK)

1193 flags |= MSG_DONTWAIT;

1194 msg.msg_flags = flags;

1195 err = sock_sendmsg(sock, &msg, len);

1196

1197 out_put:

1198 sockfd_put(sock);

1199 out:

1200 return err;

1201 }

sock_sendmsg()
sock_read() sys_recvmsg() sock_recvmsg()

sock_recvmsg() sock_sendmsg()
read()/write()

recvfrom()/sendto()
SOCK_STREAM

receive_queue
200 recv()

150 150
recv() 150 50

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

910

50
300

recv()
200 50

200
100 100 recv()

300 Unix

send()
read()

sock_recvmsg() sock_sendmsg() sys_sendto()

sys_sendmsg() sys_recvmsg() sys_sendto()
msghdr sock_sendmsg()

include/linux/socket.h

==================== include/linux/socket.h 27 53 ====================
27 /*

28 * As we do 4.4BSD message passing we use a 4.4BSD message passing

29 * system, not 4.3. Thus msg_accrights(len) are now missing. They

30 * belong in an obscure libc emulation or the bin.

31 */

32

33 struct msghdr {

34 void * msg_name; /* Socket name */

35 int msg_namelen; /* Length of name */

36 struct iovec * msg_iov; /* Data blocks */

37 __kernel_size_t msg_iovlen; /* Number of blocks */

38 void * msg_control; /* Per protocol magic (eg BSD file descriptor passing) */

39 __kernel_size_t msg_controllen; /* Length of cmsg list */

40 unsigned msg_flags;

41 };

42

43 /*

44 * POSIX 1003.1g ­ ancillary data object information

45 * Ancillary data consits of a sequence of pairs of

46 * (cmsghdr, cmsg_data[])

47 */

48

49 struct cmsghdr {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

911

50 __kernel_size_t cmsg_len; /* data byte count, including hdr */

51 int cmsg_level; /* originating protocol */

52 int cmsg_type; /* protocol­specific type */

53 };

msghdr msg_name msg_namelen msg_flags sys_sendto() addr
addr_len flags msg_control

cmsghdr cmsg_data[]
msg_iov iovec include/linux/uio.h msg_iovlen

==================== include/linux/uio.h 19 23 ====================
19 struct iovec

20 {

21 void *iov_base; /* BSD uses caddr_t (1003.1g requires void *) */

22 __kernel_size_t iov_len; /* Must be size_t (1003.1g) */

23 };

iovec “io iov_base
iov_len msghdr

msg_control
7.3

7.3

msghdr “io

Ethernet Ethernet packet frame 1500

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

912

Ethernet 100

msghdr

sys_sendto() msghdr sys_recvfrom()
sys_send() sys_recv() sys_sendto()

sys_recvfrom() addr NULL addrlen 0 read()
write() sock_write() sys_sendto()

sock_recvmsg() sys_recvfrom() net/socket.c

==================== net/socket.c 514 525 ====================
[sys_socketcall()>sys_recvmsg()]
514 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)

515 {

516 struct scm_cookie scm;

517

518 memset(&scm, 0, sizeof(scm));

519

520 size = sock­>ops­>recvmsg(sock, msg, size, flags, &scm);

521 if (size >= 0)

522 scm_recv(sock, msg, &scm, flags);

523

524 return size;

525 }

Unix unix_dgram_recvmsg()
unix_stream_recvmsg()

sys_recvfrom()

==================== net/socket.c 1212 1252 ====================
[sys_socketcall()>sys_recvfrom()]
1212 /*

1213 * Receive a frame from the socket and optionally record the address of the

1214 * sender. We verify the buffers are writable and if needed move the

1215 * sender address from kernel to user space.

1216 */

1217

1218 asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,

1219 struct sockaddr *addr, int *addr_len)

1220 {

1221 struct socket *sock;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

913

1222 struct iovec iov;

1223 struct msghdr msg;

1224 char address[MAX_SOCK_ADDR];

1225 int err,err2;

1226

1227 sock = sockfd_lookup(fd, &err);

1228 if (!sock)

1229 goto out;

1230

1231 msg.msg_control=NULL;

1232 msg.msg_controllen=0;

1233 msg.msg_iovlen=1;

1234 msg.msg_iov=&iov;

1235 iov.iov_len=size;

1236 iov.iov_base=ubuf;

1237 msg.msg_name=address;

1238 msg.msg_namelen=MAX_SOCK_ADDR;

1239 if (sock­>file­>f_flags & O_NONBLOCK)

1240 flags |= MSG_DONTWAIT;

1241 err=sock_recvmsg(sock, &msg, size, flags);

1242

1243 if(err >= 0 && addr != NULL && msg.msg_namelen)

1244 {

1245 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);

1246 if(err2<0)

1247 err=err2;

1248 }

1249 sockfd_put(sock);

1250 out:

1251 return err;

1252 }

sys_recvfrom() sock_recvmsg() net/socket.c

==================== net/socket.c 514 525 ====================
[sys_socketcall()>sys_recvfrom()>sock_recvmsg()]
514 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)

515 {

516 struct scm_cookie scm;

517

518 memset(&scm, 0, sizeof(scm));

519

520 size = sock­>ops­>recvmsg(sock, msg, size, flags, &scm);

521 if (size >= 0)

522 scm_recv(sock, msg, &scm, flags);

523

524 return size;

525 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

914

sys_recvmsg()

scm_cookie include/net/scm.h

==================== include/net/scm.h 4 20 ====================
4 /* Well, we should have at least one descriptor open

5 * to accept passed FDs 8)

6 */

7 #define SCM_MAX_FD (OPEN_MAX­1)

8

9 struct scm_fp_list

10 {

11 int count;

12 struct file *fp[SCM_MAX_FD];

13 };

14

15 struct scm_cookie

16 {

17 struct ucred creds; /* Skb credentials */

18 struct scm_fp_list *fp; /* Passed files */

19 unsigned long seq; /* Connection seqno */

20 };

credentials
ucred include/linux/socket.h

==================== include/linux/socket.h 125 129 ====================
125 struct ucred {

126 __u32 pid;

127 __u32 uid;

128 __u32 gid;

129 };

BSD Linux

OPEN_MAX include/linux/limits.h

==================== include/linux/limits.h 9 9 ====================
9 #define OPEN_MAX 256 /* # open files a process may have */

scm_fd_list
file fp[] OPEN_MAX­1

Unix sock­>ops unix_dgram_ops
unix_stream_ops recvmsg unix_dgram_recvmsg() unix_stream_recvmsg()

unix_dgram_recvmsg() net/unix/af_unix.c

==================== net/unix/af_unix.c 1398 1460 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

915

[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()]
1388 {

1389 msg­>msg_namelen = sizeof(short);

1390 if (sk­>protinfo.af_unix.addr) {

1391 msg­>msg_namelen=sk­>protinfo.af_unix.addr­>len;

1392 memcpy(msg­>msg_name,

1393 sk­>protinfo.af_unix.addr­>name,

1394 sk­>protinfo.af_unix.addr­>len);

1395 }

1396 }

1397

1398 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, int size,

1399 int flags, struct scm_cookie *scm)

1400 {

1401 struct sock *sk = sock­>sk;

1402 int noblock = flags & MSG_DONTWAIT;

1403 struct sk_buff *skb;

1404 int err;

1405

1406 err = ­EOPNOTSUPP;

1407 if (flags&MSG_OOB)

1408 goto out;

1409

1410 msg­>msg_namelen = 0;

1411

1412 skb = skb_recv_datagram(sk, flags, noblock, &err);

1413 if (!skb)

1414 goto out;

1415

1416 wake_up_interruptible(&sk­>protinfo.af_unix.peer_wait);

1417

1418 if (msg­>msg_name)

1419 unix_copy_addr(msg, skb­>sk);

1420

1421 if (size > skb­>len)

1422 size = skb­>len;

1423 else if (size < skb­>len)

1424 msg­>msg_flags |= MSG_TRUNC;

1425

1426 err = skb_copy_datagram_iovec(skb, 0, msg­>msg_iov, size);

1427 if (err)

1428 goto out_free;

1429

1430 scm­>creds = *UNIXCREDS(skb);

1431

1432 if (!(flags & MSG_PEEK))

1433 {

1434 if (UNIXCB(skb).fp)

1435 unix_detach_fds(scm, skb);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

916

1436 }

1437 else

1438 {

1439 /* It is questionable: on PEEK we could:

1440 ­ do not return fds ­ good, but too simple 8)

1441 ­ return fds, and do not return them on read (old strategy,

1442 apparently wrong)

1443 ­ clone fds (I choosed it for now, it is the most universal

1444 solution)

1445

1446 POSIX 1003.1g does not actually define this clearly

1447 at all. POSIX 1003.1g doesn't define a lot of things

1448 clearly however!

1449

1450 */

1451 if (UNIXCB(skb).fp)

1452 scm­>fp = scm_fp_dup(UNIXCB(skb).fp);

1453 }

1454 err = size;

1455

1456 out_free:

1457 skb_free_datagram(sk,skb);

1458 out:

1459 return err;

1460 }

flags MSG_OOB “out­of­band

“^c OOB
OOB

sock_recvmsg() MSG_OOB 1 1407
skb_recv_datagram()

sk_buff sys_accept()

msghdr msg_name NULL
1419 sys_recvfrom()

1245 unix_copy_addr()
net/unix/af_unix.c

==================== net/unix/af_unix.c 1387 1396 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>unix_copy_addr()]
1387 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)

1388 {

1389 msg­>msg_namelen = sizeof(short);

1390 if (sk­>protinfo.af_unix.addr) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

917

1391 msg­>msg_namelen=sk­>protinfo.af_unix.addr­>len;

1392 memcpy(msg­>msg_name,

1393 sk­>protinfo.af_unix.addr­>name,

1394 sk­>protinfo.af_unix.addr­>len);

1395 }

1396 }

1421 1424

msg_flags MSG_TRUNC 1
sk_buff msghdr iovec[]

skb_copy_datagram_iovec() net/core/datagram.c

==================== net/core/datagram.c 200 209 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>skb_copy_datagram_iovec()]
200 /*

201 * Copy a datagram to an iovec.

202 * Note: the iovec is modified during the copy.

203 */

204

205 int skb_copy_datagram_iovec(struct sk_buff *skb, int offset, struct iovec *to,

206 int size)

207 {

208 return memcpy_toiovec(to, skb­>h.raw + offset, size);

209 }

memcpy_toiovec() net/core/iovec.c

==================== net/core/iovec.c 76 103 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>skb_copy_datagram_iovec()>memcpy_toiovec()]
76 /*

77 * Copy kernel to iovec. Returns ­EFAULT on error.

78 *

79 * Note: this modifies the original iovec.

80 */

81

82 int memcpy_toiovec(struct iovec *iov, unsigned char *kdata, int len)

83 {

84 int err = ­EFAULT;

85

86 while(len>0)

87 {

88 if(iov­>iov_len)

89 {

90 int copy = min(iov­>iov_len, len);

91 if (copy_to_user(iov­>iov_base, kdata, copy))

92 goto out;

93 kdata+=copy;

94 len­=copy;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

918

95 iov­>iov_len­=copy;

96 iov­>iov_base+=copy;

97 }

98 iov++;

99 }

100 err = 0;

101 out:

102 return err;

103 }

Unix recvmsg()

sk_buff
scm_cookie unix_dgram_recvmsg() 1430 ucred

UNIXCREDS include/net/af_unix.h

==================== include/net/af_unix.h 28 35 ====================
28 struct unix_skb_parms

29 {

30 struct ucred creds; /* Skb credentials */

31 struct scm_fp_list *fp; /* Passed files */

32 };

33

34 #define UNIXCB(skb) (*(struct unix_skb_parms*)&((skb)­>cb))

35 #define UNIXCREDS(skb) (&UNIXCB((skb)).creds)

sk_buff 48 cb[]
unix_skb_parms

scm_cookie sk_buff

Unix
flags

MSG_PEEK 1
skb_recv_datagram() users

1 sk_buff
recv() MSG_PEEK 0

unix_detach_fds() net/unix/af_unix.c

==================== net/unix/af_unix.c 1111 1121 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>unix_detach_fds()]
1111 static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb)

1112 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

919

1113 int i;

1114

1115 scm­>fp = UNIXCB(skb).fp;

1116 skb­>destructor = sock_wfree;

1117 UNIXCB(skb).fp = NULL;

1118

1119 for (i=scm­>fp­>count­1; i>=0; i­­)

1120 unix_notinflight(scm­>fp­>fp[i]);

1121 }

sk_buff scm_fp_list cb unix_skb_parms
scm_cookie sock_wfree()

unix_notinflight() net/unix/garbage.c

==================== net/unix/garbage.c 130 137 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>unix_detach_fds()>unix_notinflight()]
130 void unix_notinflight(struct file *fp)

131 {

132 unix_socket *s=unix_get_socket(fp);

133 if(s) {

134 atomic_dec(&s­>protinfo.af_unix.inflight);

135 atomic_dec(&unix_tot_inflight);

136 }

137 }

unix_get_socket() file inode inode
Unix sock inode net/unix/garbage.c

==================== net/unix/garbage.c 95 114 ====================
[sys_socketcall()>sys_recvmsg()>unix_dgram_recvmsg()>unix_detach_fds()>unix_notinflight()>unix_get_socket()]
95 extern inline unix_socket *unix_get_socket(struct file *filp)

96 {

97 unix_socket * u_sock = NULL;

98 struct inode *inode = filp­>f_dentry­>d_inode;

99

100 /*

101 * Socket ?

102 */

103 if (inode­>i_sock) {

104 struct socket * sock = &inode­>u.socket_i;

105 struct sock * s = sock­>sk;

106

107 /*

108 * PF_UNIX ?

109 */

110 if (s && sock­>ops && sock­>ops­>family == PF_UNIX)

111 u_sock = s;

112 }

113 return u_sock;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

920

114 }

unix_dgram_recvmsg()
POSIX 1003.1g scm_cookie scm_fp_list

sk_buff 1457
sock_recvmsg() 521

inline scm_recv() include/net/scm.h

==================== include/net/scm.h 45 63 ====================
[sys_socketcall()>sys_recvfrom()>sock_recvmsg()>scm_recv()]
45 static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg,

46 struct scm_cookie *scm, int flags)

47 {

48 if (!msg­>msg_control)

49 {

50 if (sock­>passcred || scm­>fp)

51 msg­>msg_flags |= MSG_CTRUNC;

52 scm_destroy(scm);

53 return;

54 }

55

56 if (sock­>passcred)

57 put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm­>creds), &scm­>creds);

58

59 if (!scm­>fp)

60 return;

61

62 scm_detach_fds(msg, scm);

63 }

msghdr
scm_cookie 52 scm_cookie

scm_cookie sock_recvmsg()
recvmsg() sys_recvmsg()

msghdr msghdr
msghdr msg_control NULL recvmsg()

recvmsg()
put_cmsg()

net/coretscm.c
scm_cookie

scm_detach_fds()
net/core/scm.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

921

==================== net/core/scm.c 203 260 ====================
[sys_socketcall()>sys_recvfrom()>sock_recvmsg()>scm_recv()>scm_detach_fds()]
203 void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm)

204 {

205 struct cmsghdr *cm = (struct cmsghdr*)msg­>msg_control;

206

207 int fdmax = 0;

208 int fdnum = scm­>fp­>count;

209 struct file **fp = scm­>fp­>fp;

210 int *cmfptr;

211 int err = 0, i;

212

213 if (msg­>msg_controllen > sizeof(struct cmsghdr))

214 fdmax = ((msg­>msg_controllen ­ sizeof(struct cmsghdr))

215 / sizeof(int));

216

217 if (fdnum < fdmax)

218 fdmax = fdnum;

219

220 for (i=0, cmfptr=(int*)CMSG_DATA(cm); i<fdmax; i++, cmfptr++)

221 {

222 int new_fd;

223 err = get_unused_fd();

224 if (err < 0)

225 break;

226 new_fd = err;

227 err = put_user(new_fd, cmfptr);

228 if (err) {

229 put_unused_fd(new_fd);

230 break;

231 }

232 /* Bump the usage count and install the file. */

233 get_file(fp[i]);

234 fd_install(new_fd, fp[i]);

235 }

236

237 if (i > 0)

238 {

239 int cmlen = CMSG_LEN(i*sizeof(int));

240 if (!err)

241 err = put_user(SOL_SOCKET, &cm­>cmsg_level);

242 if (!err)

243 err = put_user(SCM_RIGHTS, &cm­>cmsg_type);

244 if (!err)

245 err = put_user(cmlen, &cm­>cmsg_len);

246 if (!err) {

247 cmlen = CMSG_SPACE(i*sizeof(int));

248 msg­>msg_control += cmlen;

249 msg­>msg_controllen ­= cmlen;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

922

250 }

251 }

252 if (i < fdnum || (fdnum && fdmax <= 0))

253 msg­>msg_flags |= MSG_CTRUNC;

254

255 /*

256 * All of the files that fit in the message have had their

257 * usage counts incremented, so we just free the list.

258 */

259 __scm_destroy(scm);

260 }

fdmax msghdr fdnum
scm_cookie

scm_cookie fp
scm_fp_list file

file

220 for
new_fd

put_user() msg­>msg_control

file
get_file()

new_fd
msg­>msg_control cmsghdr

cmsghdr cmlen
__scm_destroy() scm_cookie scm_fp_list

accept() fork()
client accept()

fork()
accept()

fork()
receive_queue

skb_recv_datagram()
accept() connect()

Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

923

sock_recvmsg() sock_sendmsg() net/socket.c

==================== net/socket.c 501 512 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()]
501 int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)

502 {

503 int err;

504 struct scm_cookie scm;

505

506 err = scm_send(sock, msg, &scm);

507 if (err >= 0) {

508 err = sock­>ops­>sendmsg(sock, msg, size, &scm);

509 scm_destroy(&scm);

510 }

511 return err;

512 }

inline scm_send() include/net/scm.h
sendmsg() sys_sendmsg()

msghdr msghdr
msg_control NULL

==================== include/net/scm.h 33 43 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()]
33 static __inline__ int scm_send(struct socket *sock, struct msghdr *msg,

34 struct scm_cookie *scm)

35 {

36 memset(scm, 0, sizeof(*scm));

37 scm­>creds.uid = current­>uid;

38 scm­>creds.gid = current­>gid;

39 scm­>creds.pid = current­>pid;

40 if (msg­>msg_controllen <= 0)

41 return 0;

42 return __scm_send(sock, msg, scm);

43 }

==================== net/core/scm.c 114 169 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>__scm_send()]
114 int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *p)

115 {

116 struct cmsghdr *cmsg;

117 int err;

118

119 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg))

120 {

121 err = ­EINVAL;

122

123 /* Verify that cmsg_len is at least sizeof(struct cmsghdr) */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

924

124 /* The first check was omitted in <= 2.2.5. The reasoning was

125 that parser checks cmsg_len in any case, so that

126 additional check would be work duplication.

127 But if cmsg_level is not SOL_SOCKET, we do not check

128 for too short ancillary data object at all! Oops.

129 OK, let's add it...

130 */

131 if (cmsg­>cmsg_len < sizeof(struct cmsghdr) ||

132 (unsigned long)(((char*)cmsg ­ (char*)msg­>msg_control)

133 + cmsg­>cmsg_len) > msg­>msg_controllen)

134 goto error;

135

136 if (cmsg­>cmsg_level != SOL_SOCKET)

137 continue;

138

139 switch (cmsg­>cmsg_type)

140 {

141 case SCM_RIGHTS:

142 err=scm_fp_copy(cmsg, &p­>fp);

143 if (err<0)

144 goto error;

145 break;

146 case SCM_CREDENTIALS:

147 if (cmsg­>cmsg_len != CMSG_LEN(sizeof(struct ucred)))

148 goto error;

149 memcpy(&p­>creds, CMSG_DATA(cmsg), sizeof(struct ucred));

150 err = scm_check_creds(&p­>creds);

151 if (err)

152 goto error;

153 break;

154 default:

155 goto error;

156 }

157 }

158

159 if (p­>fp && !p­>fp­>count)

160 {

161 kfree(p­>fp);

162 p­>fp = NULL;

163 }

164 return 0;

165

166 error:

167 scm_destroy(p);

168 return err;

169 }

scm_recv()
Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

925

unix_dgram_sendmsg()

==================== net/unix/af_unix.c 1145 1185 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()]
1145 /*

1146 * Send AF_UNIX data.

1147 */

1148

1149 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, int len,

1150 struct scm_cookie *scm)

1151 {

1152 struct sock *sk = sock­>sk;

1153 struct sockaddr_un *sunaddr=msg­>msg_name;

1154 unix_socket *other = NULL;

1155 int namelen = 0; /* fake GCC */

1156 int err;

1157 unsigned hash;

1158 struct sk_buff *skb;

1159 long timeo;

1160

1161 err = ­EOPNOTSUPP;

1162 if (msg­>msg_flags&MSG_OOB)

1163 goto out;

1164

1165 if (msg­>msg_namelen) {

1166 err = unix_mkname(sunaddr, msg­>msg_namelen, &hash);

1167 if (err < 0)

1168 goto out;

1169 namelen = err;

1170 } else {

1171 sunaddr = NULL;

1172 err = ­ENOTCONN;

1173 other = unix_peer_get(sk);

1174 if (!other)

1175 goto out;

1176 }

1177

1178 if (sock­>passcred && !sk­>protinfo.af_unix.addr &&

1179 (err = unix_autobind(sock)) != 0)

1180 goto out;

1181

1182 err = ­EMSGSIZE;

1183 if ((unsigned)len > sk­>sndbuf ­ 32)

1184 goto out;

1185

OOB MSG_DONTWAIT
MSG_NOSIGNAL unix_mkname()

connect()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

926

unix_peer_get() sock
connect() ­ENOTCONN

passcred
bind() unix_autobind()

sock sndbuf 32 1183
iovec[]

iovec[]

==================== net/unix/af_unix.c 1186 1200 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()]
1186 skb = sock_alloc_send_skb(sk, len, 0, msg­>msg_flags&MSG_DONTWAIT, &err);

1187 if (skb==NULL)

1188 goto out;

1189

1190 memcpy(UNIXCREDS(skb), &scm­>creds, sizeof(struct ucred));

1191 if (scm­>fp)

1192 unix_attach_fds(scm, skb);

1193

1194 skb­>h.raw = skb­>data;

1195 err = memcpy_fromiovec(skb_put(skb,len), msg­>msg_iov, len);

1196 if (err)

1197 goto out_free;

1198

1199 timeo = sock_sndtimeo(sk, msg­>msg_flags & MSG_DONTWAIT);

1200

sk_buff sock_sendmsg()
proto_ops unix_dgram_sendmsg() scm_cookie

msghdr sk_buff
1190 1195 unix_attach_fds()

net/unix/af_unix.c

==================== net/unix/af_unix.c 1135 1143 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()>unix_attach_fds()]
1135 static void unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb)

1136 {

1137 int i;

1138 for (i=scm­>fp­>count­1; i>=0; i­­)

1139 unix_inflight(scm­>fp­>fp[i]);

1140 UNIXCB(skb).fp = scm­>fp;

1141 skb­>destructor = unix_destruct_fds;

1142 scm­>fp = NULL;

1143 }

Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

927

unix_notinflight() unix_inflight() net/unix/garbage.c

==================== net/unix/garbage.c 116 128 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()>unix_attach_fds()>unix_inflight()]
116 /*

117 * Keep the number of times in flight count for the file

118 * descriptor if it is for an AF_UNIX socket.

119 */

120

121 void unix_inflight(struct file *fp)

122 {

123 unix_socket *s=unix_get_socket(fp);

124 if(s) {

125 atomic_inc(&s­>protinfo.af_unix.inflight);

126 atomic_inc(&unix_tot_inflight);

127 }

128 }

sk_buff
msghdr sk_buff

memcpy_fromiovec() memcpy_toiovec()
inline skb_put() sk_buff skb­>tail

skb­>len skb­>tail 1195 include/linux/skbuff.h

==================== include/linux/skbuff.h 694 713 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()>skb_put()]
694 /**

695 * skb_put ­ add data to a buffer

696 * @skb: buffer to use

697 * @len: amount of data to add

698 *

699 * This function extends the used data area of the buffer. If this would

700 * exceed the total buffer size the kernel will panic. A pointer to the

701 * first byte of the extra data is returned.

702 */

703

704 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)

705 {

706 unsigned char *tmp=skb­>tail;

707 skb­>tail+=len;

708 skb­>len+=len;

709 if(skb­>tail>skb­>end) {

710 skb_over_panic(skb, len, current_text_addr());

711 }

712 return tmp;

713 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

928

inline sock_sndtimeo()

==================== include/net/sock.h 1249 1252 ====================
1249 static inline long sock_sndtimeo(struct sock *sk, int noblock)

1250 {

1251 return noblock ? 0 : sk­>sndtimeo;

1252 }

sk_buff

==================== net/unix/af_unix.c 1201 1247 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()]
1201 restart:

1202 if (!other) {

1203 err = ­ECONNRESET;

1204 if (sunaddr == NULL)

1205 goto out_free;

1206

1207 other = unix_find_other(sunaddr, namelen, sk­>type, hash, &err);

1208 if (other==NULL)

1209 goto out_free;

1210 }

1211

1212 unix_state_rlock(other);

1213 err = ­EPERM;

1214 if (!unix_may_send(sk, other))

1215 goto out_unlock;

1216

1217 if (other­>dead) {

1218 /*

1219 * Check with 1003.1g ­ what should

1220 * datagram error

1221 */

1222 unix_state_runlock(other);

1223 sock_put(other);

1224

1225 err = 0;

1226 unix_state_wlock(sk);

1227 if (unix_peer(sk) == other) {

1228 unix_peer(sk)=NULL;

1229 unix_state_wunlock(sk);

1230

1231 unix_dgram_disconnected(sk, other);

1232 sock_put(other);

1233 err = ­ECONNREFUSED;

1234 } else {

1235 unix_state_wunlock(sk);

1236 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

929

1237

1238 other = NULL;

1239 if (err)

1240 goto out_free;

1241 goto restart;

1242 }

1243

1244 err = ­EPIPE;

1245 if (other­>shutdown&RCV_SHUTDOWN)

1246 goto out_unlock;

1247

connect() other
sock NULL connect()

other 0 1165 other NULL
unix_find_otherr() sock connect()

unix_may_send()
connect() unix_may_send() ”

connect()
connect()

1217 1242
sock unix_find_other() unix_peer_get()

sock_hold() 1223 sock_put()
0 sock
restart

unix_find_other()
connect()

sock_put() sock sock_hold()
connect()

­ECONNREFUSED out_free
shutdown()

­EPIPE
sk_buff sock

unix_dgram_sendmsg() net/unix/af_unix.c

==================== net/unix/af_unix.c 1248 1278 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_dgram_sendmsg()]
1248 if (unix_peer(other) != sk &&

1249 skb_queue_len(&other­>receive_queue) > other­>max_ack_backlog) {

1250 if (!timeo) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

930

1251 err = ­EAGAIN;

1252 goto out_unlock;

1253 }

1254

1255 timeo = unix_wait_for_peer(other, timeo);

1256

1257 err = sock_intr_errno(timeo);

1258 if (signal_pending(current))

1259 goto out_free;

1260

1261 goto restart;

1262 }

1263

1264 skb_queue_tail(&other­>receive_queue, skb);

1265 unix_state_runlock(other);

1266 other­>data_ready(other, len);

1267 sock_put(other);

1268 return len;

1269

1270 out_unlock:

1271 unix_state_runlock(other);

1272 out_free:

1273 kfree_skb(skb);

1274 out:

1275 if (other)

1276 sock_put(other);

1277 return err;

1278 }

server
sys_connect()

unix_dgram_recvmsg() Unix unix_stream_recvmsg()
net/unix/af_unix.c

==================== net/unix/af_unix.c 1499 1522 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()]
1499 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, int size,

1500 int flags, struct scm_cookie *scm)

1501 {

1502 struct sock *sk = sock­>sk;

1503 struct sockaddr_un *sunaddr=msg­>msg_name;

1504 int copied = 0;

1505 int check_creds = 0;

1506 int target;

1507 int err = 0;

1508 long timeo;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

931

1509

1510 err = ­EINVAL;

1511 if (sk­>state != TCP_ESTABLISHED)

1512 goto out;

1513

1514 err = ­EOPNOTSUPP;

1515 if (flags&MSG_OOB)

1516 goto out;

1517

1518 target = sock_rcvlowat(sk, flags&MSG_WAITALL, size);

1519 timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT);

1520

1521 msg­>msg_namelen = 0;

1522

sock state

OOB

Unix Unix

size

target

1 flags MSG_WAITALL
1518 sock_rcvlowat() target

==================== include/net/sock.h 1254 1257 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()>sock_rcvlowat()]
1254 static inline int sock_rcvlowat(struct sock *sk, int waitall, int len)

1255 {

1256 return (waitall ? len : min(sk­>rcvlowat, len)) ? : 1;

1257 }

sock_rcvtimeo()

==================== net/unix/af_unix.c 1523 1628 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()]
1523 /* Lock the socket to prevent queue disordering

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

932

1524 * while sleeps in memcpy_tomsg

1525 */

1526

1527 down(&sk­>protinfo.af_unix.readsem);

1528

1529 do

1530 {

1531 int chunk;

1532 struct sk_buff *skb;

1533

1534 skb=skb_dequeue(&sk­>receive_queue);

1535 if (skb==NULL)

1536 {

1537 if (copied >= target)

1538 break;

1539

1540 /*

1541 * POSIX 1003.1g mandates this order.

1542 */

1543

1544 if ((err = sock_error(sk)) != 0)

1545 break;

1546 if (sk­>shutdown & RCV_SHUTDOWN)

1547 break;

1548 err = ­EAGAIN;

1549 if (!timeo)

1550 break;

1551 up(&sk­>protinfo.af_unix.readsem);

1552

1553 timeo = unix_stream_data_wait(sk, timeo);

1554

1555 if (signal_pending(current)) {

1556 err = sock_intr_errno(timeo);

1557 goto out;

1558 }

1559 down(&sk­>protinfo.af_unix.readsem);

1560 continue;

1561 }

1562

1563 if (check_creds) {

1564 /* Never glue messages from different writers */

1565 if (memcmp(UNIXCREDS(skb), &scm­>creds, sizeof(scm­>creds)) != 0) {

1566 skb_queue_head(&sk­>receive_queue, skb);

1567 break;

1568 }

1569 } else {

1570 /* Copy credentials */

1571 scm­>creds = *UNIXCREDS(skb);

1572 check_creds = 1;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

933

1573 }

1574

1575 /* Copy address just once */

1576 if (sunaddr)

1577 {

1578 unix_copy_addr(msg, skb­>sk);

1579 sunaddr = NULL;

1580 }

1581

1582 chunk = min(skb­>len, size);

1583 if (memcpy_toiovec(msg­>msg_iov, skb­>data, chunk)) {

1584 skb_queue_head(&sk­>receive_queue, skb);

1585 if (copied == 0)

1586 copied = ­EFAULT;

1587 break;

1588 }

1589 copied += chunk;

1590 size ­= chunk;

1591

1592 /* Mark read part of skb as used */

1593 if (!(flags & MSG_PEEK))

1594 {

1595 skb_pull(skb, chunk);

1596

1597 if (UNIXCB(skb).fp)

1598 unix_detach_fds(scm, skb);

1599

1600 /* put the skb back if we didn't use it up.. */

1601 if (skb­>len)

1602 {

1603 skb_queue_head(&sk­>receive_queue, skb);

1604 break;

1605 }

1606

1607 kfree_skb(skb);

1608

1609 if (scm­>fp)

1610 break;

1611 }

1612 else

1613 {

1614 /* It is questionable, see note in unix_dgram_recvmsg.

1615 */

1616 if (UNIXCB(skb).fp)

1617 scm­>fp = scm_fp_dup(UNIXCB(skb).fp);

1618

1619 /* put message back and return */

1620 skb_queue_head(&sk­>receive_queue, skb);

1621 break;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

934

1622 }

1623 } while (size);

1624

1625 up(&sk­>protinfo.af_unix.readsem);

1626 out:

1627 return copied ? : err;

1628 }

do­while sk_buff
size 0

1538
1603

spin_lock
sock (1527 1551 1559

1625)

inline skb_dequeue()
sk_buff 1534 flags MSG_PEEK 1

skb_queue_head() 1620

target 1621

skb_queue_head() sk_buff
1603 skb­>len memcpy_toiovec()

1583 1588
memcpy_toiovec() ­EFAULT

0
copied

1563 1568

fork()
sendmsg()

kfree_skb() 1607
inline include/linux/skbuff.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

935

==================== include/linux/skbuff.h 209 226 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()>kfree_skb()]
209 /*

210 * If users==1, we are the only owner and are can avoid redundant

211 * atomic change.

212 */

213

214 /**

215 * kfree_skb ­ free an sk_buff

216 * @skb: buffer to free

217 *

218 * Drop a reference to the buffer and free it if the usage count has

219 * hit zero.

220 */

221

222 static inline void kfree_skb(struct sk_buff *skb)

223 {

224 if (atomic_read(&skb­>users) == 1 || atomic_dec_and_test(&skb­>users))

225 __kfree_skb(skb);

226 }

__kffee_skb() net/core/skbuff.c

==================== net/core/skbuff.c 272 293 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()>kfree_skb()>__kfree_skb()]
272 void __kfree_skb(struct sk_buff *skb)

273 {

274 if (skb­>list) {

275 printk(KERN_WARNING "Warning: kfree_skb passed an skb still "

276 "on a list (from %p).\n", NET_CALLER(skb));

277 BUG();

278 }

279

280 dst_release(skb­>dst);

281 if(skb­>destructor) {

282 if (in_irq()) {

283 printk(KERN_WARNING "Warning: kfree_skb on hard IRQ %p\n",

284 NET_CALLER(skb));

285 }

286 skb­>destructor(skb);

287 }

288 #ifdef CONFIG_NETFILTER

289 nf_conntrack_put(skb­>nfct);

290 #endif

291 skb_headerinit(skb, NULL, 0); /* clean state */

292 kfree_skbmem(skb);

293 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

936

sk_buff destructor 0
unix_stream_recvmsg() sock_wfree()

net/unix/af_unix.c unix_stream_sendmsg()

==================== net/unix/af_unix.c 1281 1309 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_stream_sendmsg()]
1281 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, int len,

1282 struct scm_cookie *scm)

1283 {

1284 struct sock *sk = sock­>sk;

1285 unix_socket *other = NULL;

1286 struct sockaddr_un *sunaddr=msg­>msg_name;

1287 int err,size;

1288 struct sk_buff *skb;

1289 int limit=0;

1290 int sent=0;

1291

1292 err = ­EOPNOTSUPP;

1293 if (msg­>msg_flags&MSG_OOB)

1294 goto out_err;

1295

1296 if (msg­>msg_namelen) {

1297 err = (sk­>state==TCP_ESTABLISHED ? ­EISCONN : ­EOPNOTSUPP);

1298 goto out_err;

1299 } else {

1300 sunaddr = NULL;

1301 err = ­ENOTCONN;

1302 other = unix_peer_get(sk);

1303 if (!other)

1304 goto out_err;

1305 }

1306

1307 if (sk­>shutdown&SEND_SHUTDOWN)

1308 goto pipe_err;

1309

Unix OOB MSG_DONTWAIT
MSG_NOSIGNAL

unix_peer_get() sock other

1307

==================== net/unix/af_unix.c 1310 1385 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_stream_sendmsg()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

937

1310 while(sent < len)

1311 {

1312 /*

1313 * Optimisation for the fact that under 0.01% of X messages typically

1314 * need breaking up.

1315 */

1316

1317 size=len­sent;

1318

1319 /* Keep two messages in the pipe so it schedules better */

1320 if (size > sk­>sndbuf/2 ­ 16)

1321 size = sk­>sndbuf/2 ­ 16;

1322

1323 /*

1324 * Keep to page sized kmalloc()'s as various people

1325 * have suggested. Big mallocs stress the vm too

1326 * much.

1327 */

1328

1329 if (size > PAGE_SIZE­16)

1330 limit = PAGE_SIZE­16; /* Fall back to a page if we can't grab a big buffer this instant

*/

1331 else

1332 limit = 0; /* Otherwise just grab and wait */

1333

1334 /*

1335 * Grab a buffer

1336 */

1337

1338 skb=sock_alloc_send_skb(sk,size,limit,msg­>msg_flags&MSG_DONTWAIT, &err);

1339

1340 if (skb==NULL)

1341 goto out_err;

1342

1343 /*

1344 * If you pass two values to the sock_alloc_send_skb

1345 * it tries to grab the large buffer with GFP_BUFFER

1346 * (which can fail easily), and if it fails grab the

1347 * fallback size buffer which is under a page and will

1348 * succeed. [Alan]

1349 */

1350 size = min(size, skb_tailroom(skb));

1351

1352 memcpy(UNIXCREDS(skb), &scm­>creds, sizeof(struct ucred));

1353 if (scm­>fp)

1354 unix_attach_fds(scm, skb);

1355

1356 if ((err = memcpy_fromiovec(skb_put(skb,size), msg­>msg_iov, size)) != 0) {

1357 kfree_skb(skb);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

938

1358 goto out_err;

1359 }

1360

1361 unix_state_rlock(other);

1362

1363 if (other­>dead || (other­>shutdown & RCV_SHUTDOWN))

1364 goto pipe_err_free;

1365

1366 skb_queue_tail(&other­>receive_queue, skb);

1367 unix_state_runlock(other);

1368 other­>data_ready(other, size);

1369 sent+=size;

1370 }

1371 sock_put(other);

1372 return sent;

1373

1374 pipe_err_free:

1375 unix_state_runlock(other);

1376 kfree_skb(skb);

1377 pipe_err:

1378 if (sent==0 && !(msg­>msg_flags&MSG_NOSIGNAL))

1379 send_sig(SIGPIPE,current,0);

1380 err = ­EPIPE;

1381 out_err:

1382 if (other)

1383 sock_put(other);

1384 return sent ? : err;

1385 }

sk­>sndbuf 16
sock sndbuf setsockopt()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

939

1330 limit PAGE_SIZE­16
sock_alloc_send_skb()

net/core/sock.c

==================== net/core/sock.c 741 814 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_stream_sendmsg()>sock_alloc_send_skb()]
741 /*

742 * Generic send/receive buffer handlers

743 */

744

745 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,

746 unsigned long fallback, int noblock, int *errcode)

747 {

748 int err;

749 struct sk_buff *skb;

750 long timeo;

751

752 timeo = sock_sndtimeo(sk, noblock);

753

754 while (1) {

755 unsigned long try_size = size;

756

757 err = sock_error(sk);

758 if (err != 0)

759 goto failure;

760

761 /*

762 * We should send SIGPIPE in these cases according to

763 * 1003.1g draft 6.4. If we (the user) did a shutdown()

764 * call however we should not.

765 *

766 * Note: This routine isnt just used for datagrams and

767 * anyway some datagram protocols have a notion of

768 * close down.

769 */

770

771 err = ­EPIPE;

772 if (sk­>shutdown&SEND_SHUTDOWN)

773 goto failure;

774

775 if (atomic_read(&sk­>wmem_alloc) < sk­>sndbuf) {

776 if (fallback) {

777 /* The buffer get won't block, or use the atomic queue.

778 * It does produce annoying no free page messages still.

779 */

780 skb = alloc_skb(size, GFP_BUFFER);

781 if (skb)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

940

782 break;

783 try_size = fallback;

784 }

785 skb = alloc_skb(try_size, sk­>allocation);

786 if (skb)

787 break;

788 err = ­ENOBUFS;

789 goto failure;

790 }

791

792 /*

793 * This means we have too many buffers for this socket already.

794 */

795

796 set_bit(SOCK_ASYNC_NOSPACE, &sk­>socket­>flags);

797 set_bit(SOCK_NOSPACE, &sk­>socket­>flags);

798 err = ­EAGAIN;

799 if (!timeo)

800 goto failure;

801 if (signal_pending(current))

802 goto interrupted;

803 timeo = sock_wait_for_wmem(sk, timeo);

804 }

805

806 skb_set_owner_w(skb, sk);

807 return skb;

808

809 interrupted:

810 err = sock_intr_errno(timeo);

811 failure:

812 *errcode = err;

813 return NULL;

814 }

size 755 try_size size
GFP_J3UFFER fallback fallback 0

sock_wait_for_wmem() noblock fallback
0 fallback sk­>allocation

GFP_BUFFER sock_init_data() GFP_KERNEL
fallback size

fallback 0
fallback 0 size fallback

sock_wmalloc() net/core/sock.c

==================== net/core/sock.c 654 667 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_stream_sendmsg()>sock_alloc_send_skb()>sock_wmalloc()]
654 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

941

655 * Allocate a skb from the socket's send buffer.

656 */

657 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, int priority)

658 {

659 if (force || atomic_read(&sk­>wmem_alloc) < sk­>sndbuf) {

660 struct sk_buff * skb = alloc_skb(size, priority);

661 if (skb) {

662 skb_set_owner_w(skb, sk);

663 return skb;

664 }

665 }

666 return NULL;

667 }

sock wmem_alloc
skb_set_owner_w() wmem_alloc

include/net/sock.h

==================== include/net/sock.h 1125 1140 ====================
[sys_socketcall()>sys_sendmsg()>sock_sendmsg()>unix_stream_sendmsg()>sock_alloc_send_skb()>sock_wmalloc()
>skb_set_owner_w()]
1125 /*

1126 * Queue a received datagram if it will fit. Stream and sequenced

1127 * protocols can't normally use this as they need to fit buffers in

1128 * and play with them.

1129 *

1130 * Inlined as it's very short and called for pretty much every

1131 * packet ever received.

1132 */

1133

1134 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)

1135 {

1136 sock_hold(sk);

1137 skb­>sk = sk;

1138 skb­>destructor = sock_wfree;

1139 atomic_add(skb­>truesize, &sk­>wmem_alloc);

1140 }

sk_buff destructor sock_wfree()

unix_stream_sendmsg() 1338 limit fallback
size limit 0

size limit
unix_dgram_sendmsg() ”

sock_alloc_send_skb()
skb_tailroom()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

942

unix_stream_connect() unix_dgram_sendmsg()

Unix

sock sndbuf
sock_alloc_send_skb()

sk_buff sock_wfree()
net/core/sock.c

==================== net/core/sock.c 631 642 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()>kfree_skb()>__kfree_skb()>sock_wfree()]
631 /*

632 * Write buffer destructor automatically called from kfree_skb.

633 */

634 void sock_wfree(struct sk_buff *skb)

635 {

636 struct sock *sk = skb­>sk;

637

638 /* In case it might be waiting for more memory. */

639 atomic_sub(skb­>truesize, &sk­>wmem_alloc);

640 sk­>write_space(sk);

641 sock_put(sk);

642 }

sk­>wmem_alloc sock
write_space unix_create1() 482

unix_write_space()
net/unix/af_unix.c

==================== net/core/sock.c 631 642 ====================
[sys_socketcall()>sys_recvmsg()>unix_stream_recvmsg()>kfree_skb()>__kfree_skb()>sock_wfree()>unix_write_space()]
299 static void unix_write_space(struct sock *sk)

300 {

301 read_lock(&sk­>callback_lock);

302 if (unix_writable(sk)) {

303 if (sk­>sleep && waitqueue_active(sk­>sleep))

304 wake_up_interruptible(sk­>sleep);

305 sk_wake_async(sk, 2, POLL_OUT);

306 }

307 read_unlock(&sk­>callback_lock);

308 }

client/server

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

943

7.8

close
task_struct

socket_file_ops release sock_close()
net/socket.c

==================== net/socket.c 692 707 ====================
[sys_close()>flip_close()>fput()>sock_close()]
692 int sock_close(struct inode *inode, struct file *filp)

693 {

694 /*

695 * It was possible the inode is NULL we were

696 * closing an unfinished socket.

697 */

698

699 if (!inode)

700 {

701 printk(KERN_DEBUG "sock_close: NULL inode\n");

702 return 0;

703 }

704 sock_fasync(­1, filp, 0);

705 sock_release(socki_lookup(inode));

706 return 0;

707 }

fasync_list connect() server
client

socket fasync_list server
ioctl() fasync_struct

fasync_list fasync_list fasync_struct
sock_fasync() net/socket.c

sock_release() net/socket.c

==================== net/socket.c 476 499 ====================
[sys_close()>filp_close()>f_put()>sock_close()>sock_release()]
476 /**

477 * sock_release ­ close a socket

478 * @sock: socket to close

479 *

480 * The socket is released from the protocol stack if it has a release

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

944

481 * callback, and the inode is then released if the socket is bound to

482 * an inode not a file.

483 */

484

485 void sock_release(struct socket *sock)

486 {

487 if (sock­>ops)

488 sock­>ops­>release(sock);

489

490 if (sock­>fasync_list)

491 printk(KERN_ERR "sock_release: fasync list not empty!\n");

492

493 sockets_in_use[smp_processor_id()].counter­­;

494 if (!sock­>file) {

495 iput(sock­>inode);

496 return;

497 }

498 sock­>file=NULL;

499 }

unix proto_ops unix_stream_ops unix_dgram_ops release
unix_release() net/unix/af_unix.c

==================== net/unix/af_unix.c 525 535 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()]
525 static int unix_release(struct socket *sock)

526 {

527 unix_socket *sk = sock­>sk;

528

529 if (!sk)

530 return 0;

531

532 sock­>sk = NULL;

533

534 return unix_release_sock (sk, 0);

535 }

unix_release_sock() net/unix/af_unix.c

==================== net/unix/af_unix.c 353 394 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()]
353 static int unix_release_sock (unix_socket *sk, int embrion)

354 {

355 struct dentry *dentry;

356 struct vfsmount *mnt;

357 unix_socket *skpair;

358 struct sk_buff *skb;

359 int state;

360

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

945

361 unix_remove_socket(sk);

362

363 /* Clear state */

364 unix_state_wlock(sk);

365 sock_orphan(sk);

366 sk­>shutdown = SHUTDOWN_MASK;

367 dentry = sk­>protinfo.af_unix.dentry;

368 sk­>protinfo.af_unix.dentry=NULL;

369 mnt = sk­>protinfo.af_unix.mnt;

370 sk­>protinfo.af_unix.mnt=NULL;

371 state = sk­>state;

372 sk­>state = TCP_CLOSE;

373 unix_state_wunlock(sk);

374

375 wake_up_interruptible_all(&sk­>protinfo.af_unix.peer_wait);

376

377 skpair=unix_peer(sk);

378

379 if (skpair!=NULL) {

380 if (sk­>type==SOCK_STREAM) {

381 unix_state_wlock(skpair);

382 skpair­>shutdown=SHUTDOWN_MASK; /* No more writes*/

383 if (!skb_queue_empty(&sk­>receive_queue) || embrion)

384 skpair­>err = ECONNRESET;

385 unix_state_wunlock(skpair);

386 skpair­>state_change(skpair);

387 read_lock(&skpair­>callback_lock);

388 sk_wake_async(skpair,1,POLL_HUP);

389 read_unlock(&skpair­>callback_lock);

390 }

391 sock_put(skpair); /* It may now die */

392 unix_peer(sk) = NULL;

393 }

394

unix_socket_table[] sock
Unix sock protinfo.af_unix.list

unix_remove_socket() sock net/unix/af_unix.c

==================== net/unix/af_unix.c 234 239 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_remove_socket()]
233

234 static __inline__ void unix_remove_socket(unix_socket *sk)

235 {

236 write_lock(&unix_table_lock);

237 __unix_remove_socket(sk);

238 write_unlock(&unix_table_lock);

==================== net/unix/af_unix.c 203 218 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

946

[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_remove_socket()
>__unix_remove_socket()]
204 static void __unix_remove_socket(unix_socket *sk)

205 {

206 unix_socket **list = sk­>protinfo.af_unix.list;

207 if (list) {

208 if (sk­>next)

209 sk­>next­>prev = sk­>prev;

210 if (sk­>prev)

211 sk­>prev­>next = sk­>next;

212 if (*list == sk)

213 *list = sk­>next;

214 sk­>protinfo.af_unix.list = NULL;

215 sk­>prev = NULL;

216 sk­>next = NULL;

217 __sock_put(sk);

218 }

219 }

sock_orphan() sock
include/linux/net/sock.h

==================== include/net/sock.h 998 1012 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_remove_socket()
>__unix_remove_socket()>sock_orphan()]
998 /* Detach socket from process context.

999 * Announce socket dead, detach it from wait queue and inode.

1000 * Note that parent inode held reference count on this struct sock,

1001 * we do not release it in this function, because protocol

1002 * probably wants some additional cleanups or even continuing

1003 * to work with this socket (TCP).

1004 */

1005 static inline void sock_orphan(struct sock *sk)

1006 {

1007 write_lock_bh(&sk­>callback_lock);

1008 sk­>dead = 1;

1009 sk­>socket = NULL;

1010 sk­>sleep = NULL;

1011 write_unlock_bh(&sk­>callback_lock);

1012 }

dead 1
sock socket NULL write_lock_bh()

include/linux/spinlock.h

==================== include/linux/spinlock.h 20 20 ====================
20 #define write_lock_bh(lock) do { local_bh_disable(); write_lock(lock); } while (0)

unix_release_sock()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

947

unix_state_wlock() net/unix/af_unix.c

==================== include/net/af_unix.h 39 39 ====================
39 #define unix_state_wlock(s) write_lock(&(s)­>protinfo.af_unix.lock)

sock
protinfo.af_unix.lock write_lock() sock

sock

write_lock() read_lock()
write_lock()

read_lock()
sock sk­>dead

sock callback_lock
sk­>dead ”

sock

sk­>dead
connect() sock pair net/unix/af_unix.c

unix_peer()

==================== net/unix/af_unix.c 140 140 ====================
140 #define unix_peer(sk) ((sk)­>pair)

sock
connect() sock

0
sock_put() 391 0

380 390
unix_release() unix_release_sock()

embrion 0 sock err ECONNRESET

inline sock_error() include/net/sock.h

==================== include/net/sock.h 1197 1205 ====================
1197 /*

1198 * Recover an error report and clear atomically

1199 */

1200

1201 static inline int sock_error(struct sock *sk)

1202 {

1203 int err=xchg(&sk­>err,0);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

948

1204 return ­err;

1205 }

inline sk­>err err sk­>err 0
sock sock_alloc_send_skb()

while unix_stream_recvmsg() do­while
sock state_change sock

sock_def_wakeup()

386
sk_wake_async() SIGIO

unix_release_sock()

==================== net/unix/af_unix.c 395 429 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()]
395 /* Try to flush out this socket. Throw out buffers at least */

396

397 while((skb=skb_dequeue(&sk­>receive_queue))!=NULL)

398 {

399 if (state==TCP_LISTEN)

400 unix_release_sock(skb­>sk, 1);

401 /* passed fds are erased in the kfree_skb hook */

402 kfree_skb(skb);

403 }

404

405 if (dentry) {

406 dput(dentry);

407 mntput(mnt);

408 }

409

410 sock_put(sk);

411

412 /* ­­­­ Socket is dead now and most probably destroyed ­­­­ */

413

414 /*

415 * Fixme: BSD difference: In BSD all sockets connected to use get

416 * ECONNRESET and we die on the spot. In Linux we behave

417 * like files and pipes do and wait for the last

418 * dereference.

419 *

420 * Can't we simply set sock­>err?

421 *

422 * What the above comment does talk about? ­­ANK(980817)

423 */

424

425 if (atomic_read(&unix_tot_inflight))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

949

426 unix_gc(); /* Garbage collect fds */

427

428 return 0;

429 }

kfree_skb() TCP_LISTEN
server sock server accept() server

socket server
client sock unix_release_sock()

bind()
sock protinfo.af_unix.dentry dentry

dentry 405
dput() 0

mntput() 0
sock 0

0 sock 373
sock_put()
sendmsg()

unix_attach_fds() unix_inflight()
“inflight

unix_detach_fds() unix_notinflight() unix_tot_inflight
0 sendmsg()

scm_send() fget() file

scm_recv() scm_detach_fds() get_file()
file

__scm_destroy() file

0

file
402 sk_buff

kfree_skb() sk_buff destructor
sock_wfree()

unix_destruct_fds() unix_attach_fds() unix_destruct_fds()
net/unix/af_unix.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

950

==================== net/unix/af_unix.c 1123 1133 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>kfree_skb()
>__kfree_skb()>unix_destruct_fds()]
1123 static void unix_destruct_fds(struct sk_buff *skb)

1124 {

1125 struct scm_cookie scm;

1126 memset(&scm, 0, sizeof(scm));

1127 unix_detach_fds(&scm, skb);

1128

1129 /* Alas, it calls VFS */

1130 /* So fscking what? fput() had been SMP­safe since the last Summer */

1131 scm_destroy(&scm);

1132 sock_wfree(skb);

1133 }

unix_detach_fds() net/unix/af_unix.c

==================== net/unix/af_unix.c 1111 1121 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>kfree_skb()
>__kfree_skb()>unix_destruct_fds()>unix_detach_fds()]
1111 static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb)

1112 {

1113 int i;

1114

1115 scm­>fp = UNIXCB(skb).fp;

1116 skb­>destructor = sock_wfree;

1117 UNIXCB(skb).fp = NULL;

1118

1119 for (i=scm­>fp­>count­1; i>=0; i­­)

1120 unix_notinflight(scm­>fp­>fp[i]);

1121 }

scm_cookie fp sk_buff
scm_fp_list sk_buff destructor sock_wfree

unix_notinflight() file
scm_destroy() iscm.h scm.c

==================== include/net/scm.h 27 31 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>kfree_skb()
>__kfree_skb()>unix_destruct_fds()>scm_destroy()]
27 static __inline__ void scm_destroy(struct scm_cookie *scm)

28 {

29 if (scm && scm­>fp)

30 __scm_destroy(scm);

31 }

==================== net/core/scm.c 101 112 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>kfree_skb()
>__kfree_skb()>unix_destruct_fds()>scm_destroy()>__scm_destroy()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

951

101 void __scm_destroy(struct scm_cookie *scm)

102 {

103 struct scm_fp_list *fpl = scm­>fp;

104 int i;

105

106 if (fpl) {

107 scm­>fp = NULL;

108 for (i=fpl­>count­1; i>=0; i­­)

109 fput(fpl­>fp[i]);

110 kfree(fpl);

111 }

112 }

fput() file 0

A B Unix sa sb A sa B sb

(1) A sa sb sa B sa file
sb A sendmsg()

B sb sb sa

(2) A close() sa sa file
2 0 close() sa

sock_close() A sa
(3) B sb sb sb file 1

0 sb sock_close() sock_close()
sb kfree_skb() A kfree_skb()

scm_destroy() sa file fput() sa file
0 sock_close() sa sb

B B sa B sa sa
sa sb

(1) A sa sb sa B sb
sa

(2) B sb sa sb A sa
sb

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

952

(3) A close() sa sa 0 sa sock_close()
A sa

(4) B close() sb sb 0 sb
sock_close() B sb

A sb B
sa 1

sa
sb

”

”

unix_release_sock() 426 unix_gc() net/unix/garbage.c

==================== net/unix/garbage.c 166 216 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_gc()]
166 /* The external entry point: unix_gc() */

167

168 void unix_gc(void)

169 {

170 static DECLARE_MUTEX(unix_gc_sem);

171 int i;

172 unix_socket *s;

173 struct sk_buff_head hitlist;

174 struct sk_buff *skb;

175

176 /*

177 * Avoid a recursive GC.

178 */

179

180 if (down_trylock(&unix_gc_sem))

181 return;

182

183 read_lock(&unix_table_lock);

184

185 forall_unix_sockets(i, s)

186 {

187 s­>protinfo.af_unix.gc_tree=GC_ORPHAN;

188 }

189 /*

190 * Everything is now marked

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

953

191 */

192

193 /* Invariant to be maintained:

194 ­ everything unmarked is either:

195 ­­ (a) on the stack, or

196 ­­ (b) has all of its children unmarked

197 ­ everything on the stack is always unmarked

198 ­ nothing is ever pushed onto the stack twice, because:

199 ­­ nothing previously unmarked is ever pushed on the stack

200 */

201

202 /*

203 * Push root set

204 */

205

206 forall_unix_sockets(i, s)

207 {

208 /*

209 * If all instances of the descriptor are not

210 * in flight we are in use.

211 */

212 if(s­>socket && s­>socket­>file &&

213 file_count(s­>socket­>file) > atomic_read(&s­>protinfo.af_unix.inflight))

214 maybe_unmark_and_push(s);

215 }

216

unix_gc_sem
unix_socket_table[]

unix_socket_table[]
forall_unix_socket() include/net/af_unix.h

==================== include/net/af_unix.h 16 18 ====================
16

17 #define forall_unix_sockets(i, s) for (i=0; i<=UNIX_HASH_SIZE; i++) \

18 for (s=unix_socket_table[i]; s; s=s­>next)

sock sock
sock GC_ORPHAN

Unix sock
profile.af_unix.gc_tree Unix Unix

GC_ORPHAN net/unix/garbage.c

==================== net/unix/garbage.c 85 92 ====================
85 /* Internal data structures and random procedures: */

86

87 #define GC_HEAD ((unix_socket *)(­1))

88 #define GC_ORPHAN ((unix_socket *)(­3))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

954

89

90 static unix_socket *gc_current=GC_HEAD; /* stack of objects to mark */

91

92 atomic_t unix_tot_inflight = ATOMIC_INIT(0);

unix_tot_inflight
go_current

unix_release_sock() unix_gc()
sock unix_release_sock()

unix_remove_socket()

file sock
protinfo.af_unix.inlight sendmsg()

unix_inflight() sock
unix_tot_inflight unix_notinflight()

file

(1) >

(2) =

(3) <
sock protinfo.af_unix.gc_tree

gc_current ”gc_current
net/unix/garbage.c

==================== net/unix/garbage.c 156 163 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_gc()
>maybe_unmark_and_push()]
156 extern inline void maybe_unmark_and_push(unix_socket *x)

157 {

158 if (x­>protinfo.af_unix.gc_tree != GC_ORPHAN)

159 return;

160 sock_hold(x);

161 x­>protinfo.af_unix.gc_tree = gc_current;

162 gc_current = x;

163 }

sock gc_current
unix_socket_table[] sock

protinfo.af_unix.gc_tree GC_ORPHAN

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

955

sa sa
A sa sa

sa
sa

sock gc_current
unix_gc

==================== net/unix/garbage.c 217 266 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_gc()]
217 /*

218 * Mark phase

219 */

220

221 while (!empty_stack())

222 {

223 unix_socket *x = pop_stack();

224 unix_socket *sk;

225

226 spin_lock(&x­>receive_queue.lock);

227 skb=skb_peek(&x­>receive_queue);

228

229 /*

230 * Loop through all but first born

231 */

232

233 while(skb && skb != (struct sk_buff *)&x­>receive_queue)

234 {

235 /*

236 * Do we have file descriptors ?

237 */

238 if(UNIXCB(skb).fp)

239 {

240 /*

241 * Process the descriptors of this socket

242 */

243 int nfd=UNIXCB(skb).fp­>count;

244 struct file **fp = UNIXCB(skb).fp­>fp;

245 while(nfd­­)

246 {

247 /*

248 * Get the socket the fd matches if

249 * it indeed does so

250 */

251 if((sk=unix_get_socket(*fp++))!=NULL)

252 {

253 maybe_unmark_and_push(sk);

254 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

956

255 }

256 }

257 /* We have to scan not­yet­accepted ones too */

258 if (x­>state == TCP_LISTEN) {

259 maybe_unmark_and_push(skb­>sk);

260 }

261 skb=skb­>next;

262 }

263 spin_unlock(&x­>receive_queue.lock);

264 sock_put(x);

265 }

266

pop_stack() gc_current sock
empty_stack() skb_peek()

sk_buff
pop_stack() net/unix/garbage.c

==================== net/unix/garbage.c 140 154 ====================
140 /*

141 * Garbage Collector Support Functions

142 */

143

144 extern inline unix_socket *pop_stack(void)

145 {

146 unix_socket *p=gc_current;

147 gc_current = p­>protinfo.af_unix.gc_tree;

148 return p;

149 }

150

151 extern inline int empty_stack(void)

152 {

153 return gc_current == GC_HEAD;

154 }

maybe_unmark_and_push() gc_current sock 159
GC_ORPHAN ”

hitlist kfree_skb()
kfree_skb() sock

kfree_skb() ”sock

unix_gc

==================== net/unix/garbage.c 267 304 ====================
[sys_close()>filp_close()>fput()>sock_close()>sock_release()>unix_release()>unix_release_sock()>unix_gc()]
267 skb_queue_head_init(&hitlist);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

957

268

269 forall_unix_sockets(i, s)

270 {

271 if (s­>protinfo.af_unix.gc_tree == GC_ORPHAN)

272 {

273 struct sk_buff *nextsk;

274 spin_lock(&s­>receive_queue.lock);

275 skb=skb_peek(&s­>receive_queue);

276 while(skb && skb != (struct sk_buff *)&s­>receive_queue)

277 {

278 nextsk=skb­>next;

279 /*

280 * Do we have file descriptors ?

281 */

282 if(UNIXCB(skb).fp)

283 {

284 __skb_unlink(skb, skb­>list);

285 __skb_queue_tail(&hitlist,skb);

286 }

287 skb=nextsk;

288 }

289 spin_unlock(&s­>receive_queue.lock);

290 }

291 s­>protinfo.af_unix.gc_tree = GC_ORPHAN;

292 }

293 read_unlock(&unix_table_lock);

294

295 /*

296 * Here we are. Hitlist is filled. Die.

297 */

298

299 while ((skb=__skb_dequeue(&hitlist))!=NULL) {

300 kfree_skb(skb);

301 }

302

303 up(&unix_gc_sem);

304 }

unix_gc() unix_release_sock()
unix_release_sock()

close() file
0 sock

sys_close() filp_close()
filp_close() fput() vfs

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

958

7.9

Unix
Unix

socketcall() sys_socketcall()
sys_getsockname() sys_getpeername() sys_socketpair() sys_shutdown() sys_getsockopt()

sys_setsockopt() unix_dgram_ops unix_stream_ops unix
unix_getname() unix_socketpair() unix_shutdown() sys_getpeername()

sys_getsockname()
connect() sys_getname() sys_getsockopt() sys_setsockopt()

unix
unix_dgram_ops unix_stream_ops

sock_no_getsockopt() sock_no_setsockopt() ­EOPNOTSUPP

unix_socketpair()
net/unix/af_unix.c

==================== net/unix/af_unix.c 1015 1036 ====================
[sys_socketcall()>sys_socketpair()>unix_socketpair()]
1015 static int unix_socketpair(struct socket *socka, struct socket *sockb)

1016 {

1017 struct sock *ska=socka­>sk, *skb = sockb­>sk;

1018

1019 /* Join our sockets back to back */

1020 sock_hold(ska);

1021 sock_hold(skb);

1022 unix_peer(ska)=skb;

1023 unix_peer(skb)=ska;

1024 ska­>peercred.pid = skb­>peercred.pid = current­>pid;

1025 ska­>peercred.uid = skb­>peercred.uid = current­>euid;

1026 ska­>peercred.gid = skb­>peercred.gid = current­>egid;

1027

1028 if (ska­>type != SOCK_DGRAM)

1029 {

1030 ska­>state=TCP_ESTABLISHED;

1031 skb­>state=TCP_ESTABLISHED;

1032 socka­>state=SS_CONNECTED;

1033 sockb­>state=SS_CONNECTED;

1034 }

1035 return 0;

1036 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

959

socka sockb sys_socketpair() sock_create() socket
1022 1023 sock

sock_lseek() sock_poll()
sock_ioctl() sock_mmap() sock_fasync() sock_lseek()

lseek() sock_poll() select() sock_ioctl() ioctl() unix
unix_poll() datagram_poll() unix_ioctl()

sock_mmap() Unix sock_no_mmap() Unix
mmap() sock_fasync()

IOSIG Unix
sock_close() sock_close()

on 0

sock sk_buff

×××

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

960

8

8.1

CPU
I/O

Unix

•

• open()

• read() write() ioctl()

Unix

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

961

Unix
Unix

Unix
Linux 5

5.1
5

raw
”——

8.1
”fd file

file

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

962

8.1

Unix Linux

”

lseek()

lseek()
Unix /dev/hda

/dev/rhda “r “raw

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

963

Linux

2
Pseudo TTY Unix

Unix 8 256
Linux Documentation/devices.txt

194 Unix /dev

devfs

devfs fs/devfs
/dev

devfs devfs

mknod()
Unix

Unix
DOS

TSR Terminate and Stay Resident

TSR Unix
DOS Windows Windows 3.1 PC

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

964

PC

Unix
DOS

Unix Linux TSR Windows 95/98 Windows
NT TSR

module
.o

export

3
jiffies

extern gcc

jiffies

jiffies
/sbin/insmod

.o insmod ld
insmod ld /sbin/insmod

/sbin/rmmod insmod
rmmod

Linux

TSR
TSR

BIOS
INT 9 INT 13 INT 21 DOS

TSR
TSR

INT 13 0
Linux Linux BIOS BIOS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

965

”

Linux

ll_rw_block()
CONFIG_MODULES

DMA

read()
read()

read()

”

CPU CPU

CPU I/O CPU M68K Power PC CPU

in out i386 CPU

i386 CPU in out
inb/inw/inl outb/outw/outl

Linux
inb() outb() inw() outw()

3 C gcc
grep

inb() outb() gcc
include/asm­i386/io.h

outb()/outw()/outl()

==================== include/asm­i386/io.h 92 94 ====================
92 __OUT(b,"b",char)

93 __OUT(w,"w",short)

94 __OUT(l,,int)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

966

__OUT()

==================== include/asm­i386/io.h 58 60 ====================
58 #define __OUT(s,s1,x) \

59 __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \

60 __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} \

__OUT1 __OUT2 __FULL_SLOW_DOWN_IO

==================== include/asm­i386/io.h 52 56 ====================
52 #define __OUT1(s,x) \

53 extern inline void out##s(unsigned x value, unsigned short port) {

54

55 #define __OUT2(s,s1,s2) \

56 __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1"

==================== include/asm­i386/io.h 46 46 ====================
46 #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO

==================== include/asm­i386/io.h 38 38 ====================
38 #define __SLOW_DOWN_IO "\njmp 1f\n1:\tjmp 1f\n1:"

gcc 92

extern inline void outb(unsigned char value, unsigned short port) {

 __asm__ __volatile__ ("outb %b0, %w1" : : "a" (value), "Nd" (port)); }

extern inline void outb_p(unsigned char value, unsigned short port) {

 __asm__ __volatile__ ("outb %b0, %w1"

 "jmp 1f"

 "1: jmp 1f"

 "1:"

 : : "a" (value), "Nd" (port)); }

outb() outb_p() outb_p()
jmp

CPU
outb_p() outb()

%b0 %w1 %0 8 %1 16 %b0 b 92
%w1 w 59 60 16 value

%eax port %edx
93 94 outw() outw_p() outl() outl_p()

inb() inw() inl()

==================== include/asm­i386/io.h 82 90 ====================
82 #define RETURN_TYPE unsigned char

83 __IN(b,"")

84 #undef RETURN_TYPE

85 #define RETURN_TYPE unsigned short

86 __IN(w,"")

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

967

87 #undef RETURN_TYPE

88 #define RETURN_TYPE unsigned int

89 __IN(l,"")

90 #undef RETURN_TYPE

==================== include/asm­i386/io.h 62 70 ====================
62 #define __IN1(s) \

63 extern inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v;

64

65 #define __IN2(s,s1,s2) \

66 __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0"

67

68 #define __IN(s,s1,i...) \

69 __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i); return _v; } \

70 __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i); return _v; } \

83

unsigned char inb(unsigned short port) {

 unsigned char _v;

 __asm__ __volatile__ ("inb %w1, %0" : "=a" (v) : "Nd" (port),); return _v; }

unsigned char inb_p(unsigned short port) {

 unsigned char _v;

 __asm__ __volatile__ ("inb %w1, %0"

 "jmp 1f"

 "1: jmp 1f"

 "1:"

 : "a" (_v) : "Nd" (port),);

 return _v; }

drivers net arm isdn

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

968

8.2 mknod()

Ext2 ext2_inode i_block[]
i_block[0]

Ext2

open() O_CREAT 1 open()
creat() sys_creat()

sys_open()
open() creat() Unix

mknod()
mknod()

open() creat()
FIFO pipe() mknod() open() creat()

mknod()
mknod() sys_mknod() fs/namei.c

==================== fs/namei.c 1205 1246 ====================
1205 asmlinkage long sys_mknod(const char * filename, int mode, dev_t dev)

1206 {

1207 int error = 0;

1208 char * tmp;

1209 struct dentry * dentry;

1210 struct nameidata nd;

1211

1212 if (S_ISDIR(mode))

1213 return ­EPERM;

1214 tmp = getname(filename);

1215 if (IS_ERR(tmp))

1216 return PTR_ERR(tmp);

1217

1218 if (path_init(tmp, LOOKUP_PARENT, &nd))

1219 error = path_walk(tmp, &nd);

1220 if (error)

1221 goto out;

1222 dentry = lookup_create(&nd, 0);

1223 error = PTR_ERR(dentry);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

969

1224 if (!IS_ERR(dentry)) {

1225 switch (mode & S_IFMT) {

1226 case 0: case S_IFREG:

1227 error = vfs_create(nd.dentry­>d_inode,dentry,mode);

1228 break;

1229 case S_IFCHR: case S_IFBLK: case S_IFIFO: case S_IFSOCK:

1230 error = vfs_mknod(nd.dentry­>d_inode,dentry,mode,dev);

1231 break;

1232 case S_IFDIR:

1233 error = ­EPERM;

1234 break;

1235 default:

1236 error = ­EINVAL;

1237 }

1238 dput(dentry);

1239 }

1240 up(&nd.dentry­>d_inode­>i_sem);

1241 path_release(&nd);

1242 out:

1243 putname(tmp);

1244

1245 return error;

1246 }

dev dev_t 16
include/asm­i386/posix_types.h include/linux/types.h

==================== include/asm­i386/posix_types.h 10 10 ====================
10 typedef unsigned short __kernel_dev_t;

==================== include/linux/types.h 14 14 ====================
14 typedef __kernel_dev_t dev_t;

16 8 8
30 256 256

256 8
16

include/linux/kdev_t.h kdev_t

==================== include/linux/kdev_t.h 67 67 ====================
67 typedef unsigned short kdev_t;

16 32

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

970

sys_mknod() vfs_mknod() vfs
vfs_create() vfs_mkdir() vfs_mknod() vfs_create() vfs_mkdir()

vfs_mknod() FIFO
/proc ”

vfs_mknod() fs/namei.c

==================== fs/namei.c 1176 1203 ====================
[sys_mknod()>vfs_mknod()]
1176 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)

1177 {

1178 int error = ­EPERM;

1179

1180 mode &= ~current­>fs­>umask;

1181

1182 down(&dir­>i_zombie);

1183 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))

1184 goto exit_lock;

1185

1186 error = may_create(dir, dentry);

1187 if (error)

1188 goto exit_lock;

1189

1190 error = ­EPERM;

1191 if (!dir­>i_op || !dir­>i_op­>mknod)

1192 goto exit_lock;

1193

1194 DQUOT_INIT(dir);

1195 lock_kernel();

1196 error = dir­>i_op­>mknod(dir, dentry, mode, dev);

1197 unlock_kernel();

1198 exit_lock:

1199 up(&dir­>i_zombie);

1200 if (!error)

1201 inode_dir_notify(dir, DN_CREATE);

1202 return error;

1203 }

dir inode inode
sys_mknod() path_walk() dentry

dentry sys_mknod()
lookup_create() dentry

vfs_mknod() fs_struct
umask mode

1180 capable(CAP_MKNOD)
FIFO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

971

may_create()

DQUOT_INIT()
inode_operations

mknod Ext2 ext2_mknod() fs/ext2/namei.c

==================== fs/ext2/namei.c 386 409 ====================
[sys_mknod()>vfs_mknod()>ext2_mknod()]
386 static int ext2_mknod (struct inode * dir, struct dentry *dentry, int mode, int rdev)

387 {

388 struct inode * inode = ext2_new_inode (dir, mode);

389 int err = PTR_ERR(inode);

390

391 if (IS_ERR(inode))

392 return err;

393

394 inode­>i_uid = current­>fsuid;

395 init_special_inode(inode, mode, rdev);

396 err = ext2_add_entry (dir, dentry­>d_name.name, dentry­>d_name.len,

397 inode);

398 if (err)

399 goto out_no_entry;

400 mark_inode_dirty(inode);

401 d_instantiate(dentry, inode);

402 return 0;

403

404 out_no_entry:

405 inode­>i_nlink­­;

406 mark_inode_dirty(inode);

407 iput(inode);

408 return err;

409 }

ext2_new_inode() inode
init_special_inode()

fs/devices.c

==================== fs/devices.c 200 216 ====================
[sys_mknod()>vfs_mknod()>ext2_mknod()>init_special_inode()]
200 void init_special_inode(struct inode *inode, umode_t mode, int rdev)

201 {

202 inode­>i_mode = mode;

203 if (S_ISCHR(mode)) {

204 inode­>i_fop = &def_chr_fops;

205 inode­>i_rdev = to_kdev_t(rdev);

206 } else if (S_ISBLK(mode)) {

207 inode­>i_fop = &def_blk_fops;

208 inode­>i_rdev = to_kdev_t(rdev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

972

209 inode­>i_bdev = bdget(rdev);

210 } else if (S_ISFIFO(mode))

211 inode­>i_fop = &def_fifo_fops;

212 else if (S_ISSOCK(mode))

213 inode­>i_fop = &bad_sock_fops;

214 else

215 printk(KERN_DEBUG "init_special_inode: bogus imode (%o)\n", mode);

216 }

file_operations i_fop
def_chr_fops def_blk_fops i_rdev rdev

int dev_t inode i_rdev kdev_t kdev_t 16
16 32 16 0

mknod() dev_t int 16 0
16 32 kdev_t

16 32 inline to_kdev_t() kdev_t_to_nr()
16 16

include/linux/kdev_t.h to_kdev_t()

==================== fs/devices.c 200 216 ====================
87 static inline kdev_t to_kdev_t(int dev)

88 {

89 int major, minor;

90 #if 0

91 major = (dev >> 16);

92 if (!major) {

93 major = (dev >> 8);

94 minor = (dev & 0xff);

95 } else

96 minor = (dev & 0xffff);

97 #else

98 major = (dev >> 8);

99 minor = (dev & 0xff);

100 #endif

101 return MKDEV(major, minor);

102 }

“#if 0 32
16

inode kdev_t i_rdev
/dev/tty0 i_dev /dev/hda1 /dev

inode i_bdev block_device
include/linux/fs.h

==================== include/linux/fs.h 377 385 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

973

377 struct block_device {

378 struct list_head bd_hash;

379 atomic_t bd_count;

380 /* struct address_space bd_data; */

381 dev_t bd_dev; /* not a kdev_t ­ it's a search key */

382 atomic_t bd_openers;

383 const struct block_device_operations *bd_op;

384 struct semaphore bd_sem; /* open/close mutex */

385 };

bd_op block_device_operations
bdev_hashtable[]

block_device bd_hash

init_special_inode() bdget() block_device
fs/block_dev.c

==================== fs/block_dev.c 429 454 ====================
[sys_mknod()>vfs_mknod()>ext2_mknod()>init_special_inode()>bdget()]
429 struct block_device *bdget(dev_t dev)

430 {

431 struct list_head * head = bdev_hashtable + hash(dev);

432 struct block_device *bdev, *new_bdev;

433 spin_lock(&bdev_lock);

434 bdev = bdfind(dev, head);

435 spin_unlock(&bdev_lock);

436 if (bdev)

437 return bdev;

438 new_bdev = alloc_bdev();

439 if (!new_bdev)

440 return NULL;

441 atomic_set(&new_bdev­>bd_count,1);

442 new_bdev­>bd_dev = dev;

443 new_bdev­>bd_op = NULL;

444 spin_lock(&bdev_lock);

445 bdev = bdfind(dev, head);

446 if (!bdev) {

447 list_add(&new_bdev­>bd_hash, head);

448 spin_unlock(&bdev_lock);

449 return new_bdev;

450 }

451 spin_unlock(&bdev_lock);

452 destroy_bdev(new_bdev);

453 return bdev;

454 }

bdev_hashtable[] bdfind()
437 alloc_bdev() alloc_bdev()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

974

bdfind()

bd_op NULL

get_blkfops() block_device_operations

ext2_mknod() ext2_add_entry()
mark_inode_dirty() inode d_instantiate() dentry

inode inode
inode inode

ext2_inode ext2_inode
i_rdev i_block[] i_block[0]

fs/ext2/inode.c ext2_update_inode()

==================== fs/ext2/inode.c 1211 1214 ====================
1211 if (S_ISCHR(inode­>i_mode) || S_ISBLK(inode­>i_mode))

1212 raw_inode­>i_block[0] = cpu_to_le32(kdev_t_to_nr(inode­>i_rdev));

1213 else for (block = 0; block < EXT2_N_BLOCKS; block++)

1214 raw_inode­>i_block[block] = inode­>u.ext2_i.i_data[block];

raw_inode ext2_inode inode inode
inode

inode ext2_inode
i_block[0] inode i_rdev “Little Ending
i_block[] inode ext2_inode_info i_data[]

ext2_read_inode() inode
i_block[] i_data[] init_special_inode()

i_block[0] “Little Ending CPU inode i_rdev
ext2_read_inode() fs/ext2/inode.c

==================== fs/ext2/inode.c 1052 1062 ====================
1052 /*

1053 * NOTE! The in­memory inode i_data array is in little­endian order

1054 * even on big­endian machines: we do NOT byteswap the block numbers!

1055 */

1056 for (block = 0; block < EXT2_N_BLOCKS; block++)

1057 inode­>u.ext2_i.i_data[block] = raw_inode­>i_block[block];

1058

1059 if (inode­>i_ino == EXT2_ACL_IDX_INO ||

1060 inode­>i_ino == EXT2_ACL_DATA_INO)

1061 /* Nothing to do */ ;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

975

1062 else if (S_ISREG(inode­>i_mode)) {

.

==================== fs/ext2/inode.c 1066 1066 ====================
1066 } else if (S_ISDIR(inode­>i_mode)) {

.

==================== fs/ext2/inode.c 1069 1069 ====================
1069 } else if (S_ISLNK(inode­>i_mode)) {

.

==================== fs/ext2/inode.c 1076 1078 ====================
1076 } else

1077 init_special_inode(inode, inode­>i_mode,

1078 le32_to_cpu(raw_inode­>i_block[0]));

init_special_inode()
ext2_inode i_block[] inode i_data[]

inode block_device i_bdev

8.3

1 Linux monolithic kernel
Linux module

4
create_module() init_module() query_module() delete_module()

/sbin/insmod /sbin/rmmod

/sbin/insmod
• .o
•

query_module()

•

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

976

• create_module() module

• init_module()
init_module() init_module()

init_module() init_module()
sys_init_module()

init_module()
init_module()

file_operations

delete_module() module
cleanup_module() init_module()

cleanup_module()

4 init_module()
cleanup_module() sys_create_module() sys_init_module() sys_query_module()

sys_delete_module() kernel/module.c
sys_query_module()

==================== kernel/module.c 874 929 ====================
874 asmlinkage long

875 sys_query_module(const char *name_user, int which, char *buf, size_t bufsize,

876 size_t *ret)

877 {

878 struct module *mod;

879 int err;

880

881 lock_kernel();

882 if (name_user == NULL)

883 mod = &kernel_module;

884 else {

885 long namelen;

886 char *name;

887

888 if ((namelen = get_mod_name(name_user, &name)) < 0) {

889 err = namelen;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

977

890 goto out;

891 }

892 err = ­ENOENT;

893 if (namelen == 0)

894 mod = &kernel_module;

895 else if ((mod = find_module(name)) == NULL) {

896 put_mod_name(name);

897 goto out;

898 }

899 put_mod_name(name);

900 }

901

902 switch (which)

903 {

904 case 0:

905 err = 0;

906 break;

907 case QM_MODULES:

908 err = qm_modules(buf, bufsize, ret);

909 break;

910 case QM_DEPS:

911 err = qm_deps(mod, buf, bufsize, ret);

912 break;

913 case QM_REFS:

914 err = qm_refs(mod, buf, bufsize, ret);

915 break;

916 case QM_SYMBOLS:

917 err = qm_symbols(mod, buf, bufsize, ret);

918 break;

919 case QM_INFO:

920 err = qm_info(mod, buf, bufsize, ret);

921 break;

922 default:

923 err = ­EINVAL;

924 break;

925 }

926 out:

927 unlock_kernel();

928 return err;

929 }

name_user 0 which
QM_SYMBOLS QM_MODULES
QM_DEPS A B

A B buf
module create_module()

include/linux/module.h module

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

978

==================== include/linux/module.h 37 93 ====================
37 struct module_symbol

38 {

39 unsigned long value;

40 const char *name;

41 };

42

43 struct module_ref

44 {

45 struct module *dep; /* "parent" pointer */

46 struct module *ref; /* "child" pointer */

47 struct module_ref *next_ref;

48 };

49

50 /* TBD */

51 struct module_persist;

52

53 struct module

54 {

55 unsigned long size_of_struct; /* == sizeof(module) */

56 struct module *next;

57 const char *name;

58 unsigned long size;

59

60 union

61 {

62 atomic_t usecount;

63 long pad;

64 } uc; /* Needs to keep its size ­ so says rth */

65

66 unsigned long flags; /* AUTOCLEAN et al */

67

68 unsigned nsyms;

69 unsigned ndeps;

70

71 struct module_symbol *syms;

72 struct module_ref *deps;

73 struct module_ref *refs;

74 int (*init)(void);

75 void (*cleanup)(void);

76 const struct exception_table_entry *ex_table_start;

77 const struct exception_table_entry *ex_table_end;

78 #ifdef __alpha__

79 unsigned long gp;

80 #endif

81 /* Members past this point are extensions to the basic

82 module support and are optional. Use mod_member_present()

83 to examine them. */

84 const struct module_persist *persist_start;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

979

85 const struct module_persist *persist_end;

86 int (*can_unload)(void);

87 int runsize; /* In modutils, not currently used */

88 const char *kallsyms_start; /* All symbols for kernel debugging */

89 const char *kallsyms_end;

90 const char *archdata_start; /* arch specific data for module */

91 const char *archdata_end;

92 const char *kernel_data; /* Reserved for kernel internal use */

93 };

module_symbol module_symbol
module_ref

module module next
name size init cleanup init_module()

cleanup_module() syms module_symbol nsyms

deps module_ref ndeps
dep module

dep ref
A B A B B A

“dep “ref

A B A deps B
B deps

B B module refs
module_ref ref

deps A deps module_ref
dep B ref A next_ref B refs

A deps A B B
refs B A

module_ref

module kernel_module
module module_list

sys_query_module() name_user
NULL module kernel_module kernel/module.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

980

==================== kernel/module.c 41 52 ====================
41 static struct module kernel_module =

42 {

43 size_of_struct: sizeof(struct module),

44 name: "",

45 uc: {ATOMIC_INIT(1)},

46 flags: MOD_RUNNING,

47 syms: __start___ksymtab,

48 ex_table_start: __start___ex_table,

49 ex_table_end: __stop___ex_table,

50 kallsyms_start: __start___kallsyms,

51 kallsyms_end: __stop___kallsyms,

52 };

deps refs 0 NULL
init_module() cleanup_module() NULL deps

refs syms __start__ksymtab
nsyms 0 init_modules()

name_user NULL get_mod_name()
find_module() module_list module

kernel/module.c

==================== kernel/module.c 993 1010 ====================
[sys_query_module()>find_module()]
993 /*

994 * Look for a module by name, ignoring modules marked for deletion.

995 */

996

997 struct module *

998 find_module(const char *name)

999 {

1000 struct module *mod;

1001

1002 for (mod = module_list; mod ; mod = mod­>next) {

1003 if (mod­>flags & MOD_DELETED)

1004 continue;

1005 if (!strcmp(mod­>name, name))

1006 break;

1007 }

1008

1009 return mod;

1010 }

qm_modules() qm_symbols() qm_deps()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

981

kernel/module.c qm_deps()

==================== kernel/module.c 701 742 ====================
[sys_query_module()>qm_deps()]
701 static int

702 qm_deps(struct module *mod, char *buf, size_t bufsize, size_t *ret)

703 {

704 size_t i, space, len;

705

706 if (mod == &kernel_module)

707 return ­EINVAL;

708 if (!MOD_CAN_QUERY(mod))

709 if (put_user(0, ret))

710 return ­EFAULT;

711 else

712 return 0;

713

714 space = 0;

715 for (i = 0; i < mod­>ndeps; ++i) {

716 const char *dep_name = mod­>deps[i].dep­>name;

717

718 len = strlen(dep_name)+1;

719 if (len > bufsize)

720 goto calc_space_needed;

721 if (copy_to_user(buf, dep_name, len))

722 return ­EFAULT;

723 buf += len;

724 bufsize ­= len;

725 space += len;

726 }

727

728 if (put_user(i, ret))

729 return ­EFAULT;

730 else

731 return 0;

732

733 calc_space_needed:

734 space += len;

735 while (++i < mod­>ndeps)

736 space += strlen(mod­>deps[i].dep­>name)+1;

737

738 if (put_user(space, ret))

739 return ­EFAULT;

740 else

741 return ­ENOSPC;

742 }

0 ret buf
­ENOSPC buf ret

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

982

create_module() sys_create_module() kernel/module.c

==================== kernel/module.c 276 325 ====================
276 /*

277 * Allocate space for a module.

278 */

279

280 asmlinkage unsigned long

281 sys_create_module(const char *name_user, size_t size)

282 {

283 char *name;

284 long namelen, error;

285 struct module *mod;

286

287 if (!capable(CAP_SYS_MODULE))

288 return ­EPERM;

289 lock_kernel();

290 if ((namelen = get_mod_name(name_user, &name)) < 0) {

291 error = namelen;

292 goto err0;

293 }

294 if (size < sizeof(struct module)+namelen) {

295 error = ­EINVAL;

296 goto err1;

297 }

298 if (find_module(name) != NULL) {

299 error = ­EEXIST;

300 goto err1;

301 }

302 if ((mod = (struct module *)module_map(size)) == NULL) {

303 error = ­ENOMEM;

304 goto err1;

305 }

306

307 memset(mod, 0, sizeof(*mod));

308 mod­>size_of_struct = sizeof(*mod);

309 mod­>next = module_list;

310 mod­>name = (char *)(mod + 1);

311 mod­>size = size;

312 memcpy((char*)(mod+1), name, namelen+1);

313

314 put_mod_name(name);

315

316 module_list = mod; /* link it in */

317

318 error = (long) mod;

319 goto err0;

320 err1:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

983

321 put_mod_name(name);

322 err0:

323 unlock_kernel();

324 return error;

325 }

capable(CAP_SYS_MODULE)
size module

size
find_module()

module_map() i386 CPU module_map() include/asm­i386/module.h
vmalloc()

==================== include/asm­i386/module.h 7 7 ====================
7 #define module_map(x) vmalloc(x)

module 307 312
(mod+1) mod module

module
module module_list 309 316

init_module()
init_module()

ld
GNU insmod

sys_init_module() kernel/module.c

==================== kernel/module.c 327 390 ====================
[sys_init_module()]
327 /*

328 * Initialize a module.

329 */

330

331 asmlinkage long

332 sys_init_module(const char *name_user, struct module *mod_user)

333 {

334 struct module mod_tmp, *mod;

335 char *name, *n_name, *name_tmp = NULL;

336 long namelen, n_namelen, i, error;

337 unsigned long mod_user_size;

338 struct module_ref *dep;

339

340 if (!capable(CAP_SYS_MODULE))

341 return ­EPERM;

342 lock_kernel();

343 if ((namelen = get_mod_name(name_user, &name)) < 0) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

984

344 error = namelen;

345 goto err0;

346 }

347 if ((mod = find_module(name)) == NULL) {

348 error = ­ENOENT;

349 goto err1;

350 }

351

352 /* Check module header size. We allow a bit of slop over the

353 size we are familiar with to cope with a version of insmod

354 for a newer kernel. But don't over do it. */

355 if ((error = get_user(mod_user_size, &mod_user­>size_of_struct)) != 0)

356 goto err1;

357 if (mod_user_size < (unsigned long)&((struct module *)0L)­>persist_start

358 || mod_user_size > sizeof(struct module) + 16*sizeof(void*)) {

359 printk(KERN_ERR "init_module: Invalid module header size.\n"

360 KERN_ERR "A new version of the modutils is likely "

361 "needed.\n");

362 error = ­EINVAL;

363 goto err1;

364 }

365

366 /* Hold the current contents while we play with the user's idea

367 of righteousness. */

368 mod_tmp = *mod;

369 name_tmp = kmalloc(strlen(mod­>name) + 1, GFP_KERNEL); /* Where's kstrdup()? */

370 if (name_tmp == NULL) {

371 error = ­ENOMEM;

372 goto err1;

373 }

374 strcpy(name_tmp, mod­>name);

375

376 error = copy_from_user(mod, mod_user, mod_user_size);

377 if (error) {

378 error = ­EFAULT;

379 goto err2;

380 }

381

382 /* Sanity check the size of the module. */

383 error = ­EINVAL;

384

385 if (mod­>size > mod_tmp.size) {

386 printk(KERN_ERR "init_module: Size of initialized module "

387 "exceeds size of created module.\n");

388 goto err2;

389 }

390

find_module() module_list

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

985

module init_module()
module mod_user

sys_create_module() module
module

module module
module module

module size_of_struct module persist_start
module

“man init_module persist_start
module 16 64

module 368
module module

”

385

==================== kernel/module.c 391 483 ====================
[sys_init_module()]
391 /* Make sure all interesting pointers are sane. */

392

393 if (!mod_bound(mod­>name, namelen, mod)) {

394 printk(KERN_ERR "init_module: mod­>name out of bounds.\n");

395 goto err2;

396 }

397 if (mod­>nsyms && !mod_bound(mod­>syms, mod­>nsyms, mod)) {

398 printk(KERN_ERR "init_module: mod­>syms out of bounds.\n");

399 goto err2;

400 }

401 if (mod­>ndeps && !mod_bound(mod­>deps, mod­>ndeps, mod)) {

402 printk(KERN_ERR "init_module: mod­>deps out of bounds.\n");

403 goto err2;

404 }

405 if (mod­>init && !mod_bound(mod­>init, 0, mod)) {

406 printk(KERN_ERR "init_module: mod­>init out of bounds.\n");

407 goto err2;

408 }

409 if (mod­>cleanup && !mod_bound(mod­>cleanup, 0, mod)) {

410 printk(KERN_ERR "init_module: mod­>cleanup out of bounds.\n");

411 goto err2;

412 }

413 if (mod­>ex_table_start > mod­>ex_table_end

414 || (mod­>ex_table_start &&

415 !((unsigned long)mod­>ex_table_start >= ((unsigned long)mod + mod­>size_of_struct)

416 && ((unsigned long)mod­>ex_table_end

417 < (unsigned long)mod + mod­>size)))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

986

418 || (((unsigned long)mod­>ex_table_start

419 ­ (unsigned long)mod­>ex_table_end)

420 % sizeof(struct exception_table_entry))) {

421 printk(KERN_ERR "init_module: mod­>ex_table_* invalid.\n");

422 goto err2;

423 }

424 if (mod­>flags & ~MOD_AUTOCLEAN) {

425 printk(KERN_ERR "init_module: mod­>flags invalid.\n");

426 goto err2;

427 }

428 #ifdef __alpha__

429 if (!mod_bound(mod­>gp ­ 0x8000, 0, mod)) {

430 printk(KERN_ERR "init_module: mod­>gp out of bounds.\n");

431 goto err2;

432 }

433 #endif

434 if (mod_member_present(mod, can_unload)

435 && mod­>can_unload && !mod_bound(mod­>can_unload, 0, mod)) {

436 printk(KERN_ERR "init_module: mod­>can_unload out of bounds.\n");

437 goto err2;

438 }

439 if (mod_member_present(mod, kallsyms_end)) {

440 if (mod­>kallsyms_end &&

441 (!mod_bound(mod­>kallsyms_start, 0, mod) ||

442 !mod_bound(mod­>kallsyms_end, 0, mod))) {

443 printk(KERN_ERR "init_module: mod­>kallsyms out of bounds.\n");

444 goto err2;

445 }

446 if (mod­>kallsyms_start > mod­>kallsyms_end) {

447 printk(KERN_ERR "init_module: mod­>kallsyms invalid.\n");

448 goto err2;

449 }

450 }

451 if (mod_member_present(mod, archdata_end)) {

452 if (mod­>archdata_end &&

453 (!mod_bound(mod­>archdata_start, 0, mod) ||

454 !mod_bound(mod­>archdata_end, 0, mod))) {

455 printk(KERN_ERR "init_module: mod­>archdata out of bounds.\n");

456 goto err2;

457 }

458 if (mod­>archdata_start > mod­>archdata_end) {

459 printk(KERN_ERR "init_module: mod­>archdata invalid.\n");

460 goto err2;

461 }

462 }

463 if (mod_member_present(mod, kernel_data) && mod­>kernel_data) {

464 printk(KERN_ERR "init_module: mod­>kernel_data must be zero.\n");

465 goto err2;

466 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

987

467

468 /* Check that the user isn't doing something silly with the name. */

469

470 if ((n_namelen = get_mod_name(mod­>name ­ (unsigned long)mod

471 + (unsigned long)mod_user,

472 &n_name)) < 0) {

473 printk(KERN_ERR "init_module: get_mod_name failure.\n");

474 error = n_namelen;

475 goto err2;

476 }

477 if (namelen != n_namelen || strcmp(n_name, mod_tmp.name) != 0) {

478 printk(KERN_ERR "init_module: changed module name to "

479 "`%s' from `%s'\n",

480 n_name, mod_tmp.name);

481 goto err3;

482 }

483

mod_bound()
include/linux/module.h

==================== include/linux/module.h 133 135 ====================
133 /* Check if an address p with number of entries n is within the body of module m */

134 #define mod_bound(p, n, m) ((unsigned long)(p) >= ((unsigned long)(m) + ((m)­>size_of_struct)) && \

135 (unsigned long)((p)+(n)) <= (unsigned long)(m) + (m)­>size)

393 module name
module namelen

deps
module

init_module() cleanup_module()

exception_table_entry
exception_table_entry __start___ex_table[]

3
module_list

bound bound

module can_unload module
module

module
mod_member_present

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

988

include/linux/module.h

==================== include/linux/module.h 125 131 ====================
125 /* When struct module is extended, we must test whether the new member

126 is present in the header received from insmod before we can use it.

127 This function returns true if the member is present. */

128

129 #define mod_member_present(mod,member) \

130 ((unsigned long)(&((struct module *)0L)­>member + 1) \

131 <= (mod)­>size_of_struct)

name_user
module

module
470 477

==================== kernel/module.c 484 540 ====================
[sys_init_module()]
484 /* Ok, that's about all the sanity we can stomach; copy the rest. */

485

486 if (copy_from_user((char *)mod+mod_user_size,

487 (char *)mod_user+mod_user_size,

488 mod­>size­mod_user_size)) {

489 error = ­EFAULT;

490 goto err3;

491 }

492

493 if (module_arch_init(mod))

494 goto err3;

495

496 /* On some machines it is necessary to do something here

497 to make the I and D caches consistent. */

498 flush_icache_range((unsigned long)mod, (unsigned long)mod + mod­>size);

499

500 mod­>next = mod_tmp.next;

501 mod­>refs = NULL;

502

503 /* Sanity check the module's dependents */

504 for (i = 0, dep = mod­>deps; i < mod­>ndeps; ++i, ++dep) {

505 struct module *o, *d = dep­>dep;

506

507 /* Make sure the indicated dependencies are really modules. */

508 if (d == mod) {

509 printk(KERN_ERR "init_module: self­referential "

510 "dependency in mod­>deps.\n");

511 goto err3;

512 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

989

513

514 /* Scan the current modules for this dependency */

515 for (o = module_list; o != &kernel_module && o != d; o = o­>next)

516 ;

517

518 if (o != d) {

519 printk(KERN_ERR "init_module: found dependency that is "

520 "(no longer?) a module.\n");

521 goto err3;

522 }

523 }

524

525 /* Update module references. */

526 for (i = 0, dep = mod­>deps; i < mod­>ndeps; ++i, ++dep) {

527 struct module *d = dep­>dep;

528

529 dep­>ref = mod;

530 dep­>next_ref = d­>refs;

531 d­>refs = dep;

532 /* Being referenced by a dependent module counts as a

533 use as far as kmod is concerned. */

534 d­>flags |= MOD_USED_ONCE;

535 }

536

537 /* Free our temporary memory. */

538 put_mod_name(n_name);

539 put_mod_name(name);

module i386
module_arch_init 0

flush_icache_range()
i386

for deps 504 module_ref
dep
module_list dep module module_list 515 for

insmod delete_module() module module_list
526 module_ref

d module refs ref
module module_ref deps[]

refs
deps[] refs

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

990

n_name name
init_module()

==================== kernel/module.c 541 569 ====================
[sys_init_module]
541 /* Initialize the module. */

542 mod­>flags |= MOD_INITIALIZING;

543 atomic_set(&mod­>uc.usecount,1);

544 if (mod­>init && (error = mod­>init()) != 0) {

545 atomic_set(&mod­>uc.usecount,0);

546 mod­>flags &= ~MOD_INITIALIZING;

547 if (error > 0) /* Buggy module */

548 error = ­EBUSY;

549 goto err0;

550 }

551 atomic_dec(&mod­>uc.usecount);

552

553 /* And set it running. */

554 mod­>flags = (mod­>flags | MOD_RUNNING) & ~MOD_INITIALIZING;

555 error = 0;

556 goto err0;

557

558 err3:

559 put_mod_name(n_name);

560 err2:

561 *mod = mod_tmp;

562 strcpy((char *)mod­>name, name_tmp); /* We know there is room for this */

563 err1:

564 put_mod_name(name);

565 err0:

566 unlock_kernel();

567 kfree(name_tmp);

568 return error;

569 }

init_module() module init NULL

init_module()
0

init_module()
delete_module()

sys_delete_module() kernel/module.c

==================== kernel/module.c 586 662 ====================
586 asmlinkage long

587 sys_delete_module(const char *name_user)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

991

588 {

589 struct module *mod, *next;

590 char *name;

591 long error;

592 int something_changed;

593

594 if (!capable(CAP_SYS_MODULE))

595 return ­EPERM;

596

597 lock_kernel();

598 if (name_user) {

599 if ((error = get_mod_name(name_user, &name)) < 0)

600 goto out;

601 if (error == 0) {

602 error = ­EINVAL;

603 put_mod_name(name);

604 goto out;

605 }

606 error = ­ENOENT;

607 if ((mod = find_module(name)) == NULL) {

608 put_mod_name(name);

609 goto out;

610 }

611 put_mod_name(name);

612 error = ­EBUSY;

613 if (mod­>refs != NULL)

614 goto out;

615

616 spin_lock(&unload_lock);

617 if (!__MOD_IN_USE(mod)) {

618 mod­>flags |= MOD_DELETED;

619 spin_unlock(&unload_lock);

620 free_module(mod, 0);

621 error = 0;

622 } else {

623 spin_unlock(&unload_lock);

624 }

625 goto out;

626 }

627

628 /* Do automatic reaping */

629 restart:

630 something_changed = 0;

631 for (mod = module_list; mod != &kernel_module; mod = next) {

632 next = mod­>next;

633 spin_lock(&unload_lock);

634 if (mod­>refs == NULL

635 && (mod­>flags & MOD_AUTOCLEAN)

636 && (mod­>flags & MOD_RUNNING)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

992

637 && !(mod­>flags & MOD_DELETED)

638 && (mod­>flags & MOD_USED_ONCE)

639 && !__MOD_IN_USE(mod)) {

640 if ((mod­>flags & MOD_VISITED)

641 && !(mod­>flags & MOD_JUST_FREED)) {

642 spin_unlock(&unload_lock);

643 mod­>flags &= ~MOD_VISITED;

644 } else {

645 mod­>flags |= MOD_DELETED;

646 spin_unlock(&unload_lock);

647 free_module(mod, 1);

648 something_changed = 1;

649 }

650 } else {

651 spin_unlock(&unload_lock);

652 }

653 }

654 if (something_changed)

655 goto restart;

656 for (mod = module_list; mod != &kernel_module; mod = mod­>next)

657 mod­>flags &= ~MOD_JUST_FREED;

658 error = 0;

659 out:

660 unlock_kernel();

661 return error;

662 }

name_user
0 0

find_module() module_list
module

refs
0

__MOD_IN_USE(mod) 0
__MOD_IN_USE() include/linux/module.h

==================== include/linux/module.h 147 149 ====================
147 #define __MOD_IN_USE(mod) \

148 (mod_member_present((mod), can_unload) && (mod)­>can_unload \

149 ? (mod)­>can_unload() : atomic_read(&(mod)­>uc.usecount))

module can_unload 0
module

uc.usecount sys_init_module() uc.usecount init_module()
1 0 543 551 0

­EBUSY

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

993

kernel/module.c free_module()

==================== kernel/module.c 1012 1056 ====================
[sys_delete_module()>free_module()]
1012 /*

1013 * Free the given module.

1014 */

1015

1016 void

1017 free_module(struct module *mod, int tag_freed)

1018 {

1019 struct module_ref *dep;

1020 unsigned i;

1021

1022 /* Let the module clean up. */

1023

1024 if (mod­>flags & MOD_RUNNING)

1025 {

1026 if(mod­>cleanup)

1027 mod­>cleanup();

1028 mod­>flags &= ~MOD_RUNNING;

1029 }

1030

1031 /* Remove the module from the dependency lists. */

1032

1033 for (i = 0, dep = mod­>deps; i < mod­>ndeps; ++i, ++dep) {

1034 struct module_ref **pp;

1035 for (pp = &dep­>dep­>refs; *pp != dep; pp = &(*pp)­>next_ref)

1036 continue;

1037 *pp = dep­>next_ref;

1038 if (tag_freed && dep­>dep­>refs == NULL)

1039 dep­>dep­>flags |= MOD_JUST_FREED;

1040 }

1041

1042 /* And from the main module list. */

1043

1044 if (mod == module_list) {

1045 module_list = mod­>next;

1046 } else {

1047 struct module *p;

1048 for (p = module_list; p­>next != mod; p = p­>next)

1049 continue;

1050 p­>next = mod­>next;

1051 }

1052

1053 /* And free the memory. */

1054

1055 module_unmap(mod);

1056 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

994

init_module() cleanup_module()
1027

cleanup_module()
MOD_RUNNING 0

refs module_ref
refs for 1033

deps module_ref dep
module dep­>dep module dep­>dep­>refs refs

for 1035 module_ref pp
module_ref next_ref module_ref 1037

module_ref for refs
module_ref

deps module
module module_list

module_unmap() 1055
module_ref

refs
tag_freed 0 MOD_JUST_FREED

sys_delete_module() free_module()
0 620

sys_delete_module() name_user NULL

(1) 634
(2) MOD_AUTOCLEAN 635
(3) 636
(4) 637 618 MOD_DELETED

free_module() MOD_RUNNING free_module()
cleanup_module() 0 MOD_DELETED

(5) 638

module try_inc_mod_count()
MOD_USED_ONCE

(6) 639
for module_list

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

995

something_changed 1 for
restart 629 module_list

/sbin/insmod /sbin/rmmod 4
/sbin/insmod

create_module() init_module()
/sbin/insmod

4 exec()

exec.c
search_binary_handler()

packet

request_module()
/sbin/insmod

request_module() kernel/kmod.c

==================== kernel/kmod.c 159 239 ====================
159 /**

160 * request_module ­ try to load a kernel module

161 * @module_name: Name of module

162 *

163 * Load a module using the user mode module loader. The function returns

164 * zero on success or a negative errno code on failure. Note that a

165 * successful module load does not mean the module did not then unload

166 * and exit on an error of its own. Callers must check that the service

167 * they requested is now available not blindly invoke it.

168 *

169 * If module auto­loading support is disabled then this function

170 * becomes a no­operation.

171 */

172

173 int request_module(const char * module_name)

174 {

175 pid_t pid;

176 int waitpid_result;

177 sigset_t tmpsig;

178 int i;

179 static atomic_t kmod_concurrent = ATOMIC_INIT(0);

180 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value ­ KAO */

181 static int kmod_loop_msg;

182

183 /* Don't allow request_module() before the root fs is mounted! */

184 if (! current­>fs­>root) {

185 printk(KERN_ERR "request_module[%s]: Root fs not mounted\n",

186 module_name);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

996

187 return ­EPERM;

188 }

189

190 /* If modprobe needs a service that is in a module, we get a recursive

191 * loop. Limit the number of running kmod threads to max_threads/2 or

192 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method

193 * would be to run the parents of this process, counting how many times

194 * kmod was invoked. That would mean accessing the internals of the

195 * process tables to get the command line, proc_pid_cmdline is static

196 * and it is not worth changing the proc code just to handle this case.

197 * KAO.

198 */

199 i = max_threads/2;

200 if (i > MAX_KMOD_CONCURRENT)

201 i = MAX_KMOD_CONCURRENT;

202 atomic_inc(&kmod_concurrent);

203 if (atomic_read(&kmod_concurrent) > i) {

204 if (kmod_loop_msg++ < 5)

205 printk(KERN_ERR

206 "kmod: runaway modprobe loop assumed and stopped\n");

207 atomic_dec(&kmod_concurrent);

208 return ­ENOMEM;

209 }

210

211 pid = kernel_thread(exec_modprobe, (void*) module_name, 0);

212 if (pid < 0) {

213 printk(KERN_ERR "request_module[%s]: fork failed, errno %d\n", module_name, ­pid);

214 atomic_dec(&kmod_concurrent);

215 return pid;

216 }

217

218 /* Block everything but SIGKILL/SIGSTOP */

219 spin_lock_irq(¤t­>sigmask_lock);

220 tmpsig = current­>blocked;

221 siginitsetinv(¤t­>blocked, sigmask(SIGKILL) | sigmask(SIGSTOP));

222 recalc_sigpending(current);

223 spin_unlock_irq(¤t­>sigmask_lock);

224

225 waitpid_result = waitpid(pid, NULL, __WCLONE);

226 atomic_dec(&kmod_concurrent);

227

228 /* Allow signals again.. */

229 spin_lock_irq(¤t­>sigmask_lock);

230 current­>blocked = tmpsig;

231 recalc_sigpending(current);

232 spin_unlock_irq(¤t­>sigmask_lock);

233

234 if (waitpid_result != pid) {

235 printk(KERN_ERR "request_module[%s]: waitpid(%d,...) failed, errno %d\n",

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

997

236 module_name, pid, ­waitpid_result);

237 }

238 return 0;

239 }

/sbin/insmod
request_module()

request_module()
kmod_concurrent

MAX_KMOD_CONCURRENT
max_threads

kernel_thread() exec_modprobe()
kernel_thread() 4 request_module()

exec_modprobe()
SIGKILL SIGSTOP

waitpid()
waitpid()

exec_modprobe()
exec_modprobe() printk() ”/var/log/messages

exec_modprobe() kernel/kmod.c

==================== kernel/kmod.c 139 157 ====================
139 /*

140 modprobe_path is set via /proc/sys.

141 */

142 char modprobe_path[256] = "/sbin/modprobe";

143

144 static int exec_modprobe(void * module_name)

145 {

146 static char * envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };

147 char *argv[] = { modprobe_path, "­s", "­k", "­­", (char*)module_name, NULL };

148 int ret;

149

150 ret = exec_usermodehelper(modprobe_path, argv, envp);

151 if (ret) {

152 printk(KERN_ERR

153 "kmod: failed to exec %s ­s ­k %s, errno = %d\n",

154 modprobe_path, (char*) module_name, errno);

155 }

156 return ret;

157 }

modprobe_path /sbin/modprobe module_name mymodule

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

998

argv[]

/sbin/modprobe ­s ­k mymodule

­s ­k
MOD_AUTOCLEAN 1

exec_usermodehelper() kernel/kmod.c

==================== kernel/kmod.c 86 135 ====================
[exec_modprobe()>exec_usermodehelper()]
86 int exec_usermodehelper(char *program_path, char *argv[], char *envp[])

87 {

88 int i;

89 struct task_struct *curtask = current;

90

91 curtask­>session = 1;

92 curtask­>pgrp = 1;

93

94 use_init_fs_context();

95

96 /* Prevent parent user process from sending signals to child.

97 Otherwise, if the modprobe program does not exist, it might

98 be possible to get a user defined signal handler to execute

99 as the super user right after the execve fails if you time

100 the signal just right.

101 */

102 spin_lock_irq(&curtask­>sigmask_lock);

103 sigemptyset(&curtask­>blocked);

104 flush_signals(curtask);

105 flush_signal_handlers(curtask);

106 recalc_sigpending(curtask);

107 spin_unlock_irq(&curtask­>sigmask_lock);

108

109 for (i = 0; i < curtask­>files­>max_fds; i++) {

110 if (curtask­>files­>fd[i]) close(i);

111 }

112

113 /* Drop the "current user" thing */

114 {

115 struct user_struct *user = curtask­>user;

116 curtask­>user = INIT_USER;

117 atomic_inc(&INIT_USER­>__count);

118 atomic_inc(&INIT_USER­>processes);

119 atomic_dec(&user­>processes);

120 free_uid(user);

121 }

122

123 /* Give kmod all effective privileges.. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

999

124 curtask­>euid = curtask­>fsuid = 0;

125 curtask­>egid = curtask­>fsgid = 0;

126 cap_set_full(curtask­>cap_effective);

127

128 /* Allow execve args to be in kernel space. */

129 set_fs(KERNEL_DS);

130

131 /* Go, go, go... */

132 if (execve(program_path, argv, envp) < 0)

133 return ­errno;

134 return 0;

135 }

exec_modprobe() current
task_struct current current

exec_modprobe() exec_modprobe()
fs_struct

”

sbin
modprobe fs_srtuct root

init_task
kernel/kmod.c use_init_fs_context() init_task

==================== kernel/kmod.c 32 84 ====================
[exec_modprobe()>exec_usermodehelper()>use_init_fs_context()]
32 static inline void

33 use_init_fs_context(void)

34 {

35 struct fs_struct *our_fs, *init_fs;

36 struct dentry *root, *pwd;

37 struct vfsmount *rootmnt, *pwdmnt;

38

39 /*

40 * Make modprobe's fs context be a copy of init's.

41 *

42 * We cannot use the user's fs context, because it

43 * may have a different root than init.

44 * Since init was created with CLONE_FS, we can grab

45 * its fs context from "init_task".

46 *

47 * The fs context has to be a copy. If it is shared

48 * with init, then any chdir() call in modprobe will

49 * also affect init and the other threads sharing

50 * init_task's fs context.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1000

51 *

52 * We created the exec_modprobe thread without CLONE_FS,

53 * so we can update the fields in our fs context freely.

54 */

55

56 init_fs = init_task.fs;

57 read_lock(&init_fs­>lock);

58 rootmnt = mntget(init_fs­>rootmnt);

59 root = dget(init_fs­>root);

60 pwdmnt = mntget(init_fs­>pwdmnt);

61 pwd = dget(init_fs­>pwd);

62 read_unlock(&init_fs­>lock);

63

64 /* FIXME ­ unsafe ­>fs access */

65 our_fs = current­>fs;

66 our_fs­>umask = init_fs­>umask;

67 set_fs_root(our_fs, rootmnt, root);

68 set_fs_pwd(our_fs, pwdmnt, pwd);

69 write_lock(&our_fs­>lock);

70 if (our_fs­>altroot) {

71 struct vfsmount *mnt = our_fs­>altrootmnt;

72 struct dentry *dentry = our_fs­>altroot;

73 our_fs­>altrootmnt = NULL;

74 our_fs­>altroot = NULL;

75 write_unlock(&our_fs­>lock);

76 dput(dentry);

77 mntput(mnt);

78 } else

79 write_unlock(&our_fs­>lock);

80 dput(root);

81 mntput(rootmnt);

82 dput(pwd);

83 mntput(pwdmnt);

84 }

5

0 1 2
uid euid fsuid 0

cap_set_full() 126

129 set_fs() include/asm­i386/uaccess.h

==================== include/asm­i386/uaccess.h 30 30 ====================
30 #define set_fs(x) (current­>addr_limit = (x))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1001

KERNEL_DS 0xffffffff 4GB
USER_DS 0xbfffffff 3GB

exec_modprobe()

exec_modproc()
execve() /sbin/modprobe ececve()

4

init_module() cleanup_module() ”

EXPORT_SYMBOL /sbin/insmod query_module()
kernel/ksyms.c

==================== kernel/ksyms.c 142 148 ====================
142 EXPORT_SYMBOL(path_init);

143 EXPORT_SYMBOL(path_walk);

144 EXPORT_SYMBOL(path_release);

145 EXPORT_SYMBOL(__user_walk);

146 EXPORT_SYMBOL(lookup_one);

147 EXPORT_SYMBOL(lookup_hash);

148 EXPORT_SYMBOL(sys_close);

EXPORT_SYMBOL
module_symbol ld

“__ksymtab __ksymtab

ld module_symbol include/linux/module.h

==================== include/linux/module.h 37 41 ====================
37 struct module_symbol

38 {

39 unsigned long value;

40 const char *name;

41 };

name “.kstrtab

config
CONFIG_MODULES

EXPORT_SYMBOL
EXPORT_SYMBOL include/linux/module.h

==================== include/linux/module.h 151 154 ====================
151 /* Indirect stringification. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1002

152

153 #define __MODULE_STRING_1(x) #x

154 #define __MODULE_STRING(x) __MODULE_STRING_1(x)

==================== include/linux/module.h 325 336 ====================
325 #define __EXPORT_SYMBOL(sym, str) \

326 const char __kstrtab_##sym[] \

327 __attribute__((section(".kstrtab"))) = str; \

328 const struct module_symbol __ksymtab_##sym \

329 __attribute__((section("__ksymtab"))) = \

330 { (unsigned long)&sym, __kstrtab_##sym }

331

332 #if defined(MODVERSIONS) || !defined(CONFIG_MODVERSIONS)

333 #define EXPORT_SYMBOL(var) __EXPORT_SYMBOL(var, __MODULE_STRING(var))

334 #else

335 #define EXPORT_SYMBOL(var) __EXPORT_SYMBOL(var, __MODULE_STRING(__VERSIONED_SYMBOL(var)))

336 #endif

332 336 EXPORT_SYMBOL

/sbin/insmod

CONHG_MODVERSIONS

“­D MODVERSIONS “#define MODVERSIONS
CONFIG_MODVERSIONS

EXPORT_SYMBOL 333
path_init EXPORT_SYMBOL(path_init)

__EXPORT_SYMBOL(path_init, "path_init") 325
326 327 __kstrtab_path_init “path_init

.kstrtab 328 330 __ksymtab_path_init
module_symbol {&path_init, __kstrtab_path_init}

_ksymtab value path_init name
“path_init const

__EXPORT_SYMBOL
__VERSIONED_SYMBOL include/linux/modsetver.h

==================== include/linux/modsetver.h 3 6 ====================
3 #define __SYMBOL_VERSION(x) __ver_ ## x

4 #define __VERSIONED_SYMBOL2(x,v) x ## _R ## v

5 #define __VERSIONED_SYMBOL1(x,v) __VERSIONED_SYMBOL2(x,v)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1003

6 #define __VERSIONED_SYMBOL(x) __VERSIONED_SYMBOL1(x,__SYMBOL_VERSION(x))

path_init __SYMBOL_VERSION(path_init) __ver_path_init
__VERSIONED1 path_init _R __ver_path_init_

__ver_path_init
“#define

__ver_path_init smp_1234abcd
“path_init_Rsmp_1234abcd smp SMP

__kstrtab_path_init “path_init_Rsmp_1234abcd __ksymtab_path_init
{&path_init, __kstrtab_path_init} _Rsmp_1234abcd

/sbin/genksyms
CRC C++ C++ mangling

Makefile Rules.make “man genksyms”
.ver .ver include

include/linux/modversions.h .h make
“#include <linux/ksyms.ver>

__ksymtab
query_module() /proc ksyms

“more /proc/ksyms

init_module() cleanup_module()
“sparcaudio

init_module()
vfs cleanup_module()

vfs
vfs

drivers/sbus/audio/audio.c
drivers/sbus SUN Sparc sbus

sbus
sparcaudio

“Y
“M

“N init_module()
main() init_module() ld

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1004

init_module()
sparcaudio

init_module() sparcaudio_init() __init

==================== drivers/sbus/audio/audio.c 2230 2230 ====================
2230 module_init(sparcaudio_init)

sparcaudio_init() drivers/sbus/audio/audio.c

drivers/sbus/audio/audio.c
2200 static int __init sparcaudio_init(void)

2201 {

2202 /* Register our character device driver with the VFS. */

2203 if (devfs_register_chrdev(SOUND_MAJOR, "sparcaudio", &sparcaudio_fops))

2204 return ­EIO;

2205

2206 devfs_handle = devfs_mk_dir (NULL, "sound", NULL);

2207

2208 #ifdef CONFIG_SPARCAUDIO_AMD7930

2209 amd7930_init();

2210 #endif

2211 #ifdef CONFIG_SPARCAUDIO_DBRI

2212 dbri_init();

2213 #endif

2214 #ifdef CONFIG_SPARCAUDIO_CS4231

2215 cs4231_init();

2216 #endif

2217 #ifdef CONFIG_SPARCAUDIO_DUMMY

2218 dummy_init();

2219 #endif

2220

2221 return 0;

2222 }

file_operations

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1005

sparcaudio
2.1.0 register_symtab()

sparcandio

==================== drivers/sbus/audio/audio.c 2195 2198 ====================
2195 EXPORT_SYMBOL(register_sparcaudio_driver);

2196 EXPORT_SYMBOL(unregister_sparcaudio_driver);

2197 EXPORT_SYMBOL(sparcaudio_output_done);

2198 EXPORT_SYMBOL(sparcaudio_input_done);

4

devfs_register_chrdev()
fs/devfs/base.c

==================== fs/devfs/base.c 1935 1940 ====================
[sparcaudio_init()>devfs_register_chrdev()]
1935 int devfs_register_chrdev (unsigned int major, const char *name,

1936 struct file_operations *fops)

1937 {

1938 if (boot_options & OPTION_ONLY) return 0;

1939 return register_chrdev (major, name, fops);

1940 } /* End Function devfs_register_chrdev */

SOUND_MAJOR
include/linux/major.h

==================== include/linux/major.h 38 38 ====================
38 #define SOUND_MAJOR 14

file_operations
drivers/sbus/audio/audio.c

==================== drivers/sbus/audio/audio.c 1961 1970 ====================
1961 static struct file_operations sparcaudio_fops = {

1962 owner: THIS_MODULE,

1963 llseek: sparcaudio_lseek,

1964 read: sparcaudio_read,

1965 write: sparcaudio_write,

1966 poll: sparcaudio_select,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1006

1967 ioctl: sparcaudio_ioctl,

1968 open: sparcaudio_open,

1969 release: sparcaudio_release,

1970 };

file_operations vfs
devfs_register_chrdev()

devfs devfs
register_chrdev() fs/devices.c

==================== fs/devices.c 98 124 ====================
[sparcaudio_init()>devfs_register_chrdev()>register_chrdev()]
98 int register_chrdev(unsigned int major, const char * name, struct file_operations *fops)

99 {

100 if (major == 0) {

101 write_lock(&chrdevs_lock);

102 for (major = MAX_CHRDEV­1; major > 0; major­­) {

103 if (chrdevs[major].fops == NULL) {

104 chrdevs[major].name = name;

105 chrdevs[major].fops = fops;

106 write_unlock(&chrdevs_lock);

107 return major;

108 }

109 }

110 write_unlock(&chrdevs_lock);

111 return ­EBUSY;

112 }

113 if (major >= MAX_CHRDEV)

114 return ­EINVAL;

115 write_lock(&chrdevs_lock);

116 if (chrdevs[major].fops && chrdevs[major].fops != fops) {

117 write_unlock(&chrdevs_lock);

118 return ­EBUSY;

119 }

120 chrdevs[major].name = name;

121 chrdevs[major].fops = fops;

122 write_unlock(&chrdevs_lock);

123 return 0;

124 }

0
device_struct chrdevs[]

device_struct
fs/devices.c

==================== fs/devices.c 33 36 ====================
33 struct device_struct {

34 const char * name;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1007

35 struct file_operations * fops;

36 };

.

==================== fs/devices.c 39 40 ====================
39 static struct device_struct chrdevs[MAX_CHRDEV];

40

file_operations
file_operations

/dev
/dev

mknod() devfs
devfs_mk_dir()

dir devfs_entry
dir NULL devfs “/dev dentry
devfs devfs_entry
devfs_handle_t “sound

0 devfs_mk_dir()
NULL path_walk() mknod()

devfs_mk_dir()
sparcaudio

init_module()
sparcaudio

4

sparcaudio_exit()

==================== drivers/sbus/audio/audio.c 2231 2231 ====================
2231 module_exit(sparcaudio_exit)

sparcaudio “amd7930
AMD7930 amd7930

sys_init_module() init_module() drivers/sbus/audio/amd7930.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1008

==================== drivers/sbus/audio/amd7930.c 1677 1711 ====================
[sys_init_module()>init_module()]
1677 /* Probe for the amd7930 chip and then attach the driver. */

1678 #ifdef MODULE

1679 int init_module(void)

1680 #else

1681 int __init amd7930_init(void)

1682 #endif

1683 {

1684 struct sbus_bus *sbus;

1685 struct sbus_dev *sdev;

1686 int node;

1687

1688 /* Try to find the sun4c "audio" node first. */

1689 node = prom_getchild(prom_root_node);

1690 node = prom_searchsiblings(node, "audio");

1691 if (node && amd7930_attach(&drivers[0], node, NULL, NULL) == 0)

1692 num_drivers = 1;

1693 else

1694 num_drivers = 0;

1695

1696 /* Probe each SBUS for amd7930 chips. */

1697 for_all_sbusdev(sdev, sbus) {

1698 if (!strcmp(sdev­>prom_name, "audio")) {

1699 /* Don't go over the max number of drivers. */

1700 if (num_drivers >= MAX_DRIVERS)

1701 continue;

1702

1703 if (amd7930_attach(&drivers[num_drivers],

1704 sdev­>prom_node, sdev­>bus, sdev) == 0)

1705 num_drivers++;

1706 }

1707 }

1708

1709 /* Only return success if we found some amd7930 chips. */

1710 return (num_drivers > 0) ? 0 : ­EIO;

1711 }

sbus AMD7930
AMD7930

drivers[] amd7930_attach()
­EIO 0

amd7930_attach() drivers/sbus/audio/amd7930.c

==================== drivers/sbus/audio/amd7930.c 1566 1660 ====================
[sys_init_module()>init_module()>amd7930_attach()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1009

1566 /* Attach to an amd7930 chip given its PROM node. */

1567 static int amd7930_attach(struct sparcaudio_driver *drv, int node,

1568 struct sbus_bus *sbus, struct sbus_dev *sdev)

1569 {

1570 struct linux_prom_registers regs;

1571 struct linux_prom_irqs irq;

1572 struct resource res, *resp;

1573 struct amd7930_info *info;

1574 int err;

1575

1576 /* Allocate our private information structure. */

1577 drv­>private = kmalloc(sizeof(struct amd7930_info), GFP_KERNEL);

1578 if (drv­>private == NULL)

1579 return ­ENOMEM;

1580

1581 /* Point at the information structure and initialize it. */

1582 drv­>ops = &amd7930_ops;

1583 info = (struct amd7930_info *)drv­>private;

1584 memset(info, 0, sizeof(*info));

1585 info­>ints_on = 1; /* force disable below */

1586

1587 drv­>dev = sdev;

1588

1589 /* Map the registers into memory. */

1590 prom_getproperty(node, "reg", (char *)®s, sizeof(regs));

1591 if (sbus && sdev) {

1592 resp = &sdev­>resource[0];

1593 } else {

1594 resp = &res;

1595 res.start = regs.phys_addr;

1596 res.end = res.start + regs.reg_size ­ 1;

1597 res.flags = IORESOURCE_IO | (regs.which_io & 0xff);

1598 }

1599 info­>regs_size = regs.reg_size;

1600 info­>regs = sbus_ioremap(resp, 0, regs.reg_size, "amd7930");

1601 if (!info­>regs) {

1602 printk(KERN_ERR "amd7930: could not remap registers\n");

1603 kfree(drv­>private);

1604 return ­EIO;

1605 }

1606

1607 /* Put amd7930 in idle mode (interrupts disabled) */

1608 amd7930_idle(info);

1609

1610 /* Enable extended FIFO operation on D­channel */

1611 sbus_writeb(AMR_DLC_EFCR, info­>regs + CR);

1612 sbus_writeb(AMR_DLC_EFCR_EXTEND_FIFO, info­>regs + DR);

1613 sbus_writeb(AMR_DLC_DMR4, info­>regs + CR);

1614 sbus_writeb(/* AMR_DLC_DMR4_RCV_30 | */ AMR_DLC_DMR4_XMT_14,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1010

1615 info­>regs + DR);

1616

1617 /* Attach the interrupt handler to the audio interrupt. */

1618 prom_getproperty(node, "intr", (char *)&irq, sizeof(irq));

1619 info­>irq = irq.pri;

1620 request_irq(info­>irq, amd7930_interrupt,

1621 SA_INTERRUPT, "amd7930", drv);

1622 enable_irq(info­>irq);

1623 amd7930_enable_ints(info);

1624

1625 /* Initalize the local copy of the MAP registers. */

1626 memset(&info­>map, 0, sizeof(info­>map));

1627 info­>map.mmr1 = AM_MAP_MMR1_GX | AM_MAP_MMR1_GER |

1628 AM_MAP_MMR1_GR | AM_MAP_MMR1_STG;

1629 /* Start out with speaker, microphone */

1630 info­>map.mmr2 |= (AM_MAP_MMR2_LS | AM_MAP_MMR2_AINB);

1631

1632 /* Set the default audio parameters. */

1633 info­>rgain = 128;

1634 info­>pgain = 200;

1635 info­>mgain = 0;

1636 info­>format_type = AUDIO_ENCODING_ULAW;

1637 info­>Bb.input_format = AUDIO_ENCODING_ULAW;

1638 info­>Bb.output_format = AUDIO_ENCODING_ULAW;

1639 info­>Bc.input_format = AUDIO_ENCODING_ULAW;

1640 info­>Bc.output_format = AUDIO_ENCODING_ULAW;

1641 amd7930_update_map(drv);

1642

1643 /* Register the amd7930 with the midlevel audio driver. */

1644 err = register_sparcaudio_driver(drv, 1);

1645 if (err < 0) {

1646 printk(KERN_ERR "amd7930: unable to register\n");

1647 disable_irq(info­>irq);

1648 free_irq(info­>irq, drv);

1649 sbus_iounmap(info­>regs, info­>regs_size);

1650 kfree(drv­>private);

1651 return ­EIO;

1652 }

1653

1654 /* Announce the hardware to the user. */

1655 printk(KERN_INFO "amd7930 at %lx irq %d\n",

1656 info­>regs, info­>irq);

1657

1658 /* Success! */

1659 return 0;

1660 }

register_sparcaudio_driver() 1644

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1011

sparcaudio amd7930 sparcaudio_driver
AMD7930 1582 ops

AMD7930 sparcaudio sparcaudio_operations
amd7930_ops

==================== drivers/sbus/audio/amd7930.c 1503 1564 ====================
1503 /*

1504 * Device detection and initialization.

1505 */

1506

1507 static struct sparcaudio_operations amd7930_ops = {

1508 amd7930_open,

1509 amd7930_release,

1510 amd7930_ioctl,

1511 amd7930_start_output,

1512 amd7930_stop_output,

1513 amd7930_start_input,

1514 amd7930_stop_input,

1515 amd7930_sunaudio_getdev,

1516 amd7930_set_output_volume,

1517 amd7930_get_output_volume,

1518 amd7930_set_input_volume,

1519 amd7930_get_input_volume,

1520 amd7930_set_monitor_volume,

1521 amd7930_get_monitor_volume,

1522 NULL, /* amd7930_set_output_balance */

1523 amd7930_get_output_balance,

1524 NULL, /* amd7930_set_input_balance */

1525 amd7930_get_input_balance,

1526 amd7930_set_output_channels,

1527 amd7930_get_output_channels,

1528 amd7930_set_input_channels,

1529 amd7930_get_input_channels,

1530 amd7930_set_output_precision,

1531 amd7930_get_output_precision,

1532 amd7930_set_input_precision,

1533 amd7930_get_input_precision,

1534 amd7930_set_output_port,

1535 amd7930_get_output_port,

1536 NULL, /* amd7930_set_input_port */

1537 amd7930_get_input_port,

1538 amd7930_set_encoding,

1539 amd7930_get_encoding,

1540 amd7930_set_encoding,

1541 amd7930_get_encoding,

1542 amd7930_set_output_rate,

1543 amd7930_get_output_rate,

1544 amd7930_set_input_rate,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1012

1545 amd7930_get_input_rate,

1546 amd7930_sunaudio_getdev_sunos,

1547 amd7930_get_output_ports,

1548 amd7930_get_input_ports,

1549 NULL, /* amd7930_set_output_muted */

1550 amd7930_get_output_muted,

1551 NULL, /* amd7930_set_output_pause */

1552 NULL, /* amd7930_get_output_pause */

1553 NULL, /* amd7930_set_input_pause */

1554 NULL, /* amd7930_get_input_pause */

1555 NULL, /* amd7930_set_output_samples */

1556 NULL, /* amd7930_get_output_samples */

1557 NULL, /* amd7930_set_input_samples */

1558 NULL, /* amd7930_get_input_samples */

1559 NULL, /* amd7930_set_output_error */

1560 NULL, /* amd7930_get_output_error */

1561 NULL, /* amd7930_set_input_error */

1562 NULL, /* amd7930_get_input_error */

1563 amd7930_get_formats,

1564 };

amd7930_attach() amd7930_ops
amd7930_attach()

AMD7930
amd7930_interrupt()

amd7930_ops AMD7930

ioctol()
register_sparcaudio_driver() sparcaudio amd7930

amd7930
sparcaudio_driver sparcaudio

amd7930 ops
amd7930 sparcaudio sparcaudio_driver

drivers/sbus/audio/audio.c

==================== drivers/sbus/audio/audio.c 73 73 ====================
73 static struct sparcaudio_driver *drivers[SPARCAUDIO_MAX_DEVICES];

amd7930 sparcaudio_driver driver[]
drivers/sbus/audio/amd7930.c

==================== drivers/sbus/audio/amd7930.c 118 118 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1013

118 static struct sparcaudio_driver drivers[MAX_DRIVERS];

static
sparcaudio sparcaudio_driver

amd7930
amd7930 amd7930

sparcaudio_driver register_sparcaudio_driver()
amd7930 devfs

devfs_register() sparcaudio “sound
amd7930 “sound/audio1 “sound/audio2 amd7930

sparcaudio
sound/audio1 sound/mixer1 sound/dsp1

mknod() devfs_mk_dir() devfs_register()
sparcaudio

amd7930 mknod()

amd7930 cleanup module()

==================== drivers/sbus/audio/amd7930.c 1713 1723 ====================
1713 #ifdef MODULE

1714 void cleanup_module(void)

1715 {

1716 register int i;

1717

1718 for (i = 0; i < num_drivers; i++) {

1719 amd7930_detach(&drivers[i]);

1720 num_drivers­­;

1721 }

1722 }

1723 #endif

amd7930_detach() amd7930_attach()

==================== drivers/sbus/audio/amd7930.c 1662 1675 ====================
[cleanup_module()>amd7930_detach()]
1662 #ifdef MODULE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1014

1663 /* Detach from an amd7930 chip given the device structure. */

1664 static void amd7930_detach(struct sparcaudio_driver *drv)

1665 {

1666 struct amd7930_info *info = (struct amd7930_info *)drv­>private;

1667

1668 unregister_sparcaudio_driver(drv, 1);

1669 amd7930_idle(info);

1670 disable_irq(info­>irq);

1671 free_irq(info­>irq, drv);

1672 sbus_iounmap(info­>regs, info­>regs_size);

1673 kfree(drv­>private);

1674 }

1675 #endif

unregister_sparcaudio_driver() sparcaudio
devfs sparcaudio drivers[]

NULL
amd7930_attach()

amd7930_attach()

socket

/dev devfs

create_proc_read_entry() /proc

/dev devfs
proc_register() /proc /proc

proc_register() /proc /proc
vfs

/proc
/proc devfs

read() write() lseek()
proc_register() fs/proc/generic.c

==================== fs/proc/generic.c 350 375 ====================
350 static int proc_register(struct proc_dir_entry * dir, struct proc_dir_entry * dp)

351 {

352 int i;

353

354 i = make_inode_number();

355 if (i < 0)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1015

356 return ­EAGAIN;

357 dp­>low_ino = i;

358 dp­>next = dir­>subdir;

359 dp­>parent = dir;

360 dir­>subdir = dp;

361 if (S_ISDIR(dp­>mode)) {

362 if (dp­>proc_iops == NULL) {

363 dp­>proc_fops = &proc_dir_operations;

364 dp­>proc_iops = &proc_dir_inode_operations;

365 }

366 dir­>nlink++;

367 } else if (S_ISLNK(dp­>mode)) {

368 if (dp­>proc_iops == NULL)

369 dp­>proc_iops = &proc_link_inode_operations;

370 } else if (S_ISREG(dp­>mode)) {

371 if (dp­>proc_fops == NULL)

372 dp­>proc_fops = &proc_file_operations;

373 }

374 return 0;

375 }

dir proc_dir_entry /proc &proc_root
dp proc_dir_entry /proc

proc_dir_entry dentry inode
“/proc proc_register()

proc_dir_entry
read_proc write_proc get_info
include/linux/proc_fs.h

==================== include/linux/proc_fs.h 47 51 ====================
47 typedef int (read_proc_t)(char *page, char **start, off_t off,

48 int count, int *eof, void *data);

49 typedef int (write_proc_t)(struct file *file, const char *buffer,

50 unsigned long count, void *data);

51 typedef int (get_info_t)(char *, char **, off_t, int);

get_info read_proc
read_proc eof
data proc_dir_entry data

read_proc get_info
proc_register() proc_dir_entry

proc_fops proc_iop /proc
inode_operations file_operations
proc_iops /proc inode_operations proc_fops
/proc file_operations /proc

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1016

open() path_walk() /proc

/proc proc_lookup() proc_get_inode() inode
proc_fops inode i_fop file

f_op
fs/proc/generic.c

==================== fs/proc/generic.c 36 40 ====================
36 static struct file_operations proc_file_operations = {

37 llseek: proc_file_lseek,

38 read: proc_file_read,

39 write: proc_file_write,

40 };

llseek read write ioctl
ioctl amd7930

ioctl()
ioctl

/proc
proc_file_read()

==================== fs/proc/generic.c 49 121 ====================
[sys_read()>proc_file_read()]
49 static ssize_t

50 proc_file_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)

51 {

52 struct inode * inode = file­>f_dentry­>d_inode;

53 char *page;

54 ssize_t retval=0;

55 int eof=0;

56 ssize_t n, count;

57 char *start;

58 struct proc_dir_entry * dp;

59

60 dp = (struct proc_dir_entry *) inode­>u.generic_ip;

61 if (!(page = (char*) __get_free_page(GFP_KERNEL)))

62 return ­ENOMEM;

63

64 while ((nbytes > 0) && !eof)

65 {

66 count = MIN(PROC_BLOCK_SIZE, nbytes);

67

68 start = NULL;

69 if (dp­>get_info) {

70 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1017

71 * Handle backwards compatibility with the old net

72 * routines.

73 */

74 n = dp­>get_info(page, &start, *ppos, count);

75 if (n < count)

76 eof = 1;

77 } else if (dp­>read_proc) {

78 n = dp­>read_proc(page, &start, *ppos,

79 count, &eof, dp­>data);

80 } else

81 break;

82

83 if (!start) {

84 /*

85 * For proc files that are less than 4k

86 */

87 start = page + *ppos;

88 n ­= *ppos;

89 if (n <= 0)

90 break;

91 if (n > count)

92 n = count;

93 }

94 if (n == 0)

95 break; /* End of file */

96 if (n < 0) {

97 if (retval == 0)

98 retval = n;

99 break;

100 }

101

102 /* This is a hack to allow mangling of file pos independent

103 * of actual bytes read. Simply place the data at page,

104 * return the bytes, and set `start' to the desired offset

105 * as an unsigned int. ­ Paul.Russell@rustcorp.com.au

106 */

107 n ­= copy_to_user(buf, start < page ? page : start, n);

108 if (n == 0) {

109 if (retval == 0)

110 retval = ­EFAULT;

111 break;

112 }

113

114 *ppos += start < page ? (long)start : n; /* Move down the file */

115 nbytes ­= n;

116 buf += n;

117 retval += n;

118 }

119 free_page((unsigned long) page);

mailto:Paul.Russell@rustcorp.com.au
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1018

120 return retval;

121 }

69 80 get_info read_proc NULL

file_operations sparcaudio
file_operations

/proc

/proc
file_operations devfs

8.4 PCI

PC 8
16 ISA 32 EISA

VESA
PCI PCI PC

PC PCI
ISA EISA PCI

CPU CPU
ISA Intel X86 CPU PC UNIBUS Qbus PDP­11

VME Motorola M68K Power PC
PCI CPU

PCI PCI
CPU SMP

PCI PCI
PCI

Linux
PCI

“PCI “PCI
ISA PCI PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1019

ISA EISA 8.33MHz 32 EISA
33MB ISA 8.33MB)

100 Ethernet 12MB

PCI 33MHz
133MB 66MHz 64

i386
I/O

ISA

(1) I/O

0

(2)

CPU

CPU

PCI I/O
i386 I/O

i386 I/O
16

PCI

PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1020

CPU
CPU Master

DMA CPU
DMA CPU

CPU

CPU

I/O
CPU DMA

PCI CPU
CPU

PCI
CPU PCI

PCI
PCI

DMA

DMA
PCI

PCI
“PCI PCI

PCI CPU — PCI PCI PCI
Primary PCI PC — PCI

PCI “PCI
“PCI­PCI PCI “PCI­ISA ISA

PC ISA “PCI­ISA PCI
“PCI­PCI PCI

PCI

PC — PCI CPU

PCI
PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1021

PC “PCI­ISA ISA ISA
ISA PCI

“PCI­PCI PCI CPU
PCI ISA PCI PCI

8.2 PC

8.2 PC PCI

8.2 PCI PCI
PCI

PCI HOST­PCI
PCI

PCI

PCI
CPU

PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1022

PCI 256 64
configuration header

“0 type 0 PCI “1 PCI “0
“1 16 16

16 include/linux/pci.h

==================== include/linux/pci.h 24 26 ====================
24 #define PCI_VENDOR_ID 0x00 /* 16 bits */

25 #define PCI_DEVICE_ID 0x02 /* 16 bits */

26 #define PCI_COMMAND 0x04 /* 16 bits */

.

==================== include/linux/pci.h 38 38 ====================
38 #define PCI_STATUS 0x06 /* 16 bits */

.

==================== include/linux/pci.h 54 62 ====================
54 #define PCI_CLASS_REVISION 0x08 /* High 24 bits are class, low 8

55 revision */

56 #define PCI_REVISION_ID 0x08 /* Revision ID */

57 #define PCI_CLASS_PROG 0x09 /* Reg. Level Programming Interface */

58 #define PCI_CLASS_DEVICE 0x0a /* Device class */

59

60 #define PCI_CACHE_LINE_SIZE 0x0c /* 8 bits */

61 #define PCI_LATENCY_TIMER 0x0d /* 8 bits */

62 #define PCI_HEADER_TYPE 0x0e /* 8 bits */

PCI_HEADER_TYPE PCI_CLASS_DEVICE
PCI_CLASS_PROG PCI_CLASS_DEVICE 8 0x02

8 0 PCI_CLASS_PROG 0 Ethernet
PCI_CLASS_DEVICE 8 0x07 8 01

PCI_CLASS_PROG 0 1 2 ECP 1.0 IEEE1284
PCI_VENDOR_ID Intel ID 0x8086

Compaq ID 0x0e11
PCI_DEVICE_ID

Linux “cat /proc/pci PCI

48 192

CPU
CPU

PCI

256

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1023

1024 256KB

PCI CPU
— PCI PCI i386 PCI

I/O 8 0xCF8 0xCFF 8
32 ”0xCF8 ”0xCFC

CPU

8.3

8.3 0xCF8

PCI 0 CPU
PCI PCI PCI

PCI
PCI

8 PCI

0 0 PCI
1 1

0 6 ”

6
1 6

ROM ROM

0 include/linux/pci.h

==================== include/linux/pci.h 72 83 ====================
72 /*

73 * Base addresses specify locations in memory or I/O space.

74 * Decoded size can be determined by writing a value of

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1024

75 * 0xffffffff to the register, and reading it back. Only

76 * 1 bits are decoded.

77 */

78 #define PCI_BASE_ADDRESS_0 0x10 /* 32 bits */

79 #define PCI_BASE_ADDRESS_1 0x14 /* 32 bits [htype 0,1 only] */

80 #define PCI_BASE_ADDRESS_2 0x18 /* 32 bits [htype 0 only] */

81 #define PCI_BASE_ADDRESS_3 0x1c /* 32 bits */

82 #define PCI_BASE_ADDRESS_4 0x20 /* 32 bits */

83 #define PCI_BASE_ADDRESS_5 0x24 /* 32 bits */

==================== include/linux/pci.h 96 100 ====================
96 /* Header type 0 (normal devices) */

97 #define PCI_CARDBUS_CIS 0x28

98 #define PCI_SUBSYSTEM_VENDOR_ID 0x2c

99 #define PCI_SUBSYSTEM_ID 0x2e

100 #define PCI_ROM_ADDRESS 0x30 /* Bits 31..11 are address, 10..1 reserved */

.

==================== include/linux/pci.h 104 110 ====================
104 #define PCI_CAPABILITY_LIST 0x34 /* Offset of first capability list entry */

105

106 /* 0x35­0x3b are reserved */

107 #define PCI_INTERRUPT_LINE 0x3c /* 8 bits */

108 #define PCI_INTERRUPT_PIN 0x3d /* 8 bits */

109 #define PCI_MIN_GNT 0x3e /* 8 bits */

110 #define PCI_MAX_LAT 0x3f /* 8 bits */

PCI 1 1
include/linux/pci.h

==================== include/linux/pci.h 112 118 ====================
112 /* Header type 1 (PCI­to­PCI bridges) */

113 #define PCI_PRIMARY_BUS 0x18 /* Primary bus number */

114 #define PCI_SECONDARY_BUS 0x19 /* Secondary bus number */

115 #define PCI_SUBORDINATE_BUS 0x1a /* Highest bus number behind the bridge */

116 #define PCI_SEC_LATENCY_TIMER 0x1b /* Latency timer for secondary interface */

117 #define PCI_IO_BASE 0x1c /* I/O range behind the bridge */

118 #define PCI_IO_LIMIT 0x1d

.

==================== include/linux/pci.h 123 125 ====================
123 #define PCI_SEC_STATUS 0x1e /* Secondary status register, only bit 14 used */

124 #define PCI_MEMORY_BASE 0x20 /* Memory range behind */

125 #define PCI_MEMORY_LIMIT 0x22

==================== include/linux/pci.h 128 129 ====================
128 #define PCI_PREF_MEMORY_BASE 0x24 /* Prefetchable memory range behind */

129 #define PCI_PREF_MEMORY_LIMIT 0x26

.

==================== include/linux/pci.h 134 142 ====================
134 #define PCI_PREF_BASE_UPPER32 0x28 /* Upper half of prefetchable memory range */

135 #define PCI_PREF_LIMIT_UPPER32 0x2c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1025

136 #define PCI_IO_BASE_UPPER16 0x30 /* Upper half of I/O addresses */

137 #define PCI_IO_LIMIT_UPPER16 0x32

138 /* 0x34 same as for htype 0 */

139 /* 0x35­0x3b is reserved */

140 #define PCI_ROM_ADDRESS1 0x38 /* Same as PCI_ROM_ADDRESS, but for htype 1 */

141 /* 0x3c­0x3d are same as for htype 0 */

142 #define PCI_BRIDGE_CONTROL 0x3e

1 PCI_BASE_ADDRESS_0
PCI_BASE_ADDRESS_1 78 79 1 PCI
PCI_PRIMARY_BUS PCI_SECONDARY_BUS
PCI_SECONDARY_BUS PCI PCI_SUBORDINATE_BUS

CPU
CPU I/O 0xCF8 0

PCI
PCI_SUBORDINATE_BUS

PCI
CPU

1
2 “PCI­CardBus CardBus

PCI PC BIOS PCI PCI
PCI

BIOS PC
BIOS PCI

CPU BIOS “PCI BIOS Linux BIOS
PCI PCI BIOS
PCI BIOS Linux PCI

BIOS

Linux PCI BIOS
pcibios BIOS

0xCF8 0xCFC
16 32 gcc
drivers/pci/pci.c

==================== drivers/pci/pci.c 478 504 ====================
478 /*

479 * Wrappers for all PCI configuration access functions. They just check

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1026

480 * alignment, do locking and call the low­level functions pointed to

481 * by pci_dev­>ops.

482 */

483

484 #define PCI_byte_BAD 0

485 #define PCI_word_BAD (pos & 1)

486 #define PCI_dword_BAD (pos & 3)

487

488 #define PCI_OP(rw,size,type) \

489 int pci_##rw##_config_##size (struct pci_dev *dev, int pos, type value) \

490 { \

491 int res; \

492 unsigned long flags; \

493 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \

494 spin_lock_irqsave(&pci_lock, flags); \

495 res = dev­>bus­>ops­>rw##_##size(dev, pos, value); \

496 spin_unlock_irqrestore(&pci_lock, flags); \

497 return res; \

498 }

499

500 PCI_OP(read, byte, u8 *)

501 PCI_OP(read, word, u16 *)

502 PCI_OP(read, dword, u32 *)

503 PCI_OP(write, byte, u8)

504 PCI_OP(write, word, u16)

501 gcc pci_read_config_word()

int pci_read_config_word(struct pci_dev *dev, int pos, u16* value)

{

 int res;

 unsigned long f]ags;

 if (PCI_word_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;

 spin_lock_irqsave(&pci_lock, flags);

 res = dev­>bus­>ops­>read_word(dev, pos, value);

 spin_unlock_irqrestore(&pci_lock, flags);

 return res;

}

pci_read_config_byte() pci_read_config_dword()
pci_write_config_byte() pci_write_config_word()

pci_read_config_word() PCI_word_BAD pos 16

dev pci_dev pci_dev
bus

pci_bus pci_bus ops pci_ops
include/linux/pci.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1027

==================== include/linux/pci.h 424 433 ====================
424 /* Low­level architecture­dependent routines */

425

426 struct pci_ops {

427 int (*read_byte)(struct pci_dev *, int where, u8 *val);

428 int (*read_word)(struct pci_dev *, int where, u16 *val);

429 int (*read_dword)(struct pci_dev *, int where, u32 *val);

430 int (*write_byte)(struct pci_dev *, int where, u8 val);

431 int (*write_word)(struct pci_dev *, int where, u16 val);

432 int (*write_dword)(struct pci_dev *, int where, u32 val);

433 };

PCI pci_ops
“1 “2 PCI 1 2 BIOS

arch/i386/kernel/pci­pc.c CPU
PCI — PCI “2 ”PCI

PCI — PCI pci_direct_conf2
pci_direct_conf1

==================== arch/i386/kernel/pci­pc.c 82 89 ====================
82 static struct pci_ops pci_direct_conf1 = {

83 pci_conf1_read_config_byte,

84 pci_conf1_read_config_word,

85 pci_conf1_read_config_dword,

86 pci_conf1_write_config_byte,

87 pci_conf1_write_config_word,

88 pci_conf1_write_config_dword

89 };

pci_read_config_word() pci_conf1_read_config_word()
arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 45 50 ====================
45 static int pci_conf1_read_config_word(struct pci_dev *dev, int where, u16 *value)

46 {

47 outl(CONFIG_CMD(dev,where), 0xCF8);

48 *value = inw(0xCFC + (where&2));

49 return PCIBIOS_SUCCESSFUL;

50 }

0xCF8 0xCFC
arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 153 160 ====================
153 static struct pci_ops pci_direct_conf2 = {

154 pci_conf2_read_config_byte,

155 pci_conf2_read_config_word,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1028

156 pci_conf2_read_config_dword,

157 pci_conf2_write_config_byte,

158 pci_conf2_write_config_word,

159 pci_conf2_write_config_dword

160 };

==================== arch/i386/kernel/pci­pc.c 531 542 ====================
531 /*

532 * Function table for BIOS32 access

533 */

534

535 static struct pci_ops pci_bios_access = {

536 pci_bios_read_config_byte,

537 pci_bios_read_config_word,

538 pci_bios_read_config_dword,

539 pci_bios_write_config_byte,

540 pci_bios_write_config_word,

541 pci_bios_write_config_dword

542 };

BIOS PCI
pci_bios_read_config_word() BIOS arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 441 457 ====================
441 static int pci_bios_read_config_word(struct pci_dev *dev, int where, u16 *value)

442 {

443 unsigned long ret;

444 unsigned long bx = (dev­>bus­>number << 8) | dev­>devfn;

445

446 __asm__("lcall (%%esi); cld\n\t"

447 "jc 1f\n\t"

448 "xor %%ah, %%ah\n"

449 "1:"

450 : "=c" (*value),

451 "=a" (ret)

452 : "1" (PCIBIOS_READ_CONFIG_WORD),

453 "b" (bx),

454 "D" ((long) where),

455 "S" (&pci_indirect));

456 return (int) (ret & 0xff00) >> 8;

457 }

pci_indirect BIOS
BIOS PCI PCI BIOS

gcc
pcibios_read_config_byte() pcibios_read_config_word() pcibios_read_config_dword()
pcibios_write_config_byte() pcibios_write_config_word() pcibios_write_config_dword()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1029

drivers/pci/compat.c

==================== drivers/pci/compat.c 51 65 ====================
51 #define PCI_OP(rw,size,type) \

52 int pcibios_##rw##_config_##size (unsigned char bus, unsigned char dev_fn, \

53 unsigned char where, unsigned type val) \

54 { \

55 struct pci_dev *dev = pci_find_slot(bus, dev_fn); \

56 if (!dev) return PCIBIOS_DEVICE_NOT_FOUND; \

57 return pci_##rw##_config_##size(dev, where, val); \

58 }

59

60 PCI_OP(read, byte, char *)

61 PCI_OP(read, word, short *)

62 PCI_OP(read, dword, int *)

63 PCI_OP(write, byte, char)

64 PCI_OP(write, word, short)

65 PCI_OP(write, dword, int)

61

int pcibios_read_config_word(unsigned char bus, unsigned char dev_fn,

 unsigned char where, unsigned type val)

{

 struct pci_dev *dev = pci_find_slot(bus, dev_fn);

 if (!dev) return PCIBIOS_DEVICE_NOT_FOUND;

 return pci_read_config_word(dev, where, val);

}

pci_read_config_word()

PCI
PCI pci_init() drivers/pci/pci.c

==================== drivers/pci/pci.c 1162 1175 ====================
1162 void __init pci_init(void)

1163 {

1164 struct pci_dev *dev;

1165

1166 pcibios_init();

1167

1168 pci_for_each_dev(dev) {

1169 pci_fixup_device(PCI_FIXUP_FINAL, dev);

1170 }

1171

1172 #ifdef CONFIG_PM

1173 pm_register(PM_PCI_DEV, 0, pci_pm_callback);

1174 #endif

1175 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1030

CONFIG_PM PM “Power
Management

PCI PC BIOS PCI
PCI BIOS BIOS PCI — PCI

enumerate PCI PCI
“PCI­PCI PCI

PCI PCI
“PCI PC — PCI

BIOS PCI
PCI config BIOS

PCI BIOS
BIOS Linux BIOS PCI

BIOS PCI
BIOS pcibios_init()

pcibios_init() arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 953 996 ====================
[pci_init()>pcibios_init()]
953 /*

954 * Initialization. Try all known PCI access methods. Note that we support

955 * using both PCI BIOS and direct access: in such cases, we use I/O ports

956 * to access config space, but we still keep BIOS order of cards to be

957 * compatible with 2.0.X. This should go away some day.

958 */

959

960 void __init pcibios_init(void)

961 {

962 struct pci_ops *bios = NULL;

963 struct pci_ops *dir = NULL;

964

965 #ifdef CONFIG_PCI_BIOS

966 if ((pci_probe & PCI_PROBE_BIOS) && ((bios = pci_find_bios()))) {

967 pci_probe |= PCI_BIOS_SORT;

968 pci_bios_present = 1;

969 }

970 #endif

971 #ifdef CONFIG_PCI_DIRECT

972 if (pci_probe & (PCI_PROBE_CONF1 | PCI_PROBE_CONF2))

973 dir = pci_check_direct();

974 #endif

975 if (dir)

976 pci_root_ops = dir;

977 else if (bios)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1031

978 pci_root_ops = bios;

979 else {

980 printk("PCI: No PCI bus detected\n");

981 return;

982 }

983

984 printk("PCI: Probing PCI hardware\n");

985 pci_root_bus = pci_scan_bus(0, pci_root_ops, NULL);

986

987 pcibios_irq_init();

988 pcibios_fixup_peer_bridges();

989 pcibios_fixup_irqs();

990 pcibios_resource_survey();

991

992 #ifdef CONFIG_PCI_BIOS

993 if ((pci_probe & PCI_BIOS_SORT) && !(pci_probe & PCI_NO_SORT))

994 pcibios_sort();

995 #endif

996 }

CONFIG_PCIBIOS BIOS PCI CONFIG_PCI_DIRECT
PCI BIOS

PCI BIOS pci_find_bios()
PCI BIOS PCI

==================== arch/i386/kernel/pci­pc.c 544 593 ====================
[pci_init()>pcibios_init()>pci_find_bios()]
544 /*

545 * Try to find PCI BIOS.

546 */

547

548 static struct pci_ops * __init pci_find_bios(void)

549 {

550 union bios32 *check;

551 unsigned char sum;

552 int i, length;

553

554 /*

555 * Follow the standard procedure for locating the BIOS32 Service

556 * directory by scanning the permissible address range from

557 * 0xe0000 through 0xfffff for a valid BIOS32 structure.

558 */

559

560 for (check = (union bios32 *) __va(0xe0000);

561 check <= (union bios32 *) __va(0xffff0);

562 ++check) {

563 if (check­>fields.signature != BIOS32_SIGNATURE)

564 continue;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1032

565 length = check­>fields.length * 16;

566 if (!length)

567 continue;

568 sum = 0;

569 for (i = 0; i < length ; ++i)

570 sum += check­>chars[i];

571 if (sum != 0)

572 continue;

573 if (check­>fields.revision != 0) {

574 printk("PCI: unsupported BIOS32 revision %d at 0x%p, report to <mj@suse.cz>\n",

575 check­>fields.revision, check);

576 continue;

577 }

578 DBG("PCI: BIOS32 Service Directory structure at 0x%p\n", check);

579 if (check­>fields.entry >= 0x100000) {

580 printk("PCI: BIOS32 entry (0x%p) in high memory, cannot use.\n", check);

581 return NULL;

582 } else {

583 unsigned long bios32_entry = check­>fields.entry;

584 DBG("PCI: BIOS32 Service Directory entry at 0x%lx\n", bios32_entry);

585 bios32_indirect.address = bios32_entry + PAGE_OFFSET;

586 if (check_pcibios())

587 return &pci_bios_access;

588 }

589 break; /* Hopefully more than one BIOS32 cannot happen... */

590 }

591

592 return NULL;

593 }

BIOS32_SIGNATURE arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 259 260 ====================
259 /* BIOS32 signature: "_32_" */

260 #define BIOS32_SIGNATURE (('_' << 0) + ('3' << 8) + ('2' << 16) + ('_' << 24))

PCI pci_check_direct()
arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 192 235 ====================
[pci_init()>pcibios_init()>pci_check_direct()]
192 static struct pci_ops * __init pci_check_direct(void)

193 {

194 unsigned int tmp;

195 unsigned long flags;

196

197 __save_flags(flags); __cli();

198

199 /*

mailto:mj@suse.cz
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1033

200 * Check if configuration type 1 works.

201 */

202 if (pci_probe & PCI_PROBE_CONF1) {

203 outb (0x01, 0xCFB);

204 tmp = inl (0xCF8);

205 outl (0x80000000, 0xCF8);

206 if (inl (0xCF8) == 0x80000000 &&

207 pci_sanity_check(&pci_direct_conf1)) {

208 outl (tmp, 0xCF8);

209 __restore_flags(flags);

210 printk("PCI: Using configuration type 1\n");

211 request_region(0xCF8, 8, "PCI conf1");

212 return &pci_direct_conf1;

213 }

214 outl (tmp, 0xCF8);

215 }

216

217 /*

218 * Check if configuration type 2 works.

219 */

220 if (pci_probe & PCI_PROBE_CONF2) {

221 outb (0x00, 0xCFB);

222 outb (0x00, 0xCF8);

223 outb (0x00, 0xCFA);

224 if (inb (0xCF8) == 0x00 && inb (0xCFA) == 0x00 &&

225 pci_sanity_check(&pci_direct_conf2)) {

226 __restore_flags(flags);

227 printk("PCI: Using configuration type 2\n");

228 request_region(0xCF8, 4, "PCI conf2");

229 return &pci_direct_conf2;

230 }

231 }

232

233 __restore_flags(flags);

234 return NULL;

235 }

— PCI I/O I/O 0xCF8 0xCFF 0xCF8 0xCFB
0xCFC 0xCFF PCI

PCI ISA PCI
1 212 2

2 1
1 —PCI pci_direct_conf1 pci_sanity_check()

arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 162 190 ====================
[pci_init()>pcibios_init()>pci_check_direct()>pci_sanity_check()]
162 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1034

163 * Before we decide to use direct hardware access mechanisms, we try to do some

164 * trivial checks to ensure it at least _seems_ to be working ­­ we just test

165 * whether bus 00 contains a host bridge (this is similar to checking

166 * techniques used in XFree86, but ours should be more reliable since we

167 * attempt to make use of direct access hints provided by the PCI BIOS).

168 *

169 * This should be close to trivial, but it isn't, because there are buggy

170 * chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID.

171 */

172 static int __init pci_sanity_check(struct pci_ops *o)

173 {

174 u16 x;

175 struct pci_bus bus; /* Fake bus and device */

176 struct pci_dev dev;

177

178 if (pci_probe & PCI_NO_CHECKS)

179 return 1;

180 bus.number = 0;

181 dev.bus = &bus;

182 for(dev.devfn=0; dev.devfn < 0x100; dev.devfn++)

183 if ((!o­>read_word(&dev, PCI_CLASS_DEVICE, &x) &&

184 (x == PCI_CLASS_BRIDGE_HOST || x == PCI_CLASS_DISPLAY_VGA)) ||

185 (!o­>read_word(&dev, PCI_VENDOR_ID, &x) &&

186 (x == PCI_VENDOR_ID_INTEL || x == PCI_VENDOR_ID_COMPAQ)))

187 return 1;

188 DBG("PCI: Sanity check failed\n");

189 return 0;

190 }

PCI 256 256
— PCI PCI_CLASS_BRIDGE_HOST PCI_CLASS_DISPLAY_VGA

— PCI Intel Compaq
— PCI PCI

— PCI I/O I/O 0xCF8
8 request_region() I/O

I/O “PCI conf1
1 — PCI pci_direct_conf1

pci_ops PCI

pcibios_init() 985 PCI PCI
pci_scan_bus() drivers/pci/pci.c

==================== drivers/pci/pci.c 1045 1054 ====================
[pci_init())pcibios_init()>pci_scan_bus()]
1045 struct pci_bus * __init pci_scan_bus(int bus, struct pci_ops *ops, void *sysdata)

1046 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1035

1047 struct pci_bus *b = pci_alloc_primary_bus(bus);

1048 if (b) {

1049 b­>sysdata = sysdata;

1050 b­>ops = ops;

1051 b­>subordinate = pci_do_scan_bus(b);

1052 }

1053 return b;

1054 }

—PCI PCI PCI PCI
pci_bus

include/linux/pci.h

==================== include/linux/pci.h 381 406 ====================
381 struct pci_bus {

382 struct list_head node; /* node in list of buses */

383 struct pci_bus *parent; /* parent bus this bridge is on */

384 struct list_head children; /* list of child buses */

385 struct list_head devices; /* list of devices on this bus */

386 struct pci_dev *self; /* bridge device as seen by parent */

387 struct resource *resource[4]; /* address space routed to this bus */

388

389 struct pci_ops *ops; /* configuration access functions */

390 void *sysdata; /* hook for sys­specific extension */

391 struct proc_dir_entry *procdir; /* directory entry in /proc/bus/pci */

392

393 unsigned char number; /* bus number */

394 unsigned char primary; /* number of primary bridge */

395 unsigned char secondary; /* number of secondary bridge */

396 unsigned char subordinate; /* max number of subordinate buses */

397

398 char name[48];

399 unsigned short vendor;

400 unsigned short device;

401 unsigned int serial; /* serial number */

402 unsigned char pnpver; /* Plug & Play version */

403 unsigned char productver; /* product version */

404 unsigned char checksum; /* if zero ­ checksum passed */

405 unsigned char pad1;

406 };

PCI number PCI 0
pci_bus PCI

—PCI pci_bus pci_root_buses
—PCI pci_bus node pci_bus

devices pci_dev
children “PCI­PCI PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1036

pci­bus pci_root_buses
PCI pci_scan_bus()

—PCI pci_root_buses
PCI pci_dev include/linux/pci.h

==================== include/linux/pci.h 311 362 ====================
311 /*

312 * The pci_dev structure is used to describe both PCI and ISAPnP devices.

313 */

314 struct pci_dev {

315 struct list_head global_list; /* node in list of all PCI devices */

316 struct list_head bus_list; /* node in per­bus list */

317 struct pci_bus *bus; /* bus this device is on */

318 struct pci_bus *subordinate; /* bus this device bridges to */

319

320 void *sysdata; /* hook for sys­specific extension */

321 struct proc_dir_entry *procent; /* device entry in /proc/bus/pci */

322

323 unsigned int devfn; /* encoded device & function index */

324 unsigned short vendor;

325 unsigned short device;

326 unsigned short subsystem_vendor;

327 unsigned short subsystem_device;

328 unsigned int class; /* 3 bytes: (base,sub,prog­if) */

329 u8 hdr_type; /* PCI header type (`multi' flag masked out) */

330 u8 rom_base_reg; /* which config register controls the ROM */

331

332 struct pci_driver *driver; /* which driver has allocated this device */

333 void *driver_data; /* data private to the driver */

334 dma_addr_t dma_mask; /* Mask of the bits of bus address this

335 device implements. Normally this is

336 0xffffffff. You only need to change

337 this if your device has broken DMA

338 or supports 64­bit transfers. */

339

340 /* device is compatible with these IDs */

341 unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];

342 unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];

343

344 /*

345 * Instead of touching interrupt line and base address registers

346 * directly, use the values stored here. They might be different!

347 */

348 unsigned int irq;

349 struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory regions + expansion ROMs */

350 struct resource dma_resource[DEVICE_COUNT_DMA];

351 struct resource irq_resource[DEVICE_COUNT_IRQ];

352

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1037

353 char name[80]; /* device name */

354 char slot_name[8]; /* slot name */

355 int active; /* ISAPnP: device is active */

356 int ro; /* ISAPnP: read only */

357 unsigned short regs; /* ISAPnP: supported registers */

358

359 int (*prepare)(struct pci_dev *dev); /* ISAPnP hooks */

360 int (*activate)(struct pci_dev *dev);

361 int (*deactivate)(struct pci_dev *dev);

362 };

pci_dev global_list pci_dev
bus_list pci_dev devices bus

pci_bus “PCI­PCI subordinate
PCI PCI pci_bus

pci_bus resource pci_dev resource

PCI

PCI resource

pci_alloc_primary_bus() drivers/pci/pci.c

==================== drivers/pci/pci.c 1026 1043 ====================
1026 struct pci_bus * __init pci_alloc_primary_bus(int bus)

1027 {

1028 struct pci_bus *b;

1029

1030 if (pci_bus_exists(&pci_root_buses, bus)) {

1031 /* If we already got to this bus through a different bridge, ignore it */

1032 DBG("PCI: Bus %02x already known\n", bus);

1033 return NULL;

1034 }

1035

1036 b = pci_alloc_bus();

1037 list_add_tail(&b­>node, &pci_root_buses);

1038

1039 b­>number = b­>secondary = bus;

1040 b­>resource[0] = &ioport_resource;

1041 b­>resource[1] = &iomem_resource;

1042 return b;

1043 }

PCI pci_bus PCI pci_root_buses
pci_bus_exists() bus PCI 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1038

985 ioport_resource iomem_resource I/O

PCI pci_do_scan_bus()
drivers/pci/pci.c

==================== drivers/pci/pci.c 970 1012 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()]
970 static unsigned int __init pci_do_scan_bus(struct pci_bus *bus)

971 {

972 unsigned int devfn, max, pass;

973 struct list_head *ln;

974 struct pci_dev *dev, dev0;

975

976 DBG("Scanning bus %02x\n", bus­>number);

977 max = bus­>secondary;

978

979 /* Create a device template */

980 memset(&dev0, 0, sizeof(dev0));

981 dev0.bus = bus;

982 dev0.sysdata = bus­>sysdata;

983

984 /* Go find them, Rover! */

985 for (devfn = 0; devfn < 0x100; devfn += 8) {

986 dev0.devfn = devfn;

987 pci_scan_slot(&dev0);

988 }

989

990 /*

991 * After performing arch­dependent fixup of the bus, look behind

992 * all PCI­to­PCI bridges on this bus.

993 */

994 DBG("Fixups for bus %02x\n", bus­>number);

995 pcibios_fixup_bus(bus);

996 for (pass=0; pass < 2; pass++)

997 for (ln=bus­>devices.next; ln != &bus­>devices; ln=ln­>next) {

998 dev = pci_dev_b(ln);

999 if (dev­>hdr_type == PCI_HEADER_TYPE_BRIDGE || dev­>hdr_type == PCI_HEADER_TYPE_CARDBUS)

1000 max = pci_scan_bridge(bus, dev, max, pass);

1001 }

1002

1003 /*

1004 * We've scanned the bus and so we know all about what's on

1005 * the other side of any bridges that may be on this bus plus

1006 * any devices.

1007 *

1008 * Return how far we've got finding sub­buses.

1009 */

1010 DBG("Bus scan for %02x returning with max=%02x\n", bus­>number, max);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1039

1011 return max;

1012 }

PCI PCI pci_dev
pci_dev

PCI pci_scan_slot() 8 8 PCI
devfn 5 3

drivers/pci/pci.c

==================== drivers/pci/pci.c 932 968 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()]
932 struct pci_dev * __init pci_scan_slot(struct pci_dev *temp)

933 {

934 struct pci_bus *bus = temp­>bus;

935 struct pci_dev *dev;

936 struct pci_dev *first_dev = NULL;

937 int func = 0;

938 int is_multi = 0;

939 u8 hdr_type;

940

941 for (func = 0; func < 8; func++, temp­>devfn++) {

942 if (func && !is_multi) /* not a multi­function device */

943 continue;

944 if (pci_read_config_byte(temp, PCI_HEADER_TYPE, &hdr_type))

945 continue;

946 temp­>hdr_type = hdr_type & 0x7f;

947

948 dev = pci_scan_device(temp);

949 if (!dev)

950 continue;

951 pci_name_device(dev);

952 if (!func) {

953 is_multi = hdr_type & 0x80;

954 first_dev = dev;

955 }

956

957 /*

958 * Link the device to both the global PCI device chain and

959 * the per­bus list of devices.

960 */

961 list_add_tail(&dev­>global_list, &pci_devices);

962 list_add_tail(&dev­>bus_list, &bus­>devices);

963

964 /* Fix up broken headers */

965 pci_fixup_device(PCI_FIXUP_HEADER, dev);

966 }

967 return first_dev;

968 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1040

PCI
8 3 0

1 pci_bus
temp pci_read_config_byte() temp­>devfn

pci_ops
7 946 pci_scan_device()

drivers/pci/pci.c

==================== drivers/pci/pci.c 898 930 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()]
898 /*

899 * Read the config data for a PCI device, sanity­check it

900 * and fill in the dev structure...

901 */

902 static struct pci_dev * __init pci_scan_device(struct pci_dev *temp)

903 {

904 struct pci_dev *dev;

905 u32 l;

906

907 if (pci_read_config_dword(temp, PCI_VENDOR_ID, &l))

908 return NULL;

909

910 /* some broken boards return 0 or ~0 if a slot is empty: */

911 if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || l == 0xffff0000)

912 return NULL;

913

914 dev = kmalloc(sizeof(*dev), GFP_KERNEL);

915 if (!dev)

916 return NULL;

917

918 memcpy(dev, temp, sizeof(*dev));

919 dev­>vendor = l & 0xffff;

920 dev­>device = (l >> 16) & 0xffff;

921

922 /* Assume 32­bit PCI; let 64­bit PCI cards (which are far rarer)

923 set this higher, assuming the system even supports it. */

924 dev­>dma_mask = 0xffffffff;

925 if (pci_setup_device(dev) < 0) {

926 kfree(dev);

927 dev = NULL;

928 }

929 return dev;

930 }

16 16 1 0
pci_dev

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1041

pci_setup_device() PCI
drivers/pci/pci.c

==================== drivers/pci/pci.c 841 896 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()>pci_setup_device()]
841 /*

842 * Fill in class and map information of a device

843 */

844 int pci_setup_device(struct pci_dev * dev)

845 {

846 u32 class;

847

848 sprintf(dev­>slot_name, "%02x:%02x.%d", dev­>bus­>number, PCI_SLOT(dev­>devfn),

PCI_FUNC(dev­>devfn));

849 sprintf(dev­>name, "PCI device %04x:%04x", dev­>vendor, dev­>device);

850

851 pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);

852 class >>= 8; /* upper 3 bytes */

853 dev­>class = class;

854 class >>= 8;

855

856 DBG("Found %02x:%02x [%04x/%04x] %06x %02x\n", dev­>bus­>number, dev­>devfn, dev­>vendor,

dev­>device, class, dev­>hdr_type);

857

858 switch (dev­>hdr_type) { /* header type */

859 case PCI_HEADER_TYPE_NORMAL: /* standard header */

860 if (class == PCI_CLASS_BRIDGE_PCI)

861 goto bad;

862 pci_read_irq(dev);

863 pci_read_bases(dev, 6, PCI_ROM_ADDRESS);

864 pci_read_config_word(dev, PCI_SUBSYSTEM_VENDOR_ID, &dev­>subsystem_vendor);

865 pci_read_config_word(dev, PCI_SUBSYSTEM_ID, &dev­>subsystem_device);

866 break;

867

868 case PCI_HEADER_TYPE_BRIDGE: /* bridge header */

869 if (class != PCI_CLASS_BRIDGE_PCI)

870 goto bad;

871 pci_read_bases(dev, 2, PCI_ROM_ADDRESS1);

872 break;

873

874 case PCI_HEADER_TYPE_CARDBUS: /* CardBus bridge header */

875 if (class != PCI_CLASS_BRIDGE_CARDBUS)

876 goto bad;

877 pci_read_irq(dev);

878 pci_read_bases(dev, 1, 0);

879 pci_read_config_word(dev, PCI_CB_SUBSYSTEM_VENDOR_ID, &dev­>subsystem_vendor);

880 pci_read_config_word(dev, PCI_CB_SUBSYSTEM_ID, &dev­>subsystem_device);

881 break;

882

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1042

883 default: /* unknown header */

884 printk(KERN_ERR "PCI: device %s has unknown header type %02x, ignoring.\n",

885 dev­>slot_name, dev­>hdr_type);

886 return ­1;

887

888 bad:

889 printk(KERN_ERR "PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n",

890 dev­>slot_name, class, dev­>hdr_type);

891 dev­>class = PCI_CLASS_NOT_DEFINED;

892 }

893

894 /* We found a fine healthy device, go go go... */

895 return 0;

896 }

858
PCI_HEADER_TYPE_NORMAL PCI PCI_HEADER_TYPE_BRIDGE

“PCI­PCI PCI_HEADER_TYPE_CARDBUS “PCI­CardBus
PCI PCI

PCI_INTERRUPT_PIN PCI_INTERRUPT_LINE
PCI INTA INTD 4 PCI 4

PCI
PCI_INTERRUPT_PIN 0 PCI

PCI
PCI_INTERRUPT_PIN 1 4

PCI_INTERRUPT_PIN
PCI 8259A APIC

PCI_INTERRUPT_LINE
8 9

pci_read_irq() pei_dev
drivers/pci/pci.c

==================== drivers/pci/pci.c 827 839 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()>pci_setup_device()
>pci_read_irq()]
827 /*

828 * Read interrupt line and base address registers.

829 * The architecture­dependent code can tweak these, of course.

830 */

831 static void pci_read_irq(struct pci_dev *dev)

832 {

833 unsigned char irq;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1043

834

835 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq);

836 if (irq)

837 pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq);

838 dev­>irq = irq;

839 }

PCI RAM ROM
RAM

pci_read_bases() PCI
6 RAM pci_read_bases() drivers/pci/pci.c

==================== drivers/pci/pci.c 547 579 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()>pci_setup_device()
>pci_read_bases()]
547 static void pci_read_bases(struct pci_dev *dev, unsigned int howmany, int rom)

548 {

549 unsigned int pos, reg, next;

550 u32 l, sz;

551 struct resource *res;

552

553 for(pos=0; pos<howmany; pos = next) {

554 next = pos+1;

555 res = &dev­>resource[pos];

556 res­>name = dev­>name;

557 reg = PCI_BASE_ADDRESS_0 + (pos << 2);

558 pci_read_config_dword(dev, reg, &l);

559 pci_write_config_dword(dev, reg, ~0);

560 pci_read_config_dword(dev, reg, &sz);

561 pci_write_config_dword(dev, reg, l);

562 if (!sz || sz == 0xffffffff)

563 continue;

564 if (l == 0xffffffff)

565 l = 0;

566 if ((l & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_MEMORY) {

567 res­>start = l & PCI_BASE_ADDRESS_MEM_MASK;

568 sz = pci_size(sz, PCI_BASE_ADDRESS_MEM_MASK);

569 } else {

570 res­>start = l & PCI_BASE_ADDRESS_IO_MASK;

571 sz = pci_size(sz, PCI_BASE_ADDRESS_IO_MASK & 0xffff);

572 }

573 res­>end = res­>start + (unsigned long) sz;

574 res­>flags |= (l & 0xf) | pci_calc_resource_flags(l);

575 if ((l & (PCI_BASE_ADDRESS_SPACE | PCI_BASE_ADDRESS_MEM_TYPE_MASK))

576 == (PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64)) {

577 pci_read_config_dword(dev, reg+4, &l);

578 next++;

579 #if BITS_PER_LONG == 64

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1044

.

==================== drivers/pci/pci.c 588 597 ====================
588 #else

589 if (l) {

590 printk(KERN_ERR "PCI: Unable to handle 64­bit address for device %s\n",

dev­>slot_name);

591 res­>start = 0;

592 res­>flags = 0;

593 continue;

594 }

595 #endif

596 }

597 }

dev­>resource[] pci_dev resource
12 PCI 6

ROM PCI
6 for

557 558

• bit0 0 1 I/O
I/O

“memory mapped
• 28 28 4 0
• I/O 29 29 3 0
• bit3 1 ”

prefetchable
• bit2 1 64 0 32
• bit1 1 1MB 0 1MB

include/linux/pci.h

==================== include/linux/pci.h 84 91 ====================
84 #define PCI_BASE_ADDRESS_SPACE 0x01 /* 0 = memory, 1 = I/O */

85 #define PCI_BASE_ADDRESS_SPACE_IO 0x01

86 #define PCI_BASE_ADDRESS_SPACE_MEMORY 0x00

87 #define PCI_BASE_ADDRESS_MEM_TYPE_MASK 0x06

88 #define PCI_BASE_ADDRESS_MEM_TYPE_32 0x00 /* 32 bit address */

89 #define PCI_BASE_ADDRESS_MEM_TYPE_1M 0x02 /* Below 1M [obsolete] */

90 #define PCI_BASE_ADDRESS_MEM_TYPE_64 0x04 /* 64 bit address */

91 #define PCI_BASE_ADDRESS_MEM_PREFETCH 0x08 /* prefetchable? */

1 559
0xffffffff 560 4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1045

3 28 29
1 2 1

0 1 1 pci_size()
drivers/pci/pci.c

==================== drivers/pci/pci.c 537 545 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()>pci_setup_device()
>pci_read_bases()>pci_size()]
537 /*

538 * Find the extent of a PCI decode..

539 */

540 static u32 pci_size(u32 base, unsigned long mask)

541 {

542 u32 size = mask & base; /* Find the significant bits */

543 size = size & ~(size­1); /* Get the lowest of them to find the decode size */

544 return size­1; /* extent = size ­ 1 */

545 }

mask 4 3 1
4 3 size 0xffff0100 (size­1) 0xffff00ff ­(size­1)

0x0000ff00 size = 0xffff0100 & 0x0000ff00 = 0x100 size
1 size 0x100 256

255 0x100 1
1 l 1

0
64KB 256

1 1

561
resource

“I/O
“I/O CPU

CPU
I/O I/O
i386 I/O I/O 16 I/O

C
PCI

I/O

FIFO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1046

FIFO
0

PCI
CPU N N+1 CPU

N+1 CPU

64 PCI 64
575 596

6 ROM
6 for

==================== drivers/pci/pci.c 598 616 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_scan_device()>pci_setup_device()
>pci_read_bases()]
598 if (rom) {

599 dev­>rom_base_reg = rom;

600 res = &dev­>resource[PCI_ROM_RESOURCE];

601 pci_read_config_dword(dev, rom, &l);

602 pci_write_config_dword(dev, rom, ~PCI_ROM_ADDRESS_ENABLE);

603 pci_read_config_dword(dev, rom, &sz);

604 pci_write_config_dword(dev, rom, l);

605 if (l == 0xffffffff)

606 l = 0;

607 if (sz && sz != 0xffffffff) {

608 res­>flags = (l & PCI_ROM_ADDRESS_ENABLE) |

609 IORESOURCE_MEM | IORESOURCE_PREFETCH | IORESOURCE_READONLY | IORESOURCE_CACHEABLE;

610 res­>start = l & PCI_ROM_ADDRESS_MASK;

611 sz = pci_size(sz, PCI_ROM_ADDRESS_MASK);

612 res­>end = res­>start + (unsigned long) sz;

613 }

614 res­>name = dev­>name;

615 }

616 }

ROM RAM 11 bit0
PCI_ROM_ADDRESS_ENABLE 1

pci_setup_device() 864
“PCI­PCI 869 872

“PCI­PCI pci_read_bases() “PCI­PCI ”

“PCI­PCI
PCI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1047

pci_scan_device() pci_scan_slot() pci_dev
0 PCI pci_name_device()

drivers/pci/pci.ids

==================== drivers/pci/pci.ids 1469 1472 ====================
1469 10b7 3Com Corporation

1470 0001 3c985 1000BaseSX

1471 3390 Token Link Velocity

1472 3590 3c359 TokenLink Velocity XL

0x10b7 3Com 0x0001 3c985

pci_scan_device() pci_dev pci_devices
pci_bus

Linux
pci_fixup include/linux/pci.h

==================== include/linux/pci.h 660 671 ====================
660 /*

661 * The world is not perfect and supplies us with broken PCI devices.

662 * For at least a part of these bugs we need a work­around, so both

663 * generic (drivers/pci/quirks.c) and per­architecture code can define

664 * fixup hooks to be called for particular buggy devices.

665 */

666

667 struct pci_fixup {

668 int pass;

669 u16 vendor, device; /* You can use PCI_ANY_ID here of course */

670 void (*hook)(struct pci_dev *dev);

671 };

vendor device pass
hook pci_fixup

arch/i386/kernel/pci­pc.c drivers/pci/quirks.c

==================== arch/i386/kernel/pci­pc.c 927 929 ====================
927 struct pci_fixup pcibios_fixups[] = {

928 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82451NX,

pci_fixup_i450nx },

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1048

929 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82454GX,

pci_fixup_i450gx },

.

==================== arch/i386/kernel/pci­pc.c 938 940 ====================
938 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5598, pci_fixup_latency },

939 { 0 }

940 };

==================== drivers/pci/quirks.c 250 255 ====================
250 /*

251 * The main table of quirks.

252 */

253

254 static struct pci_fixup pci_fixups[] __initdata = {

255 { PCI_FIXUP_FINAL, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82441, quirk_passive_release },

.

==================== drivers/pci/quirks.c 283 288 ====================
283 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_AL, PCI_DEVICE_ID_AL_M7101, quirk_ali7101_acpi },

284 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371SB_2,

quirk_piix3_usb },

285 { PCI_FIXUP_HEADER, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_2,

quirk_piix3_usb },

286 { 0 }

287 };

288

928 Intel 82451NX — PCI
pci_fixup_i450nx() PCI_FIXUP_HEADER include/linux/pci.h 1

PCI_FIXUP_FINAL 2 pci_fixup_device() drivers/pci/quirks.c
pass PCI_FIXUP_HEADER

==================== drivers/pci/quirks.c 305 309 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_fixup_device()]
305 void pci_fixup_device(int pass, struct pci_dev *dev)

306 {

307 pci_do_fixups(dev, pass, pcibios_fixups);

308 pci_do_fixups(dev, pass, pci_fixups);

309 }

pci_do_fixups() drivers/pci/quirks.c

==================== drivers/pci/quirks.c 290 303 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_slot()>pci_fixup_device()>pci_do_fixups()]
290 static void pci_do_fixups(struct pci_dev *dev, int pass, struct pci_fixup *f)

291 {

292 while (f­>pass) {

293 if (f­>pass == pass &&

294 (f­>vendor == dev­>vendor || f­>vendor == (u16) PCI_ANY_ID) &&

295 (f­>device == dev­>device || f­>device == (u16) PCI_ANY_ID)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1049

296 #ifdef DEBUG

297 printk("PCI: Calling quirk %p for %s\n", f­>hook, dev­>slot_name);

298 #endif

299 f­>hook(dev);

300 }

301 f++;

302 }

303 }

293 pass
pci_do_scan_bus() pci_scan_slot() PCI

pcibios_fixup_bus()
arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 942 951 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pcibios_fixup_bus()]
942 /*

943 * Called after each bus is probed, but before its children

944 * are examined.

945 */

946

947 void __init pcibios_fixup_bus(struct pci_bus *b)

948 {

949 pcibios_fixup_ghosts(b);

950 pci_read_bridge_bases(b);

951 }

PCI
16

PCI
pcibios_fixup_ghosts() arch/i386/kernel/pci­pc.c

pci_read_bridge_bases() drivers/pci/pci.c

==================== drivers/pci/pci.c 618 697 ====================
[pci_init()>pcibios_init()>pci_scan_bus()>pci_do_scan_bus()>pcibios_fixup_bus()>pci_read_bridge_bases()]
618 void __init pci_read_bridge_bases(struct pci_bus *child)

619 {

620 struct pci_dev *dev = child­>self;

621 u8 io_base_lo, io_limit_lo;

622 u16 mem_base_lo, mem_limit_lo, io_base_hi, io_limit_hi;

623 u32 mem_base_hi, mem_limit_hi;

624 unsigned long base, limit;

625 struct resource *res;

626 int i;

627

628 if (!dev) /* It's a host bus, nothing to read */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1050

629 return;

630

631 for(i=0; i<3; i++)

632 child­>resource[i] = &dev­>resource[PCI_BRIDGE_RESOURCES+i];

633

634 res = child­>resource[0];

635 pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo);

636 pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo);

637 pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi);

638 pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi);

639 base = ((io_base_lo & PCI_IO_RANGE_MASK) << 8) | (io_base_hi << 16);

640 limit = ((io_limit_lo & PCI_IO_RANGE_MASK) << 8) | (io_limit_hi << 16);

641 if (base && base <= limit) {

642 res­>flags = (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO;

643 res­>start = base;

644 res­>end = limit + 0xfff;

645 res­>name = child­>name;

646 } else {

647 /*

648 * Ugh. We don't know enough about this bridge. Just assume

649 * that it's entirely transparent.

650 */

651 printk("Unknown bridge resource %d: assuming transparent\n", 0);

652 child­>resource[0] = child­>parent­>resource[0];

653 }

654

655 res = child­>resource[1];

656 pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo);

657 pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo);

658 base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;

659 limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;

660 if (base && base <= limit) {

661 res­>flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM;

662 res­>start = base;

663 res­>end = limit + 0xfffff;

664 res­>name = child­>name;

665 } else {

666 /* See comment above. Same thing */

667 printk("Unknown bridge resource %d: assuming transparent\n", 1);

668 child­>resource[1] = child­>parent­>resource[1];

669 }

670

671 res = child­>resource[2];

672 pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo);

673 pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo);

674 pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi);

675 pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi);

676 base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;

677 limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1051

678 #if BITS_PER_LONG == 64

679 base |= ((long) mem_base_hi) << 32;

680 limit |= ((long) mem_limit_hi) << 32;

681 #else

682 if (mem_base_hi || mem_limit_hi) {

683 printk(KERN_ERR "PCI: Unable to handle 64­bit address space for %s\n", child­>name);

684 return;

685 }

686 #endif

687 if (base && base <= limit) {

688 res­>flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM |

IORESOURCE_PREFETCH;

689 res­>start = base;

690 res­>end = limit + 0xfffff;

691 res­>name = child­>name;

692 } else {

693 /* See comments above */

694 printk("Unknown bridge resource %d: assuming transparent\n", 2);

695 child­>resource[2] = child­>parent­>resource[2];

696 }

697 }

PCI PCI PCI 6
ROM PCI

CPU PCI PCI
PCI PCI

PCI CPU PCI “memory access enable
“I/O access enable 0

PCI PCI
0 CPU

resource

I/O PCI 8 PCI_IO_BASE PCI_IO_LIMIT
4 16 I/O 4 4 0

16 I/O 4KB 4KB PCI_IO_BASE
4 12 0 PCI_IO_LIMIT 4 12 1 PCI_IO_BASE
4 6 PCI_IO_LIMIT 4 7 0x6000 0x7fff PCI
i386 32 I/O PCI

32 I/O PCI_IO_BASE_UPPER16 PCI_IO_LIMIT_UPPER16 16
16 PCI_IO_BASE PCI_IO_LIMIT 4 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1052

PCI_MEMORY_BASE PCI_MEMORY_LIMIT
PCI_IO_BASE PCI_IO_LIMIT 16 4 0

12 32 12 1MB 1MB
PCI_MEMORY_BASE 12 0xa81 PCI_MEMORY_LIMIT 12 0xa81

0xa8100000 0xa81fffff 1MB I/O

PCI_PREF_MEMORY_BASE
PCI_PREF_MEMORY_LIMIT PCI_MEMORY_BASE PCI_MEMORY_LIMIT

4 0 0 32 1 64 64 PCI
PCI_PREF_BASE_UPPER32 PCI_PREF_LIMIT_UPPER32 32 32

pci_do_scan_bus() PCI
“PCI­PCI PCI

996 PCI devices “PCI­PCI
“PCI­CardBus 999 pci_scan_bridge() drivers/pci/pci.c

BIOS PCI BIOS PCI

==================== drivers/pci/pci.c 746 825 ====================
[pci_init()>pci_bios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_bridge()]
746 /*

747 * If it's a bridge, configure it and scan the bus behind it.

748 * For CardBus bridges, we don't scan behind as the devices will

749 * be handled by the bridge driver itself.

750 *

751 * We need to process bridges in two passes ­­ first we scan those

752 * already configured by the BIOS and after we are done with all of

753 * them, we proceed to assigning numbers to the remaining buses in

754 * order to avoid overlaps between old and new bus numbers.

755 */

756 static int __init pci_scan_bridge(struct pci_bus *bus, struct pci_dev * dev, int max, int pass)

757 {

758 unsigned int buses;

759 unsigned short cr;

760 struct pci_bus *child;

761 int is_cardbus = (dev­>hdr_type == PCI_HEADER_TYPE_CARDBUS);

762

763 pci_read_config_dword(dev, PCI_PRIMARY_BUS, &buses);

764 DBG("Scanning behind PCI bridge %s, config %06x, pass %d\n", dev­>slot_name, buses & 0xffffff,

pass);

765 if ((buses & 0xffff00) && !pcibios_assign_all_busses()) {

766 /*

767 * Bus already configured by firmware, process it in the first

768 * pass and just note the configuration.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1053

769 */

770 if (pass)

771 return max;

772 child = pci_add_new_bus(bus, dev, 0);

773 child­>primary = buses & 0xFF;

774 child­>secondary = (buses >> 8) & 0xFF;

775 child­>subordinate = (buses >> 16) & 0xFF;

776 child­>number = child­>secondary;

777 if (!is_cardbus) {

778 unsigned int cmax = pci_do_scan_bus(child);

779 if (cmax > max) max = cmax;

780 } else {

781 unsigned int cmax = child­>subordinate;

782 if (cmax > max) max = cmax;

783 }

784 } else {

785 /*

786 * We need to assign a number to this bus which we always

787 * do in the second pass. We also keep all address decoders

788 * on the bridge disabled during scanning. FIXME: Why?

789 */

790 if (!pass)

791 return max;

792 pci_read_config_word(dev, PCI_COMMAND, &cr);

793 pci_write_config_word(dev, PCI_COMMAND, 0x0000);

794 pci_write_config_word(dev, PCI_STATUS, 0xffff);

795

796 child = pci_add_new_bus(bus, dev, ++max);

797 buses = (buses & 0xff000000)

798 | ((unsigned int)(child­>primary) << 0)

799 | ((unsigned int)(child­>secondary) << 8)

800 | ((unsigned int)(child­>subordinate) << 16);

801 /*

802 * We need to blast all three values with a single write.

803 */

804 pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses);

805 if (!is_cardbus) {

806 /* Now we can scan all subordinate buses... */

807 max = pci_do_scan_bus(child);

808 } else {

809 /*

810 * For CardBus bridges, we leave 4 bus numbers

811 * as cards with a PCI­to­PCI bridge can be

812 * inserted later.

813 */

814 max += 3;

815 }

816 /*

817 * Set the subordinate bus number to its real value.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1054

818 */

819 child­>subordinate = max;

820 pci_write_config_byte(dev, PCI_SUBORDINATE_BUS, max);

821 pci_write_config_word(dev, PCI_COMMAND, cr);

822 }

823 sprintf(child­>name, (is_cardbus ? "PCI CardBus #%02x" : "PCI Bus #%02x"), child­>number);

824 return max;

825 }

PCI

pcibios_assign_all_busses() 0 0 765
0

PCI BIOS
772 783

PCI pci_bus BIOS
BIOS

pci_add_new_bus() drivers/pci/pci.c

==================== drivers/pci/pci.c 712 742 ====================
[pci_init()>pci_bios_init()>pci_scan_bus()>pci_do_scan_bus()>pci_scan_bridge()>pci_add_new_bus()]
712 static struct pci_bus * __init pci_add_new_bus(struct pci_bus *parent, struct pci_dev *dev, int busnr)

713 {

714 struct pci_bus *child;

715 int i;

716

717 /*

718 * Allocate a new bus, and inherit stuff from the parent..

719 */

720 child = pci_alloc_bus();

721

722 list_add_tail(&child­>node, &parent­>children);

723 child­>self = dev;

724 dev­>subordinate = child;

725 child­>parent = parent;

726 child­>ops = parent­>ops;

727 child­>sysdata = parent­>sysdata;

728

729 /*

730 * Set up the primary, secondary and subordinate

731 * bus numbers.

732 */

733 child­>number = child­>secondary = busnr;

734 child­>primary = parent­>secondary;

735 child­>subordinate = 0xff;

736

737 /* Set up default resource pointers.. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1055

738 for (i = 0; i < 4; i++)

739 child­>resource[i] = &dev­>resource[PCI_BRIDGE_RESOURCES+i];

740

741 return child;

742 }

pci_scan_bridge() pci_bus
PCI pci_do_scan_bus() pci_do_scan_bus() CPU

PCI
765 PCI 785

821 BIOS PCI

“PCI­PCI
0 1 16 pci_add_new_bus()

pci_bus pci_add_new_bus() max
1 797 804

“PCI­PCI pci_do_scan_bus()
820 PCI_SUBORDINATE_BUS

821
pcibios_init() 987 0 PCI

BIOS
0

PCI INTA INTD 4 PCI
PCI_INTERRUPT_PIN 1 4

PCI PCI
INTA INTA

INTA INTD 4
PCI

16 PCI

PCI PC router PCI­ISA
4 PCI

8.4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1056

8.4 PCI

PCI INTA PCI

3 BIOS PCI
4

PCI
pcibios_irq_init() arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 516 537 ====================
[pci_init()>pcibios_init()>pcibios_irq_init()]
516 void __init pcibios_irq_init(void)

517 {

518 DBG("PCI: IRQ init\n");

519 pirq_table = pirq_find_routing_table();

520 #ifdef CONFIG_PCI_BIOS

521 if (!pirq_table && (pci_probe & PCI_BIOS_IRQ_SCAN))

522 pirq_table = pcibios_get_irq_routing_table();

523 #endif

524 if (pirq_table) {

525 pirq_peer_trick();

526 pirq_find_router();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1057

527 if (pirq_table­>exclusive_irqs) {

528 int i;

529 for (i=0; i<16; i++)

530 if (!(pirq_table­>exclusive_irqs & (1 << i)))

531 pirq_penalty[i] += 100;

532 }

533 /* If we're using the I/O APIC, avoid using the PCI IRQ routing table */

534 if (io_apic_assign_pci_irqs)

535 pirq_table = NULL;

536 }

537 }

PCI 4
BIOS PCI arch/i386/kernel/pci­i386.h

==================== arch/i386/kernel/pci­i386.h 54 65 ====================
54 struct irq_routing_table {

55 u32 signature; /* PIRQ_SIGNATURE should be here */

56 u16 version; /* PIRQ_VERSION */

57 u16 size; /* Table size in bytes */

58 u8 rtr_bus, rtr_devfn; /* Where the interrupt router lies */

59 u16 exclusive_irqs; /* IRQs devoted exclusively to PCI usage */

60 u16 rtr_vendor, rtr_device; /* Vendor and device ID of interrupt router */

61 u32 miniport_data; /* Crap */

62 u8 rfu[11];

63 u8 checksum; /* Modulo 256 checksum must give zero */

64 struct irq_info slots[0];

65 } __attribute__((packed));

PIRQ_SIGNATURE 4
PIRQ_VERSION arch/i386/kernel/pci­i386.h 16

==================== arch/i386/kernel/pci­irq.c 22 23 ====================
22 #define PIRQ_SIGNATURE (('$' << 0) + ('P' << 8) + ('I' << 16) + ('R' << 24))

23 #define PIRQ_VERSION 0x0100

irq_routing_table slots irq_info
arch/i386/kernel/pci­i386.h

==================== arch/i386/kernel/pci­i386.h 44 52 ====================
44 struct irq_info {

45 u8 bus, devfn; /* Bus, device and function */

46 struct {

47 u8 link; /* IRQ line ID, chipset dependent, 0=not routed */

48 u16 bitmap; /* Available IRQs */

49 } __attribute__((packed)) irq[4];

50 u8 slot; /* Slot number, 0=onboard */

51 u8 rfu;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1058

52 } __attribute__((packed));

PCI irq_info 4

pirq_find_routing_table() BIOS
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 46 73 ====================
[pci_init()>pcibios_init()>pcibios_irq_init()>pirq_find_routing_table()]
46 /*

47 * Search 0xf0000 ­­ 0xfffff for the PCI IRQ Routing Table.

48 */

49

50 static struct irq_routing_table * __init pirq_find_routing_table(void)

51 {

52 u8 *addr;

53 struct irq_routing_table *rt;

54 int i;

55 u8 sum;

56

57 for(addr = (u8 *) __va(0xf0000); addr < (u8 *) __va(0x100000); addr += 16) {

58 rt = (struct irq_routing_table *) addr;

59 if (rt­>signature != PIRQ_SIGNATURE ||

60 rt­>version != PIRQ_VERSION ||

61 rt­>size % 16 ||

62 rt­>size < sizeof(struct irq_routing_table))

63 continue;

64 sum = 0;

65 for(i=0; i<rt­>size; i++)

66 sum += addr[i];

67 if (!sum) {

68 DBG("PCI: Interrupt Routing Table found at 0x%p\n", rt);

69 return rt;

70 }

71 }

72 return NULL;

73 }

pirq_table BIOS
524 pirq_peer_trick() arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 75 110 ====================
[pci_init()>pcibios_init()>pcibios_irq_init()>pirq_peer_trick()]
75 /*

76 * If we have a IRQ routing table, use it to search for peer host

77 * bridges. It's a gross hack, but since there are no other known

78 * ways how to get a list of buses, we have to go this way.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1059

79 */

80

81 static void __init pirq_peer_trick(void)

82 {

83 struct irq_routing_table *rt = pirq_table;

84 u8 busmap[256];

85 int i;

86 struct irq_info *e;

87

88 memset(busmap, 0, sizeof(busmap));

89 for(i=0; i < (rt­>size ­ sizeof(struct irq_routing_table)) / sizeof(struct irq_info); i++) {

90 e = &rt­>slots[i];

91 #ifdef DEBUG

92 {

93 int j;

94 DBG("%02x:%02x slot=%02x", e­>bus, e­>devfn/8, e­>slot);

95 for(j=0; j<4; j++)

96 DBG(" %d:%02x/%04x", j, e­>irq[j].link, e­>irq[j].bitmap);

97 DBG("\n");

98 }

99 #endif

100 busmap[e­>bus] = 1;

101 }

102 for(i=1; i<256; i++)

103 /*

104 * It might be a secondary bus, but in this case its parent is already

105 * known (ascending bus order) and therefore pci_scan_bus returns immediately.

106 */

107 if (busmap[i] && pci_scan_bus(i, pci_root_bus­>ops, NULL))

108 printk("PCI: Discovered primary peer bus %02x [IRQ]\n", i);

109 pcibios_last_bus = ­1;

110 }

89 for
busmap[] 1

pcibios_init()
pci_scan_bus() 0 PCI

PCI pci_scan_bus()
PCI 0

0 PCI
pcibios_last_bus ­1

pcibios_irq_init()
PCI­ISA PCI PCI

rtr_bus rtr_devfn rtr_vendor rtr_device

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1060

pirq_find_router() pci_dev
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 347 355 ====================
[pci_init()>pcibios_init()>pcibios_irq_init()>pirq_find_router()]
347 static struct irq_router *pirq_router;

348 static struct pci_dev *pirq_router_dev;

349

350 static void __init pirq_find_router(void)

351 {

352 struct irq_routing_table *rt = pirq_table;

353 struct irq_router *r;

354

355 #ifdef CONFIG_PCI_BIOS

.

==================== arch/i386/kernel/pci­irq.c 361 387 ====================
361 #endif

362 /* fall back to default router if nothing else found */

363 pirq_router = pirq_routers + sizeof(pirq_routers) / sizeof(pirq_routers[0]) ­ 1;

364

365 pirq_router_dev = pci_find_slot(rt­>rtr_bus, rt­>rtr_devfn);

366 if (!pirq_router_dev) {

367 DBG("PCI: Interrupt router not found at %02x:%02x\n", rt­>rtr_bus, rt­>rtr_devfn);

368 return;

369 }

370

371 for(r=pirq_routers; r­>vendor; r++) {

372 /* Exact match against router table entry? Use it! */

373 if (r­>vendor == rt­>rtr_vendor && r­>device == rt­>rtr_device) {

374 pirq_router = r;

375 break;

376 }

377 /* Match against router device entry? Use it as a fallback */

378 if (r­>vendor == pirq_router_dev­>vendor && r­>device == pirq_router_dev­>device) {

379 pirq_router = r;

380 }

381 }

382 printk("PCI: Using IRQ router %s [%04x/%04x] at %s\n",

383 pirq_router­>name,

384 pirq_router_dev­>vendor,

385 pirq_router_dev­>device,

386 pirq_router_dev­>slot_name);

387 }

irq_router arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 39 44 ====================
39 struct irq_router {

40 char *name;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1061

41 u16 vendor, device;

42 int (*get)(struct pci_dev *router, struct pci_dev *dev, int pirq);

43 int (*set)(struct pci_dev *router, struct pci_dev *dev, int pirq, int new);

44 };

get set get set
PC arch/i386/kernel/pci­irq.c irq_router

pirq_routers[]

==================== arch/i386/kernel/pci­irq.c 323 325 ====================
323 static struct irq_router pirq_routers[] = {

324 { "PIIX", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371FB_0, pirq_piix_get, pirq_piix_set },

325 { "PIIX", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371SB_0, pirq_piix_get, pirq_piix_set },

.

==================== arch/i386/kernel/pci­irq.c 330 332 ====================
330 { "ALI", PCI_VENDOR_ID_AL, PCI_DEVICE_ID_AL_M1533, pirq_ali_get, pirq_ali_set },

331

332 { "VIA", PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_0, pirq_via_get, pirq_via_set },

.

==================== arch/i386/kernel/pci­irq.c 336 338 ====================
336 { "OPTI", PCI_VENDOR_ID_OPTI, PCI_DEVICE_ID_OPTI_82C700, pirq_opti_get, pirq_opti_set },

337

338 { "NatSemi", PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5520, pirq_cyrix_get, pirq_cyrix_set },

.

==================== arch/i386/kernel/pci­irq.c 344 345 ====================
344 { "default", 0, 0, NULL, NULL }

345 };

pirq_router irq_router
pci_find_slot() pci_dev pirq_router pirq_routers[]
“default get set pirq_routers[]

pirq_router irq_router
exclusive_irqs 1

pirq_penalty[]
”100

8259A
”APIC 535 pirq_table 0 APIC

BIOS

pirq_peer_trick() 0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1062

pcibios_fixup_peer_bridges() 0
pcibios_last_bus pirq_peer_trick()

arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 776 805 ====================
[pci_init()>pcibios_init()>pcibios_fixup_peer_bridges()]
776 /*

777 * Discover remaining PCI buses in case there are peer host bridges.

778 * We use the number of last PCI bus provided by the PCI BIOS.

779 */

780 static void __init pcibios_fixup_peer_bridges(void)

781 {

782 int n;

783 struct pci_bus bus;

784 struct pci_dev dev;

785 u16 l;

786

787 if (pcibios_last_bus <= 0 || pcibios_last_bus >= 0xff)

788 return;

789 DBG("PCI: Peer bridge fixup\n");

790 for (n=0; n <= pcibios_last_bus; n++) {

791 if (pci_bus_exists(&pci_root_buses, n))

792 continue;

793 bus.number = n;

794 bus.ops = pci_root_ops;

795 dev.bus = &bus;

796 for(dev.devfn=0; dev.devfn<256; dev.devfn += 8)

797 if (!pci_read_config_word(&dev, PCI_VENDOR_ID, &l) &&

798 l != 0x0000 && l != 0xffff) {

799 DBG("Found device at %02x:%02x [%04x]\n", n, dev.devfn, l);

800 printk("PCI: Discovered peer bus %02x\n", n);

801 pci_scan_bus(n, pci_root_ops, NULL);

802 break;

803 }

804 }

805 }

pcibios_init() pcibios_fixup_irqs()
arch/i386/kernel/pci­irq.c APIC

==================== arch/i386/kernel/pci­irq.c 539 562 ====================
[pci_init()>pcibios_init()>pcibios_fixup_irqs()]
539 void __init pcibios_fixup_irqs(void)

540 {

541 struct pci_dev *dev;

542 u8 pin;

543

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1063

544 DBG("PCI: IRQ fixup\n");

545 pci_for_each_dev(dev) {

546 /*

547 * If the BIOS has set an out of range IRQ number, just ignore it.

548 * Also keep track of which IRQ's are already in use.

549 */

550 if (dev­>irq >= 16) {

551 DBG("%s: ignoring bogus IRQ %d\n", dev­>slot_name, dev­>irq);

552 dev­>irq = 0;

553 }

554 /* If the IRQ is already assigned to a PCI device, ignore its ISA use penalty */

555 if (pirq_penalty[dev­>irq] >= 100 && pirq_penalty[dev­>irq] < 100000)

556 pirq_penalty[dev­>irq] = 0;

557 pirq_penalty[dev­>irq]++;

558 }

559

560 pci_for_each_dev(dev) {

561 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);

562 #ifdef CONFIG_X86_IO_APIC

==================== arch/i386/kernel/pci­irq.c 595 602 ====================
595 #endif

596 /*

597 * Still no IRQ? Try to lookup one...

598 */

599 if (pin && !dev­>irq)

600 pcibios_lookup_irq(dev, 0);

601 }

602 }

pci_for_each_dev() pci_dev pci_devices
include/linux/pci.h

==================== include/linux/pci.h 305 306 ====================
305 #define pci_for_each_dev(dev) \

306 for(dev = pci_dev_g(pci_devices.next); dev != pci_dev_g(&pci_devices); dev =

pci_dev_g(dev­>global_list.next))

16 0
PCI

pirq_penalty[]
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 27 37 ====================
27 /*

28 * Never use: 0, 1, 2 (timer, keyboard, and cascade)

29 * Avoid using: 13, 14 and 15 (FP error and IDE).

30 * Penalize: 3, 4, 6, 7, 12 (known ISA uses: serial, floppy, parallel and mouse)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1064

31 */

32 unsigned int pcibios_irq_mask = 0xfff8;

33

34 static int pirq_penalty[16] = {

35 1000000, 1000000, 1000000, 1000, 1000, 0, 1000, 1000,

36 0, 0, 0, 0, 1000, 100000, 100000, 100000

37 };

16 16
penalty 0 1 2 13 14

15 1000000 5
8 9 10 11 0

3 4 6 7 12

for 545 PCI
557 pirq_penalty[]

ISA
pcibios_irq_init() pirq_penalty[] 100 PCI

PCI
PCI PCI 556

0
for PCI 560

PCI_INTERRUPT_PIN 0 dev­>irq 0
pcibios_lookup_irq()

600 0
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 405 459 ====================
[pci_init()>pcibios_init()>pcibios_fixup_irqs()>pcibios_lookup_irq()]
405 static int pcibios_lookup_irq(struct pci_dev *dev, int assign)

406 {

407 u8 pin;

408 struct irq_info *info;

409 int i, pirq, newirq;

410 int irq = 0;

411 u32 mask;

412 struct irq_router *r = pirq_router;

413 struct pci_dev *dev2;

414 char *msg = NULL;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1065

415

416 if (!pirq_table)

417 return 0;

418

419 /* Find IRQ routing entry */

420 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);

421 if (!pin) {

422 DBG(" ­> no interrupt pin\n");

423 return 0;

424 }

425 pin = pin ­ 1;

426

427 DBG("IRQ for %s:%d", dev­>slot_name, pin);

428 info = pirq_get_info(dev);

429 if (!info) {

430 DBG(" ­> not found in routing table\n");

431 return 0;

432 }

433 pirq = info­>irq[pin].link;

434 mask = info­>irq[pin].bitmap;

435 if (!pirq) {

436 DBG(" ­> not routed\n");

437 return 0;

438 }

439 DBG(" ­> PIRQ %02x, mask %04x, excl %04x", pirq, mask, pirq_table­>exclusive_irqs);

440 mask &= pcibios_irq_mask;

441

442 /*

443 * Find the best IRQ to assign: use the one

444 * reported by the device if possible.

445 */

446 newirq = dev­>irq;

447 if (!newirq && assign) {

448 for (i = 0; i < 16; i++) {

449 if (!(mask & (1 << i)))

450 continue;

451 if (pirq_penalty[i] < pirq_penalty[newirq] &&

452 !request_irq(i, pcibios_test_irq_handler, SA_SHIRQ, "pci­test", dev)) {

453 free_irq(i, dev);

454 newirq = i;

455 }

456 }

457 }

458 DBG(" ­> newirq=%d", newirq);

459

PCI_INTERRUPT_PIN PCI
1 0 425

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1066

pirq_get_info() BIOS
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 389 399 ====================
[pci_init()>pcibios_init()>pcibios_fixup_irqs()>pcibios_lookup_irq()>pirq_get_info()]
389 static struct irq_info *pirq_get_info(struct pci_dev *dev)

390 {

391 struct irq_routing_table *rt = pirq_table;

392 int entries = (rt­>size ­ sizeof(struct irq_routing_table)) / sizeof(struct irq_info);

393 struct irq_info *info;

394

395 for (info = rt­>slots; entries­­; info++)

396 if (info­>bus == dev­>bus­>number && PCI_SLOT(info­>devfn) == PCI_SLOT(dev­>devfn))

397 return info;

398 return NULL;

399 }

irq_info irq[]
4
link bitmap

bitmap pcibios_irq_mask
0xfff8 0 1 2 440

pcibios_lookup_irq() arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 460 496 ====================
[pci_init()>pcibios_init()>pcibios_fixup_irqs()>pcibios_lookup_irq()]
460 /* Check if it is hardcoded */

461 if ((pirq & 0xf0) == 0xf0) {

462 irq = pirq & 0xf;

463 DBG(" ­> hardcoded IRQ %d\n", irq);

464 msg = "Hardcoded";

465 if (dev­>irq && dev­>irq != irq) {

466 printk("IRQ routing conflict in pirq table! Try 'pci=autoirq'\n");

467 return 0;

468 }

469 } else if (r­>get && (irq = r­>get(pirq_router_dev, dev, pirq))) {

470 DBG(" ­> got IRQ %d\n", irq);

471 msg = "Found";

472 /* We refuse to override the dev­>irq information. Give a warning! */

473 if (dev­>irq && dev­>irq != irq) {

474 printk("IRQ routing conflict in pirq table! Try 'pci=autoirq'\n");

475 return 0;

476 }

477 } else if (newirq && r­>set && (dev­>class >> 8) != PCI_CLASS_DISPLAY_VGA) {

478 DBG(" ­> assigning IRQ %d", newirq);

479 if (r­>set(pirq_router_dev, dev, pirq, newirq)) {

480 eisa_set_level_irq(newirq);

481 DBG(" ... OK\n");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1067

482 msg = "Assigned";

483 irq = newirq;

484 }

485 }

486

487 if (!irq) {

488 DBG(" ... failed\n");

489 if (newirq && mask == (1 << newirq)) {

490 msg = "Guessed";

491 irq = newirq;

492 } else

493 return 0;

494 }

495 printk("PCI: %s IRQ %d for device %s\n", msg, irq, dev­>slot_name);

496

link 4 1
4 get set

get 0
irq 0

dev­>irq
PCI

pcibios_lookup_irq() arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 497 514 ====================
[pci_init()>pcibios_init()>pcibios_fixup_irqs()>pcibios_lookup_irq()]
497 /* Update IRQ for all devices with the same pirq value */

498 pci_for_each_dev(dev2) {

499 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin);

500 if (!pin)

501 continue;

502 pin­­;

503 info = pirq_get_info(dev2);

504 if (!info)

505 continue;

506 if (info­>irq[pin].link == pirq) {

507 dev2­>irq = irq;

508 pirq_penalty[irq]++;

509 if (dev != dev2)

510 printk("PCI: The same IRQ used for device %s\n", dev2­>slot_name);

511 }

512 }

513 return 1;

514 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1068

PCI
PCI PCI

BIOS

CPU

PCI PCI
I/O

I/O
resource include/linux/ioport.h

==================== include/linux/ioport.h 11 20 ====================
11 /*

12 * Resources are tree­like, allowing

13 * nesting etc..

14 */

15 struct resource {

16 const char *name;

17 unsigned long start, end;

18 unsigned long flags;

19 struct resource *parent, *sibling, *child;

20 };

start end flags child sibling
parent resource child

sibling parent
2KB 0x1000 0x17ff

4 resource
0x1000 0x11ff 0x1200 0x13ff 0x1400 0x15ff 512

512 2KB
resource 3 resource 8.5 4

2KB resource 0x17ff
0x15ff

512 0x1600 0x17ff resource

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1069

8.5

I/O
I/O I/O

resource kernel/resource.c

==================== kernel/resource.c 18 19 ====================
18 struct resource ioport_resource = { "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

19 struct resource iomem_resource = { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };

PCI pci_bus
ioport_resource I/O ioport_resource iomem_resource

iomem_resource
I/O

pcibios_resource_survey() arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 297 304 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()]
297 void __init pcibios_resource_survey(void)

298 {

299 DBG("PCI: Allocating resources\n");

300 pcibios_allocate_bus_resources(&pci_root_buses);

301 pcibios_allocate_resources(0);

302 pcibios_allocate_resources(1);

303 pcibios_assign_resources();

304 }

pcibios_allocate_bus_resources() PCI
arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 152 208 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1070

[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_allocate_bus_resources()]
152 /*

153 * Handle resources of PCI devices. If the world were perfect, we could

154 * just allocate all the resource regions and do nothing more. It isn't.

155 * On the other hand, we cannot just re­allocate all devices, as it would

156 * require us to know lots of host bridge internals. So we attempt to

157 * keep as much of the original configuration as possible, but tweak it

158 * when it's found to be wrong.

159 *

160 * Known BIOS problems we have to work around:

161 * ­ I/O or memory regions not configured

162 * ­ regions configured, but not enabled in the command register

163 * ­ bogus I/O addresses above 64K used

164 * ­ expansion ROMs left enabled (this may sound harmless, but given

165 * the fact the PCI specs explicitly allow address decoders to be

166 * shared between expansion ROMs and other resource regions, it's

167 * at least dangerous)

168 *

169 * Our solution:

170 * (1) Allocate resources for all buses behind PCI­to­PCI bridges.

171 * This gives us fixed barriers on where we can allocate.

172 * (2) Allocate resources for all enabled devices. If there is

173 * a collision, just mark the resource as unallocated. Also

174 * disable expansion ROMs during this step.

175 * (3) Try to allocate resources for disabled devices. If the

176 * resources were assigned correctly, everything goes well,

177 * if they weren't, they won't disturb allocation of other

178 * resources.

179 * (4) Assign new addresses to resources which were either

180 * not configured at all or misconfigured. If explicitly

181 * requested by the user, configure expansion ROM address

182 * as well.

183 */

184

185 static void __init pcibios_allocate_bus_resources(struct list_head *bus_list)

186 {

187 struct list_head *ln;

188 struct pci_bus *bus;

189 struct pci_dev *dev;

190 int idx;

191 struct resource *r, *pr;

192

193 /* Depth­First Search on bus tree */

194 for (ln=bus_list­>next; ln != bus_list; ln=ln­>next) {

195 bus = pci_bus_b(ln);

196 if ((dev = bus­>self)) {

197 for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {

198 r = &dev­>resource[idx];

199 if (!r­>start)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1071

200 continue;

201 pr = pci_find_parent_resource(dev, r);

202 if (!pr || request_resource(pr, r) < 0)

203 printk(KERN_ERR "PCI: Cannot allocate resource region %d of bridge %s\n", idx,

dev­>slot_name);

204 }

205 }

206 pcibios_allocate_bus_resources(&bus­>children);

207 }

208 }

bus_list pci_bus
pci_root_buses — PCI PCI PCI

“PCI­PCI PCI pci_bus
children PCI pci_bus PCI

PCI PCI
206 pci_bus pcibios_allocatebus_resources()

for 194 pci_bus
PCI for 197 4 7 10

PCI_BRIDGE_RESOURCES PCI_NUM_RESOURCES include/linux/pci.h

==================== include/linux/pci.h 267 377 ====================
367 /*

368 * For PCI devices, the region numbers are assigned this way:

369 *

370 * 0­5 standard PCI regions

371 * 6 expansion ROM

372 * 7­10 bridges: address space assigned to buses behind the bridge

373 */

374

375 #define PCI_ROM_RESOURCE 6

376 #define PCI_BRIDGE_RESOURCES 7

377 #define PCI_NUM_RESOURCES 11

PCI pci_dev 6 0 5
7 6 ROM PCI 4 pci_bus

4 resource 4 pci_read_bridge_bases()
PCI

I/O
ROM PCI

PCI PCI

PCI
PCI ioport_resource

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1072

iomem_resource
PCI pci_find_parent_resource()

drivers/pci/pci.c

==================== drivers/pci/pci.c 164 194 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_allocate_bus_resources()>pci_find_parent_resource()]
164 /**

165 * pci_find_parent_resource ­ return resource region of parent bus of given region

166 * @dev: PCI device structure contains resources to be searched

167 * @res: child resource record for which parent is sought

168 *

169 * For given resource region of given device, return the resource

170 * region of parent bus the given region is contained in or where

171 * it should be allocated from.

172 */

173 struct resource *

174 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)

175 {

176 const struct pci_bus *bus = dev­>bus;

177 int i;

178 struct resource *best = NULL;

179

180 for(i=0; i<4; i++) {

181 struct resource *r = bus­>resource[i];

182 if (!r)

183 continue;

184 if (res­>start && !(res­>start >= r­>start && res­>end <= r­>end))

185 continue; /* Not contained */

186 if ((res­>flags ^ r­>flags) & (IORESOURCE_IO | IORESOURCE_MEM))

187 continue; /* Wrong type */

188 if (!((res­>flags ^ r­>flags) & IORESOURCE_PREFETCH))

189 return r; /* Exact match */

190 if ((res­>flags & IORESOURCE_PREFETCH) && !(r­>flags & IORESOURCE_PREFETCH))

191 best = r; /* Approximating prefetchable by non­prefetchable */

192 }

193 return best;

194 }

dev PCI pci_dev res
resource PCI 4

185 I/O 187

191
193

0
request_resource() kernel/resource.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1073

==================== kernel/resource.c 114 122 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_allocate_bus_resources()>request_resource()]
114 int request_resource(struct resource *root, struct resource *new)

115 {

116 struct resource *conflict;

117

118 write_lock(&resource_lock);

119 conflict = __request_resource(root, new);

120 write_unlock(&resource_lock);

121 return conflict ? ­EBUSY : 0;

122 }

__request_resource()

==================== kernel/resource.c 66 93 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_allocate_bus_resources()>request_resource()
>__request_resource()]
66 /* Return the conflict entry if you can't request it */

67 static struct resource * __request_resource(struct resource *root, struct resource *new)

68 {

69 unsigned long start = new­>start;

70 unsigned long end = new­>end;

71 struct resource *tmp, **p;

72

73 if (end < start)

74 return root;

75 if (start < root­>start)

76 return root;

77 if (end > root­>end)

78 return root;

79 p = &root­>child;

80 for (;;) {

81 tmp = *p;

82 if (!tmp || tmp­>start > end) {

83 new­>sibling = tmp;

84 *p = new;

85 new­>parent = root;

86 return NULL;

87 }

88 p = &tmp­>sibling;

89 if (tmp­>end < start)

90 continue;

91 return tmp;

92 }

93 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1074

root resource new PCI resource
for root new new

new
pcibios_allocate_bus_resources() PCI

PCI
resource

PCI BIOS
BIOS pci_bus pci_dev

pcibios_resource_survey() PCI
pcibios_allocate_resources() arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 210 253 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_allocate_resources()]
210 static void __init pcibios_allocate_resources(int pass)

211 {

212 struct pci_dev *dev;

213 int idx, disabled;

214 u16 command;

215 struct resource *r, *pr;

216

217 pci_for_each_dev(dev) {

218 pci_read_config_word(dev, PCI_COMMAND, &command);

219 for(idx = 0; idx < 6; idx++) {

220 r = &dev­>resource[idx];

221 if (r­>parent) /* Already allocated */

222 continue;

223 if (!r­>start) /* Address not assigned at all */

224 continue;

225 if (r­>flags & IORESOURCE_IO)

226 disabled = !(command & PCI_COMMAND_IO);

227 else

228 disabled = !(command & PCI_COMMAND_MEMORY);

229 if (pass == disabled) {

230 DBG("PCI: Resource %08lx­%08lx (f=%lx, d=%d, p=%d)\n",

231 r­>start, r­>end, r­>flags, disabled, pass);

232 pr = pci_find_parent_resource(dev, r);

233 if (!pr || request_resource(pr, r) < 0) {

234 printk(KERN_ERR "PCI: Cannot allocate resource region %d of device %s\n", idx,

dev­>slot_name);

235 /* We'll assign a new address later */

236 r­>end ­= r­>start;

237 r­>start = 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1075

238 }

239 }

240 }

241 if (!pass) {

242 r = &dev­>resource[PCI_ROM_RESOURCE];

243 if (r­>flags & PCI_ROM_ADDRESS_ENABLE) {

244 /* Turn the ROM off, leave the resource region, but keep it unregistered. */

245 u32 reg;

246 DBG("PCI: Switching off ROM of %s\n", dev­>slot_name);

247 r­>flags &= ~PCI_ROM_ADDRESS_ENABLE;

248 pci_read_config_dword(dev, dev­>rom_base_reg, ®);

249 pci_write_config_dword(dev, dev­>rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE);

250 }

251 }

252 }

253 }

pci_dev PCI 6
pass 0 pass

1 ROM pass 0
PCI parent

222 0

224 pci_find_parent_resource()
request_resource()

0 236 237

BIOS

ROM ROM BIOS

0
pcibios_assign_resources()

arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 255 295 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign resources()]
255 static void __init pcibios_assign_resources(void)

256 {

257 struct pci_dev *dev;

258 int idx;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1076

259 struct resource *r;

260

261 pci_for_each_dev(dev) {

262 int class = dev­>class >> 8;

263

264 /* Don't touch classless devices and host bridges */

265 if (!class || class == PCI_CLASS_BRIDGE_HOST)

266 continue;

267

268 for(idx=0; idx<6; idx++) {

269 r = &dev­>resource[idx];

270

271 /*

272 * Don't touch IDE controllers and I/O ports of video cards!

273 */

274 if ((class == PCI_CLASS_STORAGE_IDE && idx < 4) ||

275 (class == PCI_CLASS_DISPLAY_VGA && (r­>flags & IORESOURCE_IO)))

276 continue;

277

278 /*

279 * We shall assign a new address to this resource, either because

280 * the BIOS forgot to do so or because we have decided the old

281 * address was unusable for some reason.

282 */

283 if (!r­>start && r­>end)

284 pci_assign_resource(dev, idx);

285 }

286

287 if (pci_probe & PCI_ASSIGN_ROMS) {

288 r = &dev­>resource[PCI_ROM_RESOURCE];

289 r­>end ­= r­>start;

290 r­>start = 0;

291 if (r­>end)

292 pci_assign_resource(dev, PCI_ROM_RESOURCE);

293 }

294 }

295 }

for PCI 0
PCI 6

0 0 pci_assign_resource()
pcibios_allocate_resources()

IDE 4 VGA I/O

pci_assign_resource() drivers/pci/setup­res.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1077

==================== drivers/pci/setup­res.c 99 127 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()]
99 int

100 pci_assign_resource(struct pci_dev *dev, int i)

101 {

102 const struct pci_bus *bus = dev­>bus;

103 struct resource *res = dev­>resource + i;

104 unsigned long size, min;

105

106 size = res­>end ­ res­>start + 1;

107 min = (res­>flags & IORESOURCE_IO) ? PCIBIOS_MIN_IO : PCIBIOS_MIN_MEM;

108

109 /* First, try exact prefetching match.. */

110 if (pci_assign_bus_resource(bus, dev, res, size, min, IORESOURCE_PREFETCH, i) < 0) {

111 /*

112 * That failed.

113 *

114 * But a prefetching area can handle a non­prefetching

115 * window (it will just not perform as well).

116 */

117 if (!(res­>flags & IORESOURCE_PREFETCH) || pci_assign_bus_resource(bus, dev, res, size, min,

0, i) < 0) {

118 printk(KERN_ERR "PCI: Failed to allocate resource %d for %s\n", i, dev­>name);

119 return ­EBUSY;

120 }

121 }

122

123 DBGC((" got res[%lx:%lx] for resource %d of %s\n", res­>start,

124 res­>end, i, dev­>name));

125

126 return 0;

127 }

pci_assign_bus_resource()
I/O

PCIBIOS_MIN_IO PCIBIOS_MIN_MEM
include/asm­i386/pci.h

==================== include/asm­i386/pci.h 12 13 ====================
12 #define PCIBIOS_MIN_IO 0x1000

13 #define PCIBIOS_MIN_MEM 0x10000000

I/O 4KB 256MB
110

IORESOURCE_PREFETCH pci_assign_bus_resource()
0 117

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1078

pci_assign_bus_resource() drivers/pci/setup­res.c

==================== drivers/pci/setup­res.c 59 97 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()
>pci_assign_bus_resource()]
59 /*

60 * Given the PCI bus a device resides on, try to

61 * find an acceptable resource allocation for a

62 * specific device resource..

63 */

64 static int pci_assign_bus_resource(const struct pci_bus *bus,

65 struct pci_dev *dev,

66 struct resource *res,

67 unsigned long size,

68 unsigned long min,

69 unsigned int type_mask,

70 int resno)

71 {

72 int i;

73

74 type_mask |= IORESOURCE_IO | IORESOURCE_MEM;

75 for (i = 0 ; i < 4; i++) {

76 struct resource *r = bus­>resource[i];

77 if (!r)

78 continue;

79

80 /* type_mask must match */

81 if ((res­>flags ^ r­>flags) & type_mask)

82 continue;

83

84 /* We cannot allocate a non­prefetching resource from a pre­fetching area */

85 if ((r­>flags & IORESOURCE_PREFETCH) && !(res­>flags & IORESOURCE_PREFETCH))

86 continue;

87

88 /* Ok, try it out.. */

89 if (allocate_resource(r, res, size, min, ­1, size, pcibios_align_resource, dev) < 0)

90 continue;

91

92 /* Update PCI config space. */

93 pcibios_update_resource(dev, r, res, resno);

94 return 0;

95 }

96 return ­EBUSY;

97 }

PCI
bus pci_bus res resource

for 4

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1079

I/O
allocate_resource() kernel/resource.c pcibios_update_resource()

==================== kernel/resource.c 185 203 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()
>pci_assign_bus_resource()>allocate_resource()]
185 /*

186 * Allocate empty slot in the resource tree given range and alignment.

187 */

188 int allocate_resource(struct resource *root, struct resource *new,

189 unsigned long size,

190 unsigned long min, unsigned long max,

191 unsigned long align,

192 void (*alignf)(void *, struct resource *, unsigned long),

193 void *alignf_data)

194 {

195 int err;

196

197 write_lock(&resource_lock);

198 err = find_resource(root, new, size, min, max, align, alignf, alignf_data);

199 if (err >= 0 && __request_resource(root, new))

200 err = ­EBUSY;

201 write_unlock(&resource_lock);

202 return err;

203 }

root resource new
resource size 2

min max align
size min PCIBIOS_MIN_IO PCIBIOS_MIN_MEM max 0xffffffff

align size alignf pcibios_align_resource() alignf_data
pci_dev max ­1 1

find_resource()
kernel/resource.c

==================== kernel/resource.c 148 183 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()
>pci_assign_bus_resource()>allocate_resource()>find_resource()]
148 /*

149 * Find empty slot in the resource tree given range and alignment.

150 */

151 static int find_resource(struct resource *root, struct resource *new,

152 unsigned long size,

153 unsigned long min, unsigned long max,

154 unsigned long align,

155 void (*alignf)(void *, struct resource *, unsigned long),

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1080

156 void *alignf_data)

157 {

158 struct resource *this = root­>child;

159

160 new­>start = root­>start;

161 for(;;) {

162 if (this)

163 new­>end = this­>start;

164 else

165 new­>end = root­>end;

166 if (new­>start < min)

167 new­>start = min;

168 if (new­>end > max)

169 new­>end = max;

170 new­>start = (new­>start + align ­ 1) & ~(align ­ 1);

171 if (alignf)

172 alignf(alignf_data, new, size);

173 if (new­>start < new­>end && new­>end ­ new­>start + 1 >= size) {

174 new­>end = new­>start + size ­ 1;

175 return 0;

176 }

177 if (!this)

178 break;

179 new­>start = this­>end + 1;

180 this = this­>sibling;

181 }

182 return ­EBUSY;

183 }

root resource

root­>child 0
0 ­EBUSY

alignf 0 pcibios_align_resource()
arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 125 149 ====================
[pci_init()>pcibios_init(_)>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()
>pci_assign_bus_resource()>allocate_resource()>find_resource()>pcibios_align_resource()]
125 /*

126 * We need to avoid collisions with `mirrored' VGA ports

127 * and other strange ISA hardware, so we always want the

128 * addresses to be allocated in the 0x000­0x0ff region

129 * modulo 0x400.

130 *

131 * Why? Because some silly external IO cards only decode

132 * the low 10 bits of the IO address. The 0x00­0xff region

133 * is reserved for motherboard devices that decode all 16

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1081

134 * bits, so it's ok to allocate at, say, 0x2800­0x28ff,

135 * but we want to try to avoid allocating at 0x2900­0x2bff

136 * which might have be mirrored at 0x0100­0x03ff..

137 */

138 void

139 pcibios_align_resource(void *data, struct resource *res, unsigned long size)

140 {

141 if (res­>flags & IORESOURCE_IO) {

142 unsigned long start = res­>start;

143

144 if (start & 0x300) {

145 start = (start + 0x3ff) & ~0x3ff;

146 res­>start = start;

147 }

148 }

149 }

I/O 141 PC
4KB I/O 0x00 0xff

I/O 10 4KB 0x00 0xff
bit8 bit9 0 bit8 bit9 0

PCI I/O

allocate_resource() find_resource()
__request_resource() resource new root child

resource
0

0
pci_assign_bus_resource()

pcibios_update_resource()
arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 97 123 ====================
[pci_init()>pcibios_init()>pcibios_resource_survey()>pcibios_assign_resources()>pci_assign_resource()
>pci_assign_bus_resource()>pcibios_update_resource()]
97 void

98 pcibios_update_resource(struct pci_dev *dev, struct resource *root,

99 struct resource *res, int resource)

100 {

101 u32 new, check;

102 int reg;

103

104 new = res­>start | (res­>flags & PCI_REGION_FLAG_MASK);

105 if (resource < 6) {

106 reg = PCI_BASE_ADDRESS_0 + 4*resource;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1082

107 } else if (resource == PCI_ROM_RESOURCE) {

108 res­>flags |= PCI_ROM_ADDRESS_ENABLE;

109 new |= PCI_ROM_ADDRESS_ENABLE;

110 reg = dev­>rom_base_reg;

111 } else {

112 /* Somebody might have asked allocation of a non­standard resource */

113 return;

114 }

115

116 pci_write_config_dword(dev, reg, new);

117 pci_read_config_dword(dev, reg, &check);

118 if ((new ^ check) & ((new & PCI_BASE_ADDRESS_SPACE_IO) ? PCI_BASE_ADDRESS_IO_MASK :

PCI_BASE_ADDRESS_MEM_MASK)) {

119 printk(KERN_ERR "PCI: Error while updating region "

120 "%s/%d (%08x != %08x)\n", dev­>slot_name, resource,

121 new, check);

122 }

123 }

res resource start
resource

16 4 res­>flags 4

116

PCI_COMMAND_IO PCI_COMMAND_MEMORY
I/O 1
PCI

pci_init()
pci_fixup_device() pass

PCI_FIXUP_HEADER PCI_FIXUP_FINAL

PCI PCI PCI

pci_dev pci_find_device() drivers/pci/pci.c

==================== drivers/pci/pci.c 96 100 ====================
96 struct pci_dev *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1083

97 pci_find_device(unsigned int vendor, unsigned int device, const struct pci_dev *from)

98 {

99 return pci_find_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from);

100 }

pci_find_subsys()

==================== drivers/pci/pci.c 63 80 ====================
63 struct pci_dev *

64 pci_find_subsys(unsigned int vendor, unsigned int device,

65 unsigned int ss_vendor, unsigned int ss_device,

66 const struct pci_dev *from)

67 {

68 struct list_head *n = from ? from­>global_list.next : pci_devices.next;

69

70 while (n != &pci_devices) {

71 struct pci_dev *dev = pci_dev_g(n);

72 if ((vendor == PCI_ANY_ID || dev­>vendor == vendor) &&

73 (device == PCI_ANY_ID || dev­>device == device) &&

74 (ss_vendor == PCI_ANY_ID || dev­>subsystem_vendor == ss_vendor) &&

75 (ss_device == PCI_ANY_ID || dev­>subsystem_device == ss_device))

76 return dev;

77 n = n­>next;

78 }

79 return NULL;

80 }

PCI Ethernet
from pci_find_device() pci_dev

pci_find_class()
drivers/pci/pci.c

==================== drivers/pci/pci.c 115 127 ====================
115 struct pci_dev *

116 pci_find_class(unsigned int class, const struct pci_dev *from)

117 {

118 struct list_head *n = from ? from­>global_list.next : pci_devices.next;

119

120 while (n != &pci_devices) {

121 struct pci_dev *dev = pci_dev_g(n);

122 if (dev­>class == class)

123 return dev;

124 n = n­>next;

125 }

126 return NULL;

127 }

pci_dev resource[]
resource __ioremap()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1084

inline pcibios_enable_device() arch/i386/kernel/pci­pc.c

==================== arch/i386/kernel/pci­pc.c 1042 1050 ====================
1042 int pcibios_enable_device(struct pci_dev *dev)

1043 {

1044 int err;

1045

1046 if ((err = pcibios_enable_resources(dev)) < 0)

1047 return err;

1048 pcibios_enable_irq(dev);

1049 return 0;

1050 }

pcibios_enable_resources()
arch/i386/kernel/pci­i386.c

==================== arch/i386/kernel/pci­i386.c 306 332 ====================
[pcibios_enable_device()>pcibios_enable_resources()]
306 int pcibios_enable_resources(struct pci_dev *dev)

307 {

308 u16 cmd, old_cmd;

309 int idx;

310 struct resource *r;

311

312 pci_read_config_word(dev, PCI_COMMAND, &cmd);

313 old_cmd = cmd;

314 for(idx=0; idx<6; idx++) {

315 r = &dev­>resource[idx];

316 if (!r­>start && r­>end) {

317 printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n",

dev­>slot_name);

318 return ­EINVAL;

319 }

320 if (r­>flags & IORESOURCE_IO)

321 cmd |= PCI_COMMAND_IO;

322 if (r­>flags & IORESOURCE_MEM)

323 cmd |= PCI_COMMAND_MEMORY;

324 }

325 if (dev­>resource[PCI_ROM_RESOURCE].start)

326 cmd |= PCI_COMMAND_MEMORY;

327 if (cmd != old_cmd) {

328 printk("PCI: Enabling device %s (%04x ­> %04x)\n", dev­>slot_name, old_cmd, cmd);

329 pci_write_config_word(dev, PCI_COMMAND, cmd);

330 }

331 return 0;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1085

332 }

pcibios_enable_irq()
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 613 628 ====================
[pcibios_enable_device()>pcibios_enable_resources()]
613 void pcibios_enable_irq(struct pci_dev *dev)

614 {

615 u8 pin;

616 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);

617 if (pin && !pcibios_lookup_irq(dev, 1) && !dev­>irq) {

618 char *msg;

619 if (io_apic_assign_pci_irqs)

620 msg = " Probably buggy MP table.";

621 else if (pci_probe & PCI_BIOS_IRQ_SCAN)

622 msg = "";

623 else

624 msg = " Please try using pci=biosirq.";

625 printk(KERN_WARNING "PCI: No IRQ known for interrupt pin %c of device %s.%s\n",

626 'A' + pin ­ 1, dev­>slot_name, msg);

627 }

628 }

617 PCI_INTERRUPT_PIN 0
pcibios_lookup_irq() dev­>irq

0
pcibios_fixup_irqs() pcibios_lookup_irq()

0 1
“lazy

computaion

PCI

pcibios_lookup_irq() arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 442 485 ====================
[pcibios_enable_device()>pcibios_enable_resources()>pcibios_lookup_irq()]
442 /*

443 * Find the best IRQ to assign: use the one

444 * reported by the device if possible.

445 */

446 newirq = dev­>irq;

447 if (!newirq && assign) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1086

448 for (i = 0; i < 16; i++) {

449 if (!(mask & (1 << i)))

450 continue;

451 if (pirq_penalty[i] < pirq_penalty[newirq] &&

452 !request_irq(i, pcibios_test_irq_handler, SA_SHIRQ, "pci­test", dev)) {

453 free_irq(i, dev);

454 newirq = i;

455 }

456 }

457 }

458 DBG(" ­> newirq=%d", newirq);

459

477 } else if (newirq && r­>set && (dev­>class >> 8) != PCI_CLASS_DISPLAY_VGA) {

478 DBG(" ­> assigning IRQ %d", newirq);

479 if (r­>set(pirq_router_dev, dev, pirq, newirq)) {

480 eisa_set_level_irq(newirq);

481 DBG(" ... OK\n");

482 msg = "Assigned";

483 irq = newirq;

484 }

485 }

452
request_irq() 3 pcibios_test_irq_handler() free_irq()

eisa_set_level_irq()

inline pci_module_init()
9

USB

8.5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1087

Unix
Linux

ll_rw_block()

mknod() mknod()

path_walk()

Ext2
ext2_read_inode() ”

init_special_inode() inode fs/ext2/inode.c
1077

==================== fs/ext2/inode.c 961 962 ====================
961 void ext2_read_inode (struct inode * inode)

962 {

.

==================== fs/ext2/inode.c 1077 1078 ====================
1077 init_special_inode(inode, inode­>i_mode,

1078 le32_to_cpu(raw_inode­>i_block[0]));

.

==================== fs/ext2/inode.c 1102 1102 ====================
1102 }

inode inode i_mode
raw_inode ext2_inode

mknod() init_special_inode()
fs/devices.c

==================== fs/devices.c 200 201 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1088

200 void init_special_inode(struct inode *inode, umode_t mode, int rdev)

201 {

.

==================== fs/devices.c 206 210 ====================
206 } else if (S_ISBLK(mode)) {

207 inode­>i_fop = &def_blk_fops;

208 inode­>i_rdev = to_kdev_t(rdev);

209 inode­>i_bdev = bdget(rdev);

210 } else if (S_ISFIFO(mode))

.

==================== fs/devices.c 216 216 ====================
216 }

inode i_fop file_operations
inode i_bdev block_device

mknod()”
bdget() file_operations fs/block_dev.c

==================== fs/block_dev.c 709 717 ====================
709 struct file_operations def_blk_fops = {

710 open: blkdev_open,

711 release: blkdev_close,

712 llseek: block_llseek,

713 read: block_read,

714 write: block_write,

715 fsync: block_fsync,

716 ioctl: blkdev_ioctl,

717 };

blkdev_open() path_walk() inode
block_device bd_op

block_device blkdev_open()

dentry_open() inode f_ops
file f_op file_operations open blkdev_open()

fs/block_dev.c

==================== fs/block_dev.c 644 664 ====================
[sys_open()>filp_open()>dentry_open()>blkdev_open()]
644 int blkdev_open(struct inode * inode, struct file * filp)

645 {

646 int ret = ­ENXIO;

647 struct block_device *bdev = inode­>i_bdev;

648 down(&bdev­>bd_sem);

649 lock_kernel();

650 if (!bdev­>bd_op)

651 bdev­>bd_op = get_blkfops(MAJOR(inode­>i_rdev));

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1089

652 if (bdev­>bd_op) {

653 ret = 0;

654 if (bdev­>bd_op­>open)

655 ret = bdev­>bd_op­>open(inode,filp);

656 if (!ret)

657 atomic_inc(&bdev­>bd_openers);

658 else if (!atomic_read(&bdev­>bd_openers))

659 bdev­>bd_op = NULL;

660 }

661 unlock_kernel();

662 up(&bdev­>bd_sem);

663 return ret;

664 }

file_operations
block_device_operations include/linux/fs.h

==================== include/linux/fs.h 760 766 ====================
760 struct block_device_operations {

761 int (*open) (struct inode *, struct file *);

762 int (*release) (struct inode *, struct file *);

763 int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);

764 int (*check_media_change) (kdev_t);

765 int (*revalidate) (kdev_t);

766 };

file_operations vfs
block_device_operations

block_device_operations blkdev_open()
block_device open

NULL
block_device_operations open NULL

block_device_operations get_blkfops()
fs/block_dev.c

==================== fs/block_dev.c 487 507 ====================
[sys_open()>filp_open()>dentry_open()>blkdev_open()>get_blkfops()]
487 /*

488 Return the function table of a device.

489 Load the driver if needed.

490 */

491 const struct block_device_operations * get_blkfops(unsigned int major)

492 {

493 const struct block_device_operations *ret = NULL;

494

495 /* major 0 is used for non­device mounts */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1090

496 if (major && major < MAX_BLKDEV) {

497 #ifdef CONFIG_KMOD

498 if (!blkdevs[major].bdops) {

499 char name[20];

500 sprintf(name, "block­major­%d", major);

501 request_module(name);

502 }

503 #endif

504 ret = blkdevs[major].bdops;

505 }

506 return ret;

507 }

blkdevs[]
block_device_operations fs/block_dev.c

==================== fs/block_dev.c 468 471 ====================
468 static struct {

469 const char *name;

470 struct block_device_operations *bdops;

471 } blkdevs[MAX_BLKDEV];

block_device_operations
get_blkfops()

504
request_module()
“block­major­ 500

IDE PC
primary/secondary IDE IDE master/slave IDE

4 IDE IDE 3
22 33 34 IDE IDE Integrated Drives Electronics

IDE block_device_operations hd_ops IDE
ide_fops drivers/ide/ide.c

==================== drivers/ide/ide.c 3492 3498 ====================
3492 struct block_device_operations ide_fops[] = {{

3493 open: ide_open,

3494 release: ide_release,

3495 ioctl: ide_ioctl,

3496 check_media_change: ide_check_media_change,

3497 revalidate: ide_revalidate_disk

3498 }};

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1091

blkdev_open()
IDE

block­device bd_op IDE
block_device_operations ide_fops open ide_open() blkdev_open()

655 ide_open() drivers/ide/ide.c

==================== drivers/ide/ide.c 1832 1866 ====================
[sys_open()>filp_open()>dentry_open()>blkdev_open()>ide_open()]
1832 static int ide_open (struct inode * inode, struct file * filp)

1833 {

1834 ide_drive_t *drive;

1835 int rc;

1836

1837 if ((drive = get_info_ptr(inode­>i_rdev)) == NULL)

1838 return ­ENXIO;

1839 MOD_INC_USE_COUNT;

1840 if (drive­>driver == NULL)

1841 ide_driver_module();

1842 #ifdef CONFIG_KMOD

1843 if (drive­>driver == NULL) {

1844 if (drive­>media == ide_disk)

1845 (void) request_module("ide­disk");

1846 if (drive­>media == ide_cdrom)

1847 (void) request_module("ide­cd");

1848 if (drive­>media == ide_tape)

1849 (void) request_module("ide­tape");

1850 if (drive­>media == ide_floppy)

1851 (void) request_module("ide­floppy");

1852 }

1853 #endif /* CONFIG_KMOD */

1854 while (drive­>busy)

1855 sleep_on(&drive­>wqueue);

1856 drive­>usage++;

1857 if (drive­>driver != NULL) {

1858 if ((rc = DRIVER(drive)­>open(inode, filp, drive)))

1859 MOD_DEC_USE_COUNT;

1860 return rc;

1861 }

1862 printk ("%s: driver not present\n", drive­>name);

1863 drive­>usage­­;

1864 MOD_DEC_USE_COUNT;

1865 return ­ENXIO;

1866 }

ide_ops[] IDE IDE
ide_drive_t

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1092

include/linux/ide.h

==================== include/linux/ide.h 257 352 ====================
257 /*

258 * Now for the data we need to maintain per­drive: ide_drive_t

259 */

260

261 #define ide_scsi 0x21

262 #define ide_disk 0x20

263 #define ide_optical 0x7

264 #define ide_cdrom 0x5

265 #define ide_tape 0x1

266 #define ide_floppy 0x0

267

268 typedef union {

269 unsigned all : 8; /* all of the bits together */

270 struct {

271 unsigned set_geometry : 1; /* respecify drive geometry */

272 unsigned recalibrate : 1; /* seek to cyl 0 */

273 unsigned set_multmode : 1; /* set multmode count */

274 unsigned set_tune : 1; /* tune interface for drive */

275 unsigned reserved : 4; /* unused */

276 } b;

277 } special_t;

278

279 typedef struct ide_drive_s {

280 request_queue_t queue; /* request queue */

281 struct ide_drive_s *next; /* circular list of hwgroup drives */

282 unsigned long sleep; /* sleep until this time */

283 unsigned long service_start; /* time we started last request */

284 unsigned long service_time; /* service time of last request */

285 unsigned long timeout; /* max time to wait for irq */

286 special_t special; /* special action flags */

287 byte keep_settings; /* restore settings after drive reset */

288 byte using_dma; /* disk is using dma for read/write */

289 byte waiting_for_dma; /* dma currently in progress */

290 byte unmask; /* flag: okay to unmask other irqs */

291 byte slow; /* flag: slow data port */

292 byte bswap; /* flag: byte swap data */

293 byte dsc_overlap; /* flag: DSC overlap */

294 byte nice1; /* flag: give potential excess bandwidth */

295 unsigned present : 1; /* drive is physically present */

296 unsigned noprobe : 1; /* from: hdx=noprobe */

297 unsigned busy : 1; /* currently doing revalidate_disk() */

298 unsigned removable : 1; /* 1 if need to do check_media_change */

299 unsigned forced_geom : 1; /* 1 if hdx=c,h,s was given at boot */

300 unsigned no_unmask : 1; /* disallow setting unmask bit */

301 unsigned no_io_32bit : 1; /* disallow enabling 32bit I/O */

302 unsigned nobios : 1; /* flag: do not probe bios for drive */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1093

303 unsigned revalidate : 1; /* request revalidation */

304 unsigned atapi_overlap : 1; /* flag: ATAPI overlap (not supported) */

305 unsigned nice0 : 1; /* flag: give obvious excess bandwidth */

306 unsigned nice2 : 1; /* flag: give a share in our own bandwidth */

307 unsigned doorlocking : 1; /* flag: for removable only: door lock/unlock works */

308 unsigned autotune : 2; /* 1=autotune, 2=noautotune, 0=default */

309 unsigned remap_0_to_1 : 2; /* 0=remap if ezdrive, 1=remap, 2=noremap */

310 unsigned ata_flash : 1; /* 1=present, 0=default */

311 byte scsi; /* 0=default, 1=skip current ide­subdriver for ide­scsi emulation */

312 byte media; /* disk, cdrom, tape, floppy, ... */

313 select_t select; /* basic drive/head select reg value */

314 byte ctl; /* "normal" value for IDE_CONTROL_REG */

315 byte ready_stat; /* min status value for drive ready */

316 byte mult_count; /* current multiple sector setting */

317 byte mult_req; /* requested multiple sector setting */

318 byte tune_req; /* requested drive tuning setting */

319 byte io_32bit; /* 0=16­bit, 1=32­bit, 2/3=32bit+sync */

320 byte bad_wstat; /* used for ignoring WRERR_STAT */

321 byte nowerr; /* used for ignoring WRERR_STAT */

322 byte sect0; /* offset of first sector for DM6:DDO */

323 byte usage; /* current "open()" count for drive */

324 byte head; /* "real" number of heads */

325 byte sect; /* "real" sectors per track */

326 byte bios_head; /* BIOS/fdisk/LILO number of heads */

327 byte bios_sect; /* BIOS/fdisk/LILO sectors per track */

328 unsigned int bios_cyl; /* BIOS/fdisk/LILO number of cyls */

329 unsigned int cyl; /* "real" number of cyls */

330 unsigned long capacity; /* total number of sectors */

331 unsigned int drive_data; /* for use by tuneproc/selectproc as needed */

332 void *hwif; /* actually (ide_hwif_t *) */

333 wait_queue_head_t wqueue; /* used to wait for drive in open() */

334 struct hd_driveid *id; /* drive model identification info */

335 struct hd_struct *part; /* drive partition table */

336 char name[4]; /* drive name, such as "hda" */

337 void *driver; /* (ide_driver_t *) */

338 void *driver_data; /* extra driver data */

339 devfs_handle_t de; /* directory for device */

340 struct proc_dir_entry *proc; /* /proc/ide/ directory entry */

341 void *settings; /* /proc/ide/ drive settings */

342 char driver_req[10]; /* requests specific driver */

343 int last_lun; /* last logical unit */

344 int forced_lun; /* if hdxlun was given at boot */

345 int lun; /* logical unit */

346 int crc_count; /* crc counter to reduce drive speed */

347 byte quirk_list; /* drive is considered quirky if set for a specific host */

348 byte suspend_reset; /* drive suspend mode flag, soft­reset recovers */

349 byte init_speed; /* transfer rate set at boot */

350 byte current_speed; /* current transfer rate set */

351 byte dn; /* now wide spread use */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1094

352 } ide_drive_t;

IDE get_info_ptr()
drivers/ide/ide.c

==================== drivers/ide/ide.c 1628 1657 ====================
[sys_open()>filp_open()>dentry_open()>blkdev_open()>ide_open()>get_info_ptr()]
1628 /*

1629 * get_info_ptr() returns the (ide_drive_t *) for a given device number.

1630 * It returns NULL if the given device number does not match any present drives.

1631 */

1632 ide_drive_t *get_info_ptr (kdev_t i_rdev)

1633 {

1634 int major = MAJOR(i_rdev);

1635 #if 0

1636 int minor = MINOR(i_rdev) & PARTN_MASK;

1637 #endif

1638 unsigned int h;

1639

1640 for (h = 0; h < MAX_HWIFS; ++h) {

1641 ide_hwif_t *hwif = &ide_hwifs[h];

1642 if (hwif­>present && major == hwif­>major) {

1643 unsigned unit = DEVICE_NR(i_rdev);

1644 if (unit < MAX_DRIVES) {

1645 ide_drive_t *drive = &hwif­>drives[unit];

1646 #if 0

1647 if ((drive­>present) && (drive­>part[minor].nr_sects))

1648 #else

1649 if (drive­>present)

1650 #endif

1651 return drive;

1652 }

1653 break;

1654 }

1655 }

1656 return NULL;

1657 }

ide_hwifs[] ide_hwif_t
IDE IDE

present 1 ide_drive_t drives[]
ide_drive_t present 1

CMOS ide_hwif_t
IDE ide_drive_t IDE “IDE

primary IDE
ide_hwifs[0] drives[0] drives[1] present 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1095

secondary IDE Mitsumi CDROM ide_hwifs[1]
drives[0] ide_hwifs[1] major MITSUMI_CDROM_MAJOR

get_info_ptr() ide_hwifs[]
ide_drive_t

get_info_ptr() ide_drive_t
ide_open() ­ENXIO open()

ide_drive_t 337 void driver ide_driver_t
ide_driver_t ide_drive_t

IDE IDE
ide_driver_t idedisk_driver idetape_driver ide_cdrom_driver

ide_floppy_driver IDE
get_info_ptr() ide_drive_t driver NULL

ide_open() ide_driver_module()
IDE

ide_driver_module()
1854 1855 ide_drive_t driver

0
ide_driver_t open ide_drive_t

driver NULL
IDE ide_driver_t idedisk_driver drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 711 733 ====================
711 /*

712 * IDE subdriver functions, registered with ide.c

713 */

714 static ide_driver_t idedisk_driver = {

715 "ide­disk", /* name */

716 IDEDISK_VERSION, /* version */

717 ide_disk, /* media */

718 0, /* busy */

719 1, /* supports_dma */

720 0, /* supports_dsc_overlap */

721 NULL, /* cleanup */

722 do_rw_disk, /* do_request */

723 NULL, /* end_request */

724 NULL, /* ioctl */

725 idedisk_open, /* open */

726 idedisk_release, /* release */

727 idedisk_media_change, /* media_change */

728 idedisk_revalidate, /* revalidate */

729 idedisk_pre_reset, /* pre_reset */

730 idedisk_capacity, /* capacity */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1096

731 idedisk_special, /* special */

732 idedisk_proc /* proc */

733 };

open 1858 idedisk_open() drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 478 492 ====================
[sys_open()>filp_open()>dentry_open()>blkdev_open()>ide_open()>idedisk_open()]
478 static int idedisk_open (struct inode *inode, struct file *filp, ide_drive_t *drive)

479 {

480 MOD_INC_USE_COUNT;

481 if (drive­>removable && drive­>usage == 1) {

482 check_disk_change(inode­>i_rdev);

483 /*

484 * Ignore the return code from door_lock,

485 * since the open() has already succeeded,

486 * and the door_lock is irrelevant at this point.

487 */

488 if (drive­>doorlocking && ide_wait_cmd(drive, WIN_DOORLOCK, 0, 0, 0, NULL))

489 drive­>doorlocking = 0;

490 }

491 return 0;

492 }

IDE
IDE CDROM

ide_cdrom_open()
ide_open() dentry_open()

vfs

(1) file_operations vfs
(2) block_device inode
(3) block_device_operations “IDE
(4) ide_drive_t “IDE IDE
(5) ide_driver_t IDE IDE

file
5

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1097

read()
file file_operations def_blk_fops

read block_read() fs/block_dev.c

==================== fs/block_dev.c 166 311 ====================
[sys_read()>block_read()]
166 ssize_t block_read(struct file * filp, char * buf, size_t count, loff_t *ppos)

167 {

168 struct inode * inode = filp­>f_dentry­>d_inode;

169 size_t block;

170 loff_t offset;

171 ssize_t blocksize;

172 ssize_t blocksize_bits, i;

173 size_t blocks, rblocks, left;

174 int bhrequest, uptodate;

175 struct buffer_head ** bhb, ** bhe;

176 struct buffer_head * buflist[NBUF];

177 struct buffer_head * bhreq[NBUF];

178 unsigned int chars;

179 loff_t size;

180 kdev_t dev;

181 ssize_t read;

182

183 dev = inode­>i_rdev;

184 blocksize = BLOCK_SIZE;

185 if (blksize_size[MAJOR(dev)] && blksize_size[MAJOR(dev)][MINOR(dev)])

186 blocksize = blksize_size[MAJOR(dev)][MINOR(dev)];

187 i = blocksize;

188 blocksize_bits = 0;

189 while (i != 1) {

190 blocksize_bits++;

191 i >>= 1;

192 }

193

194 offset = *ppos;

195 if (blk_size[MAJOR(dev)])

196 size = (loff_t) blk_size[MAJOR(dev)][MINOR(dev)] << BLOCK_SIZE_BITS;

197 else

198 size = (loff_t) INT_MAX << BLOCK_SIZE_BITS;

199

200 if (offset > size)

201 left = 0;

202 /* size ­ offset might not fit into left, so check explicitly. */

203 else if (size ­ offset > INT_MAX)

204 left = INT_MAX;

205 else

206 left = size ­ offset;

207 if (left > count)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1098

208 left = count;

209 if (left <= 0)

210 return 0;

211 read = 0;

212 block = offset >> blocksize_bits;

213 offset &= blocksize­1;

214 size >>= blocksize_bits;

215 rblocks = blocks = (left + offset + blocksize ­ 1) >> blocksize_bits;

216 bhb = bhe = buflist;

217 if (filp­>f_reada) {

218 if (blocks < read_ahead[MAJOR(dev)] / (blocksize >> 9))

219 blocks = read_ahead[MAJOR(dev)] / (blocksize >> 9);

220 if (rblocks > blocks)

221 blocks = rblocks;

222

223 }

224 if (block + blocks > size) {

225 blocks = size ­ block;

226 if (blocks == 0)

227 return 0;

228 }

229

230 /* We do this in a two stage process. We first try to request

231 as many blocks as we can, then we wait for the first one to

232 complete, and then we try to wrap up as many as are actually

233 done. This routine is rather generic, in that it can be used

234 in a filesystem by substituting the appropriate function in

235 for getblk.

236

237 This routine is optimized to make maximum use of the various

238 buffers and caches. */

239

240 do {

241 bhrequest = 0;

242 uptodate = 1;

243 while (blocks) {

244 ­­blocks;

245 *bhb = getblk(dev, block++, blocksize);

246 if (*bhb && !buffer_uptodate(*bhb)) {

247 uptodate = 0;

248 bhreq[bhrequest++] = *bhb;

249 }

250

251 if (++bhb == &buflist[NBUF])

252 bhb = buflist;

253

254 /* If the block we have on hand is uptodate, go ahead

255 and complete processing. */

256 if (uptodate)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1099

257 break;

258 if (bhb == bhe)

259 break;

260 }

261

262 /* Now request them all */

263 if (bhrequest) {

264 ll_rw_block(READ, bhrequest, bhreq);

265 }

266

267 do { /* Finish off all I/O that has actually completed */

268 if (*bhe) {

269 wait_on_buffer(*bhe);

270 if (!buffer_uptodate(*bhe)) { /* read error? */

271 brelse(*bhe);

272 if (++bhe == &buflist[NBUF])

273 bhe = buflist;

274 left = 0;

275 break;

276 }

277 }

278 if (left < blocksize ­ offset)

279 chars = left;

280 else

281 chars = blocksize ­ offset;

282 *ppos += chars;

283 left ­= chars;

284 read += chars;

285 if (*bhe) {

286 copy_to_user(buf,offset+(*bhe)­>b_data,chars);

287 brelse(*bhe);

288 buf += chars;

289 } else {

290 while (chars­­ > 0)

291 put_user(0,buf++);

292 }

293 offset = 0;

294 if (++bhe == &buflist[NBUF])

295 bhe = buflist;

296 } while (left > 0 && bhe != bhb && (!*bhe || !buffer_locked(*bhe)));

297 if (bhe == bhb && !blocks)

298 break;

299 } while (left > 0);

300

301 /* Release the read­ahead blocks */

302 while (bhe != bhb) {

303 brelse(*bhe);

304 if (++bhe == &buflist[NBUF])

305 bhe = buflist;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1100

306 };

307 if (!read)

308 return ­EIO;

309 filp­>f_reada = 1;

310 return read;

311 }

block_read_full_page() 5

drivers/block/ll_rw_blk.c

186 blksize_size[][]
blk_size[][] 196

1024 size left
206 208 212

213 215
blocks

do­while getblk()

buffer_head bhreq[]

buffer_head

inode create_page_buffers()

buffer_head buffer_head
include/linux/fs.h

==================== include/linux/fs.h 209 249 ====================
209 /*

210 * Try to keep the most commonly used fields in single cache lines (16

211 * bytes) to improve performance. This ordering should be

212 * particularly beneficial on 32­bit processors.

213 *

214 * We use the first 16 bytes for the data which is used in searches

215 * over the block hash lists (ie. getblk() and friends).

216 *

217 * The second 16 bytes we use for lru buffer scans, as used by

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1101

218 * sync_buffers() and refill_freelist(). ­­ sct

219 */

220 struct buffer_head {

221 /* First cache line: */

222 struct buffer_head *b_next; /* Hash queue list */

223 unsigned long b_blocknr; /* block number */

224 unsigned short b_size; /* block size */

225 unsigned short b_list; /* List that this buffer appears */

226 kdev_t b_dev; /* device (B_FREE = free) */

227

228 atomic_t b_count; /* users using this block */

229 kdev_t b_rdev; /* Real device */

230 unsigned long b_state; /* buffer state bitmap (see above) */

231 unsigned long b_flushtime; /* Time when (dirty) buffer should be written */

232

233 struct buffer_head *b_next_free;/* lru/free list linkage */

234 struct buffer_head *b_prev_free;/* doubly linked list of buffers */

235 struct buffer_head *b_this_page;/* circular list of buffers in one page */

236 struct buffer_head *b_reqnext; /* request queue */

237

238 struct buffer_head **b_pprev; /* doubly linked list of hash­queue */

239 char * b_data; /* pointer to data block (512 byte) */

240 struct page *b_page; /* the page this bh is mapped to */

241 void (*b_end_io)(struct buffer_head *bh, int uptodate); /* I/O completion */

242 void *b_private; /* reserved for b_end_io */

243

244 unsigned long b_rsector; /* Real buffer location on disk */

245 wait_queue_head_t b_wait;

246

247 struct inode * b_inode;

248 struct list_head b_inode_buffers; /* doubly linked list of inode dirty buffers */

249 };

b_data
buffer_head

(1) b_next b_pprev
(2) b_next_free b_prev_free LRU b_list

LRU
(3) b_this_page b_page

page
(4) b_inode_buffers inode b_inode inode

b_dev getblk()
block_read() 183 245 inode i_rdev

inode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1102

b_rdev

getblk() buffer_head
getblk()

“meta data
getblk()

ext2_alloc_branch() path_walk()
getblk()

inode
block_read() getblk() 245

block

getblk() block_read()

block_read() bhreq[]

(1) do­while
while 257 bhrequest 0 ll_rw_block()

buflist[] 216 245
246

(2) do­white bhreq[]
buflist[] 243 260 while

buflist[] bhreq[]
buflist[] blocks 0 buflist[]

251 252 258 259 243 while bhb bhe
buflist[] 258

ll_rw_block() bhreq[]
buflist[]

bhreq[]
(3) do­while 267 buflist[]

do­while 240
ll_rw_block()

ll_rw_block()
block_write() ll_rw_block()

block_write()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1103

kflushd bdflush()

flush_dirty_buffers() flush_dirty_buffers()
ll_rw_block() flush_dirty_buffers() fs/buffer.c

==================== fs/buffer.c 2537 2589 ====================
[bdflush()>flush_dirty_buffers()]
2537 /* This is the _only_ function that deals with flushing async writes

2538 to disk.

2539 NOTENOTENOTENOTE: we _only_ need to browse the DIRTY lru list

2540 as all dirty buffers lives _only_ in the DIRTY lru list.

2541 As we never browse the LOCKED and CLEAN lru lists they are infact

2542 completly useless. */

2543 static int flush_dirty_buffers(int check_flushtime)

2544 {

2545 struct buffer_head * bh, *next;

2546 int flushed = 0, i;

2547

2548 restart:

2549 spin_lock(&lru_list_lock);

2550 bh = lru_list[BUF_DIRTY];

2551 if (!bh)

2552 goto out_unlock;

2553 for (i = nr_buffers_type[BUF_DIRTY]; i­­ > 0; bh = next) {

2554 next = bh­>b_next_free;

2555

2556 if (!buffer_dirty(bh)) {

2557 __refile_buffer(bh);

2558 continue;

2559 }

2560 if (buffer_locked(bh))

2561 continue;

2562

2563 if (check_flushtime) {

2564 /* The dirty lru list is chronologically ordered so

2565 if the current bh is not yet timed out,

2566 then also all the following bhs

2567 will be too young. */

2568 if (time_before(jiffies, bh­>b_flushtime))

2569 goto out_unlock;

2570 } else {

2571 if (++flushed > bdf_prm.b_un.ndirty)

2572 goto out_unlock;

2573 }

2574

2575 /* OK, now we are committed to write it out. */

2576 atomic_inc(&bh­>b_count);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1104

2577 spin_unlock(&lru_list_lock);

2578 ll_rw_block(WRITE, 1, &bh);

2579 atomic_dec(&bh­>b_count);

2580

2581 if (current­>need_resched)

2582 schedule();

2583 goto restart;

2584 }

2585 out_unlock:

2586 spin_unlock(&lru_list_lock);

2587

2588 return flushed;

2589 }

lru_list[]
lru_list[BUF_DIRTY] BUF_CLEAN
BUF_LOCKED BUF_PROTECTED LRU

nr_buffers_type[]
BUF_DIRTY

__refile_buffer()
ll_rw_block()

check_flushtime 0

ll_rw_block()
schedule() restart 2548

kupdate()
tq_disk 3

flush_dirty_buffers() ll_rw_block()
ll_rw_block()

ll_rw_block_locked() drivers/block/ll_rw_blk.c
ll_rw_block()

==================== drivers/block/ll_rw_blk.c 987 1093 ====================
[sys_read()>block_read()>ll_rw_block()]
987 /**

988 * ll_rw_block: low­level access to block devices

989 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)

990 * @nr: number of &struct buffer_heads in the array

991 * @bhs: array of pointers to &struct buffer_head

992 *

993 * ll_rw_block() takes an array of pointers to &struct buffer_heads,

994 * and requests an I/O operation on them, either a %READ or a %WRITE.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1105

995 * The third %READA option is described in the documentation for

996 * generic_make_request() which ll_rw_block() calls.

997 *

998 * This function provides extra functionality that is not in

999 * generic_make_request() that is relevant to buffers in the buffer

1000 * cache or page cache. In particular it drops any buffer that it

1001 * cannot get a lock on (with the BH_Lock state bit), any buffer that

1002 * appears to be clean when doing a write request, and any buffer that

1003 * appears to be up­to­date when doing read request. Further it marks

1004 * as clean buffers that are processed for writing (the buffer cache

1005 * wont assume that they are actually clean until the buffer gets

1006 * unlocked).

1007 *

1008 * ll_rw_block sets b_end_io to simple completion handler that marks

1009 * the buffer up­to­date (if approriate), unlocks the buffer and wakes

1010 * any waiters. As client that needs a more interesting completion

1011 * routine should call submit_bh() (or generic_make_request())

1012 * directly.

1013 *

1014 * Caveat:

1015 * All of the buffers must be for the same device, and must also be

1016 * of the current approved size for the device. */

1017

1018 void ll_rw_block(int rw, int nr, struct buffer_head * bhs[])

1019 {

1020 unsigned int major;

1021 int correct_size;

1022 int i;

1023

1024 major = MAJOR(bhs[0]­>b_dev);

1025

1026 /* Determine correct block size for this device. */

1027 correct_size = BLOCK_SIZE;

1028 if (blksize_size[major]) {

1029 i = blksize_size[major][MINOR(bhs[0]­>b_dev)];

1030 if (i)

1031 correct_size = i;

1032 }

1033

1034 /* Verify requested block sizes. */

1035 for (i = 0; i < nr; i++) {

1036 struct buffer_head *bh;

1037 bh = bhs[i];

1038 if (bh­>b_size != correct_size) {

1039 printk(KERN_NOTICE "ll_rw_block: device %s: "

1040 "only %d­char blocks implemented (%u)\n",

1041 kdevname(bhs[0]­>b_dev),

1042 correct_size, bh­>b_size);

1043 goto sorry;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1106

1044 }

1045 }

1046

1047 if ((rw & WRITE) && is_read_only(bhs[0]­>b_dev)) {

1048 printk(KERN_NOTICE "Can't write to read­only device %s\n",

1049 kdevname(bhs[0]­>b_dev));

1050 goto sorry;

1051 }

1052

1053 for (i = 0; i < nr; i++) {

1054 struct buffer_head *bh;

1055 bh = bhs[i];

1056

1057 /* Only one thread can actually submit the I/O. */

1058 if (test_and_set_bit(BH_Lock, &bh­>b_state))

1059 continue;

1060

1061 /* We have the buffer lock */

1062 bh­>b_end_io = end_buffer_io_sync;

1063

1064 switch(rw) {

1065 case WRITE:

1066 if (!atomic_set_buffer_clean(bh))

1067 /* Hmmph! Nothing to write */

1068 goto end_io;

1069 __mark_buffer_clean(bh);

1070 break;

1071

1072 case READA:

1073 case READ:

1074 if (buffer_uptodate(bh))

1075 /* Hmmph! Already have it */

1076 goto end_io;

1077 break;

1078 default:

1079 BUG();

1080 end_io:

1081 bh­>b_end_io(bh, test_bit(BH_Uptodate, &bh­>b_state));

1082 continue;

1083 }

1084

1085 submit_bh(rw, bh);

1086 }

1087 return;

1088

1089 sorry:

1090 /* Make sure we don't get infinite dirty retries.. */

1091 for (i = 0; i < nr; i++)

1092 mark_buffer_clean(bhs[i]);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1107

1093 }

bhs[] buffer_head
buffer_head nr

rw
request_queue_t

include/linux/blkdev.h

==================== include/linux/blkdev.h 74 125 ====================
74 struct request_queue

75 {

76 /*

77 * the queue request freelist, one for reads and one for writes

78 */

79 struct list_head request_freelist[2];

80

81 /*

82 * Together with queue_head for cacheline sharing

83 */

84 struct list_head queue_head;

85 elevator_t elevator;

86

87 request_fn_proc * request_fn;

88 merge_request_fn * back_merge_fn;

89 merge_request_fn * front_merge_fn;

90 merge_requests_fn * merge_requests_fn;

91 make_request_fn * make_request_fn;

92 plug_device_fn * plug_device_fn;

93 /*

94 * The queue owner gets to use this for whatever they like.

95 * ll_rw_blk doesn't touch it.

96 */

97 void * queuedata;

98

99 /*

100 * This is used to remove the plug when tq_disk runs.

101 */

102 struct tq_struct plug_tq;

103

104 /*

105 * Boolean that indicates whether this queue is plugged or not.

106 */

107 char plugged;

108

109 /*

110 * Boolean that indicates whether current_request is active or

111 * not.

112 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1108

113 char head_active;

114

115 /*

116 * Is meant to protect the queue in the future instead of

117 * io_request_lock

118 */

119 spinlock_t request_lock;

120

121 /*

122 * Tasks wait here for free request

123 */

124 wait_queue_head_t wait_for_request;

125 };

==================== include/linux/blkdev.h 11 11 ====================
11 typedef struct request_queue request_queue_t;

request_fn
plug_device_fn 87 request_fn
request_fn_proc request_fn_proc #typedef include/linux/blkdev.h

==================== include/linux/blkdev.h 63 63 ====================
63 typedef void (request_fn_proc) (request_queue_t *q);

blk_dev[]
drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 72 76 ====================
72 /* blk_dev_struct is:

73 * *request_fn

74 * *current_request

75 */

76 struct blk_dev_struct blk_dev[MAX_BLKDEV]; /* initialized by blk_dev_init() */

blk_dev_struct
include/linux/blkdev.h

==================== include/linux/blkdev.h 127 134 ====================
127 struct blk_dev_struct {

128 /*

129 * queue_proc has to be atomic

130 */

131 request_queue_t request_queue;

132 queue_proc *queue;

133 void *data;

134 };

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1109

request_queue queue
0

0 data

ll_rw_block()
ro_bits drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 538 538 ====================
538 static long ro_bits[MAX_BLKDEV][8];

ioctl() 1 0
is_read_only() 1

1053 for
buffer_head b_end_io

end_buffer_io_sync()
BH_Dirty 1 0 __mark_buffer_clean()

LRU Uptodate 0
submit_bh()

drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 939 976 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()]
939 /**

940 * submit_bh: submit a buffer_head to the block device later for I/O

941 * @rw: whether to %READ or %WRITE, or mayve to %READA (read ahead)

942 * @bh: The &struct buffer_head which describes the I/O

943 *

944 * submit_bh() is very similar in purpose to generic_make_request(), and

945 * uses that function to do most of the work.

946 *

947 * The extra functionality provided by submit_bh is to determine

948 * b_rsector from b_blocknr and b_size, and to set b_rdev from b_dev.

949 * This is is appropriate for IO requests that come from the buffer

950 * cache and page cache which (currently) always use aligned blocks.

951 */

952 void submit_bh(int rw, struct buffer_head * bh)

953 {

954 if (!test_bit(BH_Lock, &bh­>b_state))

955 BUG();

956

957 set_bit(BH_Req, &bh­>b_state);

958

959 /*

960 * First step, 'identity mapping' ­ RAID or LVM might

961 * further remap this.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1110

962 */

963 bh­>b_rdev = bh­>b_dev;

964 bh­>b_rsector = bh­>b_blocknr * (bh­>b_size>>9);

965

966 generic_make_request(rw, bh);

967

968 switch (rw) {

969 case WRITE:

970 kstat.pgpgout++;

971 break;

972 default:

973 kstat.pgpgin++;

974 break;

975 }

976 }

submit_bh()
BH_LOCK 1058

BH_Req
generic_make_request() bh­>b_rdev

bh­>b_dev bh­>b_rsector bh­>b_blocknr
512 1024

generic_make_request() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 850 936 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()]
850 /**

851 * generic_make_request: hand a buffer head to it's device driver for I/O

852 * @rw: READ, WRITE, or READA ­ what sort of I/O is desired.

853 * @bh: The buffer head describing the location in memory and on the device.

854 *

855 * generic_make_request() is used to make I/O requests of block

856 * devices. It is passed a &struct buffer_head and a &rw value. The

857 * %READ and %WRITE options are (hopefully) obvious in meaning. The

858 * %READA value means that a read is required, but that the driver is

859 * free to fail the request if, for example, it cannot get needed

860 * resources immediately.

861 *

862 * generic_make_request() does not return any status. The

863 * success/failure status of the request, along with notification of

864 * completion, is delivered asynchronously through the bh­>b_end_io

865 * function described (one day) else where.

866 *

867 * The caller of generic_make_request must make sure that b_page,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1111

868 * b_addr, b_size are set to describe the memory buffer, that b_rdev

869 * and b_rsector are set to describe the device address, and the

870 * b_end_io and optionally b_private are set to describe how

871 * completion notification should be signaled. BH_Mapped should also

872 * be set (to confirm that b_dev and b_blocknr are valid).

873 *

874 * generic_make_request and the drivers it calls may use b_reqnext,

875 * and may change b_rdev and b_rsector. So the values of these fields

876 * should NOT be depended on after the call to generic_make_request.

877 * Because of this, the caller should record the device address

878 * information in b_dev and b_blocknr.

879 *

880 * Apart from those fields mentioned above, no other fields, and in

881 * particular, no other flags, are changed by generic_make_request or

882 * any lower level drivers.

883 * */

884 void generic_make_request (int rw, struct buffer_head * bh)

885 {

886 int major = MAJOR(bh­>b_rdev);

887 request_queue_t *q;

888

889 if (!bh­>b_end_io) BUG();

890 if (blk_size[major]) {

891 unsigned long maxsector = (blk_size[major][MINOR(bh­>b_rdev)] << 1) + 1;

892 unsigned int sector, count;

893

894 count = bh­>b_size >> 9;

895 sector = bh­>b_rsector;

896

897 if (maxsector < count || maxsector ­ count < sector) {

898 bh­>b_state &= (1 << BH_Lock) | (1 << BH_Mapped);

899 if (blk_size[major][MINOR(bh­>b_rdev)]) {

900

901 /* This may well happen ­ the kernel calls bread()

902 without checking the size of the device, e.g.,

903 when mounting a device. */

904 printk(KERN_INFO

905 "attempt to access beyond end of device\n");

906 printk(KERN_INFO "%s: rw=%d, want=%d, limit=%d\n",

907 kdevname(bh­>b_rdev), rw,

908 (sector + count)>>1,

909 blk_size[major][MINOR(bh­>b_rdev)]);

910 }

911 bh­>b_end_io(bh, 0);

912 return;

913 }

914 }

915

916 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1112

917 * Resolve the mapping until finished. (drivers are

918 * still free to implement/resolve their own stacking

919 * by explicitly returning 0)

920 */

921 /* NOTE: we don't repeat the blk_size check for each new device.

922 * Stacking drivers are expected to know what they are doing.

923 */

924 do {

925 q = blk_get_queue(bh­>b_rdev);

926 if (!q) {

927 printk(KERN_ERR

928 "generic_make_request: Trying to access nonexistent block­device %s (%ld)\n",

929 kdevname(bh­>b_rdev), bh­>b_rsector);

930 buffer_IO_error(bh);

931 break;

932 }

933

934 }

935 while (q­>make_request_fn(q, rw, bh));

936 }

blk_size[][] 1024
drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 78 86 ====================
78 /*

79 * blk_size contains the size of all block­devices in units of 1024 byte

80 * sectors:

81 *

82 * blk_size[MAJOR][MINOR]

83 *

84 * if (!blk_size[MAJOR]) then no minor size checking is done.

85 */

86 int * blk_size[MAX_BLKDEV];

blk_size[] int
int 0

0 Linux
890 914 bh­>b_rsector

bh­>b_size 512 printk()

blk_get_queue()
drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 138 152 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>blkget_queue()]
138 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1113

139 * NOTE: the device­specific queue() functions

140 * have to be atomic!

141 */

142 request_queue_t *blk_get_queue(kdev_t dev)

143 {

144 request_queue_t *ret;

145 unsigned long flags;

146

147 spin_lock_irqsave(&io_request_lock,flags);

148 ret = __blk_get_queue(dev);

149 spin_unlock_irqrestore(&io_request_lock,flags);

150

151 return ret;

152 }

==================== drivers/block/ll_rw_blk.c 128 136 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>blkget_queue()>__blk_get_queue()]
128 static inline request_queue_t *__blk_get_queue(kdev_t dev)

129 {

130 struct blk_dev_struct *bdev = blk_dev + MAJOR(dev);

131

132 if (bdev­>queue)

133 return bdev­>queue(dev);

134 else

135 return &blk_dev[MAJOR(dev)].request_queue;

136 }

blk_dev[] blk_dev_struct
__blk_get_queue() queue

request_queue IDE blk_dev_struct
queue ide_get_queue() data

ide_hwif_t IDE ide_get_queue()
drivers/ide/ide.c

==================== drivers/ide/ide.c 1367 1375 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>blkget_queue()>__blk_get_queue()
>ide_get_queue()]
1367 /*

1368 * ide_get_queue() returns the queue which corresponds to a given device.

1369 */

1370 request_queue_t *ide_get_queue (kdev_t dev)

1371 {

1372 ide_hwif_t *hwif = (ide_hwif_t *)blk_dev[MAJOR(dev)].data;

1373

1374 return &hwif­>drives[DEVICE_NR(dev) & 1].queue;

1375 }

DEVICE_NR(dev) dev
0 1 IDE IDE ide_hwif_t

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1114

drives[]
IDE request_queue_t

make_request_fn

make_request_fn
924 935 do­while

0 do­while

make_request_fn
buffer_head b_rdev

925 b_rdev
make_request_fn buffer_head b_rdev

1 924 935 do­while
make_request_fn 0 do­while

IDE
0 IDE __make_request()

request

segment
request request buffer_head

buffer_head
drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 695 737 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()]
695 static int __make_request(request_queue_t * q, int rw,

696 struct buffer_head * bh)

697 {

698 unsigned int sector, count;

699 int max_segments = MAX_SEGMENTS;

700 struct request * req = NULL, *freereq = NULL;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1115

701 int rw_ahead, max_sectors, el_ret;

702 struct list_head *head;

703 int latency;

704 elevator_t *elevator = &q­>elevator;

705

706 count = bh­>b_size >> 9;

707 sector = bh­>b_rsector;

708

709 rw_ahead = 0; /* normal case; gets changed below for READA */

710 switch (rw) {

711 case READA:

712 rw_ahead = 1;

713 rw = READ; /* drop into READ */

714 case READ:

715 case WRITE:

716 break;

717 default:

718 BUG();

719 goto end_io;

720 }

721

722 /* We'd better have a real physical mapping!

723 Check this bit only if the buffer was dirty and just locked

724 down by us so at this point flushpage will block and

725 won't clear the mapped bit under us. */

726 if (!buffer_mapped(bh))

727 BUG();

728

729 /*

730 * Temporary solution ­ in 2.5 this will be done by the lowlevel

731 * driver. Create a bounce buffer if the buffer data points into

732 * high memory ­ keep the original buffer otherwise.

733 */

734 #if CONFIG_HIGHMEM

735 bh = create_bounce(rw, bh);

736 #endif

737

READ WRITE READA READA
rw_ahead 1 READ

buffer_head Mapped 1 buffer_mapped() CPU
32 4GB HIGHMEM 4GB

create_bounce() 4GB
4GB DMA 32

==================== drivers/block/ll_rw_blk.c 738 764 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1116

738 /* look for a free request. */

739 /*

740 * Try to coalesce the new request with old requests

741 */

742 max_sectors = get_max_sectors(bh­>b_rdev);

743

744 latency = elevator_request_latency(elevator, rw);

745

746 /*

747 * Now we acquire the request spinlock, we have to be mega careful

748 * not to schedule or do something nonatomic

749 */

750 again:

751 spin_lock_irq(&io_request_lock);

752

753 /*

754 * skip first entry, for devices with active queue head

755 */

756 head = &q­>queue_head;

757 if (q­>head_active && !q­>plugged)

758 head = head­>next;

759

760 if (list_empty(head)) {

761 q­>plug_device_fn(q, bh­>b_rdev); /* is atomic */

762 goto get_rq;

763 }

764

elevator_request_latency() latency
757 758

I/O I/O

I/O bottom_half 3 tq_disk
bottom_half

I/O 761 plug_device_fn
tq_disk IDE

generic_plug_device() tq_disk request_queue_t
plug_tq tq_struct tq_disk

plugged 1 tq_disk
tq_disk tq_struct routine bottom­half

I/O tq_disk get_rq

__make_request()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1117

==================== drivers/block/ll_rw_blk.c 765 803 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()]
765 el_ret = elevator­>elevator_merge_fn(q, &req, bh, rw,

766 &max_sectors, &max_segments);

767 switch (el_ret) {

768

769 case ELEVATOR_BACK_MERGE:

770 if (!q­>back_merge_fn(q, req, bh, max_segments))

771 break;

772 req­>bhtail­>b_reqnext = bh;

773 req­>bhtail = bh;

774 req­>nr_sectors = req­>hard_nr_sectors += count;

775 req­>e = elevator;

776 drive_stat_acct(req­>rq_dev, req­>cmd, count, 0);

777 attempt_back_merge(q, req, max_sectors, max_segments);

778 goto out;

779

780 case ELEVATOR_FRONT_MERGE:

781 if (!q­>front_merge_fn(q, req, bh, max_segments))

782 break;

783 bh­>b_reqnext = req­>bh;

784 req­>bh = bh;

785 req­>buffer = bh­>b_data;

786 req­>current_nr_sectors = count;

787 req­>sector = req­>hard_sector = sector;

788 req­>nr_sectors = req­>hard_nr_sectors += count;

789 req­>e = elevator;

790 drive_stat_acct(req­>rq_dev, req­>cmd, count, 0);

791 attempt_front_merge(q, head, req, max_sectors, max_segments);

792 goto out;

793 /*

794 * elevator says don't/can't merge. get new request

795 */

796 case ELEVATOR_NO_MERGE:

797 break;

798

799 default:

800 printk("elevator returned crap (%d)\n", el_ret);

801 BUG();

802 }

803

IDE

request_queue_t elevator_t elevator
include/linux/elevator.h

include/linux/blkdev.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1118

==================== include/linux/elevator.h 15 31 ====================
15 /*

16 * Ok, this is an expanded form so that we can use the same

17 * request for paging requests when that is implemented. In

18 * paging, 'bh' is NULL, and the semaphore is used to wait

19 * for read/write completion.

20 */

21 struct request {

22 struct list_head queue;

23 int elevator_sequence;

24 struct list_head table;

25

26 struct list_head *free_list;

27

28 volatile int rq_status; /* should split this into a few status bits */

29 #define RQ_INACTIVE (­1)

30 #define RQ_ACTIVE 1

31 #define RQ_SCSI_BUSY 0xffff

include/linux/blkdev.h
13 typedef struct elevator_s elevator_t;

elevator_t
Linux ELEVATOR_LINUS

include/linux/elevator.h

==================== include/linux/elevator.h 99 113 ====================
99 #define ELEVATOR_LINUS \

100 ((elevator_t) { \

101 0, /* not used */ \

102 \

103 1000000, /* read passovers */ \

104 2000000, /* write passovers */ \

105 0, /* max_bomb_segments */ \

106 \

107 0, /* not used */ \

108 0, /* not used */ \

109 \

110 elevator_linus, /* elevator_fn */ \

111 elevator_linus_merge, /* elevator_merge_fn */ \

112 elevator_noop_dequeue, /* dequeue_fn */ \

113 })

request_queue_t elevator ELEVATOR_LINUS
765 elevator_linus_merge() drivers/block/elevator.c

==================== drivers/block/elevator.c 53 98 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()
>elevator_linus_merge()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1119

53 int elevator_linus_merge(request_queue_t *q, struct request **req,

54 struct buffer_head *bh, int rw,

55 int *max_sectors, int *max_segments)

56 {

57 struct list_head *entry, *head = &q­>queue_head;

58 unsigned int count = bh­>b_size >> 9, ret = ELEVATOR_NO_MERGE;

59

60 entry = head;

61 if (q­>head_active && !q­>plugged)

62 head = head­>next;

63

64 while ((entry = entry­>prev) != head) {

65 struct request *__rq = *req = blkdev_entry_to_request(entry);

66 if (__rq­>sem)

67 continue;

68 if (__rq­>cmd != rw)

69 continue;

70 if (__rq­>nr_sectors + count > *max_sectors)

71 continue;

72 if (__rq­>rq_dev != bh­>b_rdev)

73 continue;

74 if (__rq­>sector + __rq­>nr_sectors == bh­>b_rsector) {

75 ret = ELEVATOR_BACK_MERGE;

76 break;

77 }

78 if (!__rq­>elevator_sequence)

79 break;

80 if (__rq­>sector ­ count == bh­>b_rsector) {

81 __rq­>elevator_sequence­­;

82 ret = ELEVATOR_FRONT_MERGE;

83 break;

84 }

85 }

86

87 /*

88 * second pass scan of requests that got passed over, if any

89 */

90 if (ret != ELEVATOR_NO_MERGE && *req) {

91 while ((entry = entry­>next) != &q­>queue_head) {

92 struct request *tmp = blkdev_entry_to_request(entry);

93 tmp­>elevator_sequence­­;

94 }

95 }

96

97 return ret;

98 }

blkdev_entry_to_request() list_head request
include/linux/blkdev.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1120

==================== include/linux/blkdev.h 188 188 ====================
188 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queue)

req

777 791 attempt_back_merge()
attempt_front_merge()

get_rq

==================== drivers/block/ll_rw_blk.c 804 848 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()]
804 /*

805 * Grab a free request from the freelist. Read first try their

806 * own queue ­ if that is empty, we steal from the write list.

807 * Writes must block if the write list is empty, and read aheads

808 * are not crucial.

809 */

810 get_rq:

811 if (freereq) {

812 req = freereq;

813 freereq = NULL;

814 } else if ((req = get_request(q, rw)) == NULL) {

815 spin_unlock_irq(&io_request_lock);

816 if (rw_ahead)

817 goto end_io;

818

819 freereq = __get_request_wait(q, rw);

820 goto again;

821 }

822

823 /* fill up the request­info, and add it to the queue */

824 req­>cmd = rw;

825 req­>errors = 0;

826 req­>hard_sector = req­>sector = sector;

827 req­>hard_nr_sectors = req­>nr_sectors = count;

828 req­>current_nr_sectors = count;

829 req­>nr_segments = 1; /* Always 1 for a new request. */

830 req­>nr_hw_segments = 1; /* Always 1 for a new request. */

831 req­>buffer = bh­>b_data;

832 req­>sem = NULL;

833 req­>bh = bh;

834 req­>bhtail = bh;

835 req­>rq_dev = bh­>b_rdev;

836 req­>e = elevator;

837 add_request(q, req, head, latency);

838 out:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1121

839 if (!q­>plugged)

840 (q­>request_fn)(q);

841 if (freereq)

842 blkdev_release_request(freereq);

843 spin_unlock_irq(&io_request_lock);

844 return 0;

845 end_io:

846 bh­>b_end_io(bh, test_bit(BH_Uptodate, &bh­>b_state));

847 return 0;

848 }

request include/linux/blkdev.h

==================== include/linux/blkdev.h 15 51 ====================
15 /*

16 * Ok, this is an expanded form so that we can use the same

17 * request for paging requests when that is implemented. In

18 * paging, 'bh' is NULL, and the semaphore is used to wait

19 * for read/write completion.

20 */

21 struct request {

22 struct list_head queue;

23 int elevator_sequence;

24 struct list_head table;

25

26 struct list_head *free_list;

27

28 volatile int rq_status; /* should split this into a few status bits */

29 #define RQ_INACTIVE (­1)

30 #define RQ_ACTIVE 1

31 #define RQ_SCSI_BUSY 0xffff

32 #define RQ_SCSI_DONE 0xfffe

33 #define RQ_SCSI_DISCONNECTING 0xffe0

34

35 kdev_t rq_dev;

36 int cmd; /* READ or WRITE */

37 int errors;

38 unsigned long sector;

39 unsigned long nr_sectors;

40 unsigned long hard_sector, hard_nr_sectors;

41 unsigned int nr_segments;

42 unsigned int nr_hw_segments;

43 unsigned long current_nr_sectors;

44 void * special;

45 char * buffer;

46 struct semaphore * sem;

47 struct buffer_head * bh;

48 struct buffer_head * bhtail;

49 request_queue_t *q;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1122

50 elevator_t *e;

51 };

request get_request()

__get_request_wait()
tq_disk run_task_queue()

request request
__get_request_wait() req request

again head
request

request
head request_queue_t

head_active request active
tq_disk 756 758 811

freereq request
request add_request()

latency 744
elevator_t request_queue_t

==================== include/linux/elevator.h 72 81 ====================
72 static inline int elevator_request_latency(elevator_t * elevator, int rw)

73 {

74 int latency;

75

76 latency = elevator­>read_latency;

77 if (rw != READ)

78 latency = elevator­>write_latency;

79

80 return latency;

81 }

add_request() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 582 618 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()>add_request()]
582 /*

583 * add­request adds a request to the linked list.

584 * It disables interrupts (acquires the request spinlock) so that it can muck

585 * with the request­lists in peace. Thus it should be called with no spinlocks

586 * held.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1123

587 *

588 * By this point, req­>cmd is always either READ/WRITE, never READA,

589 * which is important for drive_stat_acct() above.

590 */

591

592 static inline void add_request(request_queue_t * q, struct request * req,

593 struct list_head *head, int lat)

594 {

595 int major;

596

597 drive_stat_acct(req­>rq_dev, req­>cmd, req­>nr_sectors, 1);

598

599 /*

600 * let selected elevator insert the request

601 */

602 q­>elevator.elevator_fn(req, &q­>elevator, &q­>queue_head, head, lat);

603

604 /*

605 * FIXME(eric) I don't understand why there is a need for this

606 * special case code. It clearly doesn't fit any more with

607 * the new queueing architecture, and it got added in 2.3.10.

608 * I am leaving this in here until I hear back from the COMPAQ

609 * people.

610 */

611 major = MAJOR(req­>rq_dev);

612 if (major >= COMPAQ_SMART2_MAJOR+0 && major <= COMPAQ_SMART2_MAJOR+7)

613 (q­>request_fn)(q);

614 if (major >= COMPAQ_CISS_MAJOR+0 && major <= COMPAQ_CISS_MAJOR+7)

615 (q­>request_fn)(q);

616 if (major >= DAC960_MAJOR+0 && major <= DAC960_MAJOR+7)

617 (q­>request_fn)(q);

618 }

drive_stat_acct()
list_add() request request

list_head

elevator elevator_fn
elevator_fn elevator_linus()

drivers/block/elevator.c

==================== drivers/block/elevator.c 29 51 ====================
[sys_read()>block_read()>ll_rw_block()>submit_bh()>generic_make_request()>__make_request()>add_request()
>elevator_linus()]
29 /*

30 * Order ascending, but only allow a request to be skipped a certain

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1124

31 * number of times

32 */

33 void elevator_linus(struct request *req, elevator_t *elevator,

34 struct list_head *real_head,

35 struct list_head *head, int orig_latency)

36 {

37 struct list_head *entry = real_head;

38 struct request *tmp;

39

40 req­>elevator_sequence = orig_latency;

41

42 while ((entry = entry­>prev) != head) {

43 tmp = blkdev_entry_to_request(entry);

44 if (IN_ORDER(tmp, req))

45 break;

46 if (!tmp­>elevator_sequence)

47 break;

48 tmp­>elevator_sequence­­;

49 }

50 list_add(&req­>queue, entry);

51 }

100 800
150
100 800 150

100 2
150 800

IN_ORDER
include/linux/elevator.h

==================== include/linux/elevator.h 61 70 ====================
61 /*

62 * This is used in the elevator algorithm. We don't prioritise reads

63 * over writes any more ­­­ although reads are more time­critical than

64 * writes, by treating them equally we increase filesystem throughput.

65 * This turns out to give better overall performance. ­­ sct

66 */

67 #define IN_ORDER(s1,s2) \

68 ((((s1)­>rq_dev == (s2)­>rq_dev && \

69 (s1)­>sector < (s2)­>sector)) || \

70 (s1)­>rq_dev < (s2)­>rq_dev)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1125

IDE ide_get_queue() IDE

”

starving ”

NP
add_request()

611 617 request_fn
I/O __make_request() plugged

0 tq_disk request_fn
I/O __make_request()

add_request()
__make_request() bottom­half tq_disk plugged 1

ll_rw_block()

wait_on_buffer() inline
include/linux/locks.h

==================== include/linux/locks.h 17 21 ====================
17 extern inline void wait_on_buffer(struct buffer_head * bh)

18 {

19 if (test_bit(BH_Lock, &bh­>b_state))

20 __wait_on_buffer(bh);

21 }

__wait_on_buffer() fs/buffer.c

==================== fs/buffer.c 136 162 ====================
136 /*

137 * Rewrote the wait­routines to use the "new" wait­queue functionality,

138 * and getting rid of the cli­sti pairs. The wait­queue routines still

139 * need cli­sti, but now it's just a couple of 386 instructions or so.

140 *

141 * Note that the real wait_on_buffer() is an inline function that checks

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1126

142 * if 'b_wait' is set before calling this, so that the queues aren't set

143 * up unnecessarily.

144 */

145 void __wait_on_buffer(struct buffer_head * bh)

146 {

147 struct task_struct *tsk = current;

148 DECLARE_WAITQUEUE(wait, tsk);

149

150 atomic_inc(&bh­>b_count);

151 add_wait_queue(&bh­>b_wait, &wait);

152 do {

153 run_task_queue(&tq_disk);

154 set_task_state(tsk, TASK_UNINTERRUPTIBLE);

155 if (!buffer_locked(bh))

156 break;

157 schedule();

158 } while (buffer_locked(bh));

159 tsk­>state = TASK_RUNNING;

160 remove_wait_queue(&bh­>b_wait, &wait);

161 atomic_dec(&bh­>b_count);

162 }

4 3
wait

I/O

do­while do­while
run_task_queue() tq_disk bottom_half

run_task_queue()

tq_disk run_task_queue() tq_struct
routine bottom_half

generic_unplug_device() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 367 375 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()]
367 static void generic_unplug_device(void *data)

368 {

369 request_queue_t *q = (request_queue_t *) data;

370 unsigned long flags;

371

372 spin_lock_irqsave(&io_request_lock, flags);

373 __generic_unplug_device(q);

374 spin_unlock_irqrestore(&io_request_lock, flags);

375 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1127

==================== drivers/block/ll_rw_blk.c 355 365 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()]
355 /*

356 * remove the plug and let it rip..

357 */

358 static inline void __generic_unplug_device(request_queue_t *q)

359 {

360 if (q­>plugged) {

361 q­>plugged = 0;

362 if (!list_empty(&q­>queue_head))

363 q­>request_fn(q);

364 }

365 }

tq_struct void data bottom­half
tq_struct plug_tq request_queue

request_fn I/O
primary IDE IDE do_ide_request()

drivers/ide/ide.c

==================== drivers/ide/ide.c 1377 1383 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()]
1377 /*

1378 * Passes the stuff to ide_do_request

1379 */

1380 void do_ide_request(request_queue_t *q)

1381 {

1382 ide_do_request(q­>queuedata, 0);

1383 }

request_queue_t void queuedata
IDE ide_hwgroup_t

include/linux/ide.h

==================== include/linux/ide.h 486 503 ====================
486 /*

487 * when ide_timer_expiry fires, invoke a handler of this type

488 * to decide what to do.

489 */

490 typedef int (ide_expiry_t)(ide_drive_t *);

491

492 typedef struct hwgroup_s {

493 ide_handler_t *handler;/* irq handler, if active */

494 volatile int busy; /* BOOL: protects all fields below */

495 int sleeping; /* BOOL: wake us up on timer expiry */

496 ide_drive_t *drive; /* current drive */

497 ide_hwif_t *hwif; /* ptr to current hwif in linked­list */

498 struct request *rq; /* current request */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1128

499 struct timer_list timer; /* failsafe timer */

500 struct request wrq; /* local copy of current write rq */

501 unsigned long poll_timeout; /* timeout value during long polls */

502 ide_expiry_t *expiry; /* queried upon timeouts */

503 } ide_hwgroup_t;

IDE IDE
IDE

IDE IDE IDE ide_hwif_t
ide_hwif_t ide_hwifs[] IDE

==================== drivers/ide/ide.c 191 191 ====================
191 ide_hwif_t ide_hwifs[MAX_HWIFS]; /* master data repository */

MAX_HWIFS 6 PC IDE
IDE IDE ide_hwifs[]

ide_hwif_t IDE include/linux/ide.h

==================== include/linux/ide.h 421 470 ====================
421 typedef struct hwif_s {

422 struct hwif_s *next; /* for linked­list in ide_hwgroup_t */

423 void *hwgroup; /* actually (ide_hwgroup_t *) */

424 ide_ioreg_t io_ports[IDE_NR_PORTS]; /* task file registers */

425 hw_regs_t hw; /* Hardware info */

426 ide_drive_t drives[MAX_DRIVES]; /* drive info */

427 struct gendisk *gd; /* gendisk structure */

428 ide_tuneproc_t *tuneproc; /* routine to tune PIO mode for drives */

429 ide_speedproc_t *speedproc; /* routine to retune DMA modes for drives */

430 ide_selectproc_t *selectproc; /* tweaks hardware to select drive */

431 ide_resetproc_t *resetproc; /* routine to reset controller after a disk reset */

432 ide_intrproc_t *intrproc; /* special interrupt handling for shared pci interrupts */

433 ide_maskproc_t *maskproc; /* special host masking for drive selection */

434 ide_quirkproc_t *quirkproc; /* check host's drive quirk list */

435 ide_rw_proc_t *rwproc; /* adjust timing based upon rq­>cmd direction */

436 ide_dmaproc_t *dmaproc; /* dma read/write/abort routine */

437 unsigned int *dmatable_cpu; /* dma physical region descriptor table (cpu view) */

438 dma_addr_t dmatable_dma; /* dma physical region descriptor table (dma view) */

439 struct scatterlist *sg_table; /* Scatter­gather list used to build the above */

440 int sg_nents; /* Current number of entries in it */

441 int sg_dma_direction; /* dma transfer direction */

442 struct hwif_s *mate; /* other hwif from same PCI chip */

443 unsigned long dma_base; /* base addr for dma ports */

444 unsigned dma_extra; /* extra addr for dma ports */

445 unsigned long config_data; /* for use by chipset­specific code */

446 unsigned long select_data; /* for use by chipset­specific code */

447 struct proc_dir_entry *proc; /* /proc/ide/ directory entry */

448 int irq; /* our irq number */

449 byte major; /* our major number */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1129

450 char name[6]; /* name of interface, eg. "ide0" */

451 byte index; /* 0 for ide0; 1 for ide1; ... */

452 hwif_chipset_t chipset; /* sub­module for tuning.. */

453 unsigned noprobe : 1; /* don't probe for this interface */

454 unsigned present : 1; /* this interface exists */

455 unsigned serialized : 1; /* serialized operation with mate hwif */

456 unsigned sharing_irq: 1; /* 1 = sharing irq with another hwif */

457 unsigned reset : 1; /* reset after probe */

458 unsigned autodma : 1; /* automatically try to enable DMA at boot */

459 unsigned udma_four : 1; /* 1=ATA­66 capable, 0=default */

460 byte channel; /* for dual­port chips: 0=primary, 1=secondary */

461 #ifdef CONFIG_BLK_DEV_IDEPCI

462 struct pci_dev *pci_dev; /* for pci chipsets */

463 ide_pci_devid_t pci_devid; /* for pci chipsets: {VID,DID} */

464 #endif /* CONFIG_BLK_DEV_IDEPCI */

465 #if (DISK_RECOVERY_TIME > 0)

466 unsigned long last_time; /* time when previous rq was done */

467 #endif

468 byte straight8; /* Alan's straight 8 check */

469 void *hwif_data; /* extra hwif data */

470 } ide_hwif_t;

drives[] IDE MAX_DRIVES
2 2 hwgroup ide_hwgroup_t

IDE ide_hwgroup_t hwgroup hwif
IDE ide_hwgroup_t

IDE IDE
ide_hwgroup_t ide_hwif__t

next ide_hwgroup_t hwif IDE ide_hwgroup_t
ide_hwif_t
• ide_hwgroup_t IDE
• ide_hwif_t IDE IDE

ide_hwif_t ide_drive_t
• ide_drive_t IDE

PC IDE IDE
IDE ide_drive_t IDE

ide_hwgroup_t rq
request

ide_do_request() drivers/ide/ide.c

==================== drivers/ide/ide.c 1254 1288 ====================
1254 /*

1255 * Issue a new request to a drive from hwgroup

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1130

1256 * Caller must have already done spin_lock_irqsave(&io_request_lock, ..);

1257 *

1258 * A hwgroup is a serialized group of IDE interfaces. Usually there is

1259 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)

1260 * may have both interfaces in a single hwgroup to "serialize" access.

1261 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped

1262 * together into one hwgroup for serialized access.

1263 *

1264 * Note also that several hwgroups can end up sharing a single IRQ,

1265 * possibly along with many other devices. This is especially common in

1266 * PCI­based systems with off­board IDE controller cards.

1267 *

1268 * The IDE driver uses the single global io_request_lock spinlock to protect

1269 * access to the request queues, and to protect the hwgroup­>busy flag.

1270 *

1271 * The first thread into the driver for a particular hwgroup sets the

1272 * hwgroup­>busy flag to indicate that this hwgroup is now active,

1273 * and then initiates processing of the top request from the request queue.

1274 *

1275 * Other threads attempting entry notice the busy setting, and will simply

1276 * queue their new requests and exit immediately. Note that hwgroup­>busy

1277 * remains set even when the driver is merely awaiting the next interrupt.

1278 * Thus, the meaning is "this hwgroup is busy processing a request".

1279 *

1280 * When processing of a request completes, the completing thread or IRQ­handler

1281 * will start the next request from the queue. If no more work remains,

1282 * the driver will clear the hwgroup­>busy flag and exit.

1283 *

1284 * The io_request_lock (spinlock) is used to protect all access to the

1285 * hwgroup­>busy flag, but is otherwise not needed for most processing in

1286 * the driver. This makes the driver much more friendlier to shared IRQs

1287 * than previous designs, while remaining 100% (?) SMP safe and capable.

1288 */

==================== drivers/ide/ide.c 1289 1365 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()]
1289 static void ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq)

1290 {

1291 ide_drive_t *drive;

1292 ide_hwif_t *hwif;

1293 ide_startstop_t startstop;

1294

1295 ide_get_lock(&ide_lock, ide_intr, hwgroup); /* for atari only: POSSIBLY BROKEN HERE(?) */

1296

1297 __cli(); /* necessary paranoia: ensure IRQs are masked on local CPU */

1298

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1131

1299 while (!hwgroup­>busy) {

1300 hwgroup­>busy = 1;

1301 drive = choose_drive(hwgroup);

1302 if (drive == NULL) {

1303 unsigned long sleep = 0;

1304 hwgroup­>rq = NULL;

1305 drive = hwgroup­>drive;

1306 do {

1307 if (drive­>sleep && (!sleep || 0 < (signed long)(sleep ­ drive­>sleep)))

1308 sleep = drive­>sleep;

1309 } while ((drive = drive­>next) != hwgroup­>drive);

1310 if (sleep) {

1311 /*

1312 * Take a short snooze, and then wake up this hwgroup again.

1313 * This gives other hwgroups on the same a chance to

1314 * play fairly with us, just in case there are big differences

1315 * in relative throughputs.. don't want to hog the cpu too much.

1316 */

1317 if (0 < (signed long)(jiffies + WAIT_MIN_SLEEP ­ sleep))

1318 sleep = jiffies + WAIT_MIN_SLEEP;

1319 #if 1

1320 if (timer_pending(&hwgroup­>timer))

1321 printk("ide_set_handler: timer already active\n");

1322 #endif

1323 hwgroup­>sleeping = 1; /* so that ide_timer_expiry knows what to do */

1324 mod_timer(&hwgroup­>timer, sleep);

1325 /* we purposely leave hwgroup­>busy==1 while sleeping */

1326 } else {

1327 /* Ugly, but how can we sleep for the lock otherwise? perhaps from tq_disk? */

1328 ide_release_lock(&ide_lock); /* for atari only */

1329 hwgroup­>busy = 0;

1330 }

1331 return; /* no more work for this hwgroup (for now) */

1332 }

1333 hwif = HWIF(drive);

1334 if (hwgroup­>hwif­>sharing_irq && hwif != hwgroup­>hwif && hwif­>io_ports[IDE_CONTROL_OFFSET])

{

1335 /* set nIEN for previous hwif */

1336 SELECT_INTERRUPT(hwif, drive);

1337 }

1338 hwgroup­>hwif = hwif;

1339 hwgroup­>drive = drive;

1340 drive­>sleep = 0;

1341 drive­>service_start = jiffies;

1342

1343 if (drive­>queue.plugged) /* paranoia */

1344 printk("%s: Huh? nuking plugged queue\n", drive­>name);

1345 hwgroup­>rq = blkdev_entry_next_request(&drive­>queue.queue_head);

1346 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1132

1347 * Some systems have trouble with IDE IRQs arriving while

1348 * the driver is still setting things up. So, here we disable

1349 * the IRQ used by this interface while the request is being started.

1350 * This may look bad at first, but pretty much the same thing

1351 * happens anyway when any interrupt comes in, IDE or otherwise

1352 * ­­ the kernel masks the IRQ while it is being handled.

1353 */

1354 if (masked_irq && hwif­>irq != masked_irq)

1355 disable_irq_nosync(hwif­>irq);

1356 spin_unlock(&io_request_lock);

1357 ide__sti(); /* allow other IRQs while we start this request */

1358 startstop = start_request(drive);

1359 spin_lock_irq(&io_request_lock);

1360 if (masked_irq && hwif­>irq != masked_irq)

1361 enable_irq(hwif­>irq);

1362 if (startstop == ide_stopped)

1363 hwgroup­>busy = 0;

1364 }

1365 }

i386 CPU ide_get_lock()
__cli()

SMP CPU
generic_unplug_device() request_fn do_ide_request()

spin_lock_irqsave() spin_unlock_irqrestore() CPU
CPU spin_lock_irqsave()

IDE while IDE
busy 1

while
while IDE

IDE
choose_drive() ide_hwif_t ide_drive_t drives[]

ide_hwgroup_t ide_drive_t drive drives[]

IDE ide_drive_t next
choose_drive() ide_drive_t

IDE

ide_hwgroup_t IDE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1133

ide_drive_t service_start

ide_drive_t sevice_time
ide_drive_t nice1 1

ide_drive_t sleep

choose_drive() drivers/ide/ide.c

do­while ide_drive_t
0 ide_hwgroup_t

sleeping 1 1323
ide_hwgroup_t 0

busy 0 ide_do_request()
1331

1333 IDE
HWIF include/linux/ide.h

==================== include/linux/ide.h 96 96 ====================
96 #define HWIF(drive) ((ide_hwif_t *)((drive)­>hwif))

ide_hwgroup_t hwif ide_hwif_t
IDE ide_hwgroup_t ide_drive_t

IDE 1334 IDE
IDE 1334

SELECT_INTERRUPT include/linux/ide.h

==================== include/linux/ide.h 189 195 ====================
189 #define SELECT_INTERRUPT(hwif,drive) \

190 { \

191 if (hwif­>intrproc) \

192 hwif­>intrproc(drive); \

193 else \

194 OUT_BYTE((drive)­>ctl|2, hwif­>io_ports[IDE_CONTROL_OFFSET]); \

195 }

OUT_BYTE 1 bit1 1 IDE
2 I/O IDE ide_hwif_t

io_ports[] I/O

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1134

ide_hwgroup_t hwif drive IDE
jiffies 3 sevice_start

tq_disk
hwgroup­>rq

1357

disable_irq_nosync()
masked_irq

do_ide_request() 0 1354 if

IDE busy
start_request()

drivers/ide/ide.c

==================== drivers/ide/ide.c 1129 1196 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()]
1129 /*

1130 * start_request() initiates handling of a new I/O request

1131 */

1132 static ide_startstop_t start_request (ide_drive_t *drive)

1133 {

1134 ide_startstop_t startstop;

1135 unsigned long block, blockend;

1136 struct request *rq = blkdev_entry_next_request(&drive­>queue.queue_head);

1137 unsigned int minor = MINOR(rq­>rq_dev), unit = minor >> PARTN_BITS;

1138 ide_hwif_t *hwif = HWIF(drive);

1139

1140 #ifdef DEBUG

1141 printk("%s: start_request: current=0x%08lx\n", hwif­>name, (unsigned long) rq);

1142 #endif

1143 if (unit >= MAX_DRIVES) {

1144 printk("%s: bad device number: %s\n", hwif­>name, kdevname(rq­>rq_dev));

1145 goto kill_rq;

1146 }

1147 #ifdef DEBUG

1148 if (rq­>bh && !buffer_locked(rq­>bh)) {

1149 printk("%s: block not locked\n", drive­>name);

1150 goto kill_rq;

1151 }

1152 #endif

1153 block = rq­>sector;

1154 blockend = block + rq­>nr_sectors;

1155

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1135

1156 if ((rq­>cmd == READ || rq­>cmd == WRITE) &&

1157 (drive­>media == ide_disk || drive­>media == ide_floppy)) {

1158 if ((blockend < block) || (blockend > drive­>part[minor&PARTN_MASK].nr_sects)) {

1159 printk("%s%c: bad access: block=%ld, count=%ld\n", drive­>name,

1160 (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq­>nr_sectors);

1161 goto kill_rq;

1162 }

1163 block += drive­>part[minor&PARTN_MASK].start_sect + drive­>sect0;

1164 }

1165 /* Yecch ­ this will shift the entire interval,

1166 possibly killing some innocent following sector */

1167 if (block == 0 && drive­>remap_0_to_1 == 1)

1168 block = 1; /* redirect MBR access to EZ­Drive partn table */

1169

1170 #if (DISK_RECOVERY_TIME > 0)

1171 while ((read_timer() ­ hwif­>last_time) < DISK_RECOVERY_TIME);

1172 #endif

1173

1174 SELECT_DRIVE(hwif, drive);

1175 if (ide_wait_stat(&startstop, drive, drive­>ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {

1176 printk("%s: drive not ready for command\n", drive­>name);

1177 return startstop;

1178 }

1179 if (!drive­>special.all) {

1180 if (rq­>cmd == IDE_DRIVE_CMD || rq­>cmd == IDE_DRIVE_TASK) {

1181 return execute_drive_cmd(drive, rq);

1182 }

1183 if (drive­>driver != NULL) {

1184 return (DRIVER(drive)­>do_request(drive, rq, block));

1185 }

1186 printk("%s: media type %d not supported\n", drive­>name, drive­>media);

1187 goto kill_rq;

1188 }

1189 return do_special(drive);

1190 kill_rq:

1191 if (drive­>driver != NULL)

1192 DRIVER(drive)­>end_request(0, HWGROUP(drive));

1193 else

1194 ide_end_request(0, HWGROUP(drive));

1195 return ide_stopped;

1196 }

block blockend
1163

ide_drive_t part[]
0

drive­>sect0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1136

0 1 ide_drive_t remap0_to_1 1 1167

1171 while

SELECT_DRIVE SELECT_INTERRUPT include/linux/ide.h

==================== include/linux/ide.h 182 187 ====================
182 #define SELECT_DRIVE(hwif,drive) \

183 { \

184 if (hwif­>selectproc) \

185 hwif­>selectproc(drive); \

186 OUT_BYTE((drive)­>select.all, hwif­>io_ports[IDE_SELECT_OFFSET]); \

187 }

IDE
ide_drive_t selectproc

IDE
8 8.6

8.6

include/asm­i386/ide.h

==================== include/asm­i386/ide.h 89 98 ====================
89 typedef union {

90 unsigned all : 8; /* all of the bits together */

91 struct {

92 unsigned head : 4; /* always zeros here */

93 unsigned unit : 1; /* drive select number, 0 or 1 */

94 unsigned bit5 : 1; /* always 1 */

95 unsigned lba : 1; /* using LBA instead of CHS */

96 unsigned bit7 : 1; /* always 1 */

97 } b;

98 } select_t;

IDE CHS
4 16
1024 256

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1137

256 64
1024×16×64=1M 512 IDE

0.5GB IDE LBA
IDE EIDE

4 28 128 GB
bit6 1 LBA

IDE 0
ide_drive_t

special special_t include/linux/ide.h

==================== include/linux/ide.h 268 277 ====================
268 typedef union {

269 unsigned all : 8; /* all of the bits together */

270 struct {

271 unsigned set_geometry : 1; /* respecify drive geometry */

272 unsigned recalibrate : 1; /* seek to cyl 0 */

273 unsigned set_multmode : 1; /* set multmode count */

274 unsigned set_tune : 1; /* tune interface for drive */

275 unsigned reserved : 4; /* unused */

276 } b;

277 } special_t;

ide_drive_t
0

1179 IDE

execute_drive_cmd()
ide_driver_t do_request

DRIVER include/linux/ide.h

==================== include/linux/ide.h 620 620 ====================
620 #define DRIVER(drive) ((ide_driver_t *)((drive)­>driver))

ide_drive_t driver ide_driver_t
IDE

idedisk_driver ide_cdrom_driver idefloppy_driver IDE
idetape_driver file_operations

include/linux/ide.h

==================== include/linux/ide.h 599 618 ====================
599 typedef struct ide_driver_s {

600 const char *name;

601 const char *version;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1138

602 byte media;

603 unsigned busy : 1;

604 unsigned supports_dma : 1;

605 unsigned supports_dsc_overlap : 1;

606 ide_cleanup_proc *cleanup;

607 ide_do_request_proc *do_request;

608 ide_end_request_proc *end_request;

609 ide_ioctl_proc *ioctl;

610 ide_open_proc *open;

611 ide_release_proc *release;

612 ide_check_media_change_proc *media_change;

613 ide_revalidate_proc *revalidate;

614 ide_pre_reset_proc *pre_reset;

615 ide_capacity_proc *capacity;

616 ide_special_proc *special;

617 ide_proc_entry_t *proc;

618 } ide_driver_t;

idedisk_driver drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 711 733 ====================
711 /*

712 * IDE subdriver functions, registered with ide.c

713 */

714 static ide_driver_t idedisk_driver = {

715 "ide­disk", /* name */

716 IDEDISK_VERSION, /* version */

717 ide_disk, /* media */

718 0, /* busy */

719 1, /* supports_dma */

720 0, /* supports_dsc_overlap */

721 NULL, /* cleanup */

722 do_rw_disk, /* do_request */

723 NULL, /* end_request */

724 NULL, /* ioctl */

725 idedisk_open, /* open */

726 idedisk_release, /* release */

727 idedisk_media_change, /* media_change */

728 idedisk_revalidate, /* revalidate */

729 idedisk_pre_reset, /* pre_reset */

730 idedisk_capacity, /* capacity */

731 idedisk_special, /* special */

732 idedisk_proc /* proc */

733 };

do_request do_rw_disk() drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 377 422 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1139

[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()>do_rw_disk()]
377 /*

378 * do_rw_disk() issues READ and WRITE commands to a disk,

379 * using LBA if supported, or CHS otherwise, to address sectors.

380 * It also takes care of issuing special DRIVE_CMDs.

381 */

382 static ide_startstop_t do_rw_disk (ide_drive_t *drive, struct request *rq, unsigned long block)

383 {

384 if (IDE_CONTROL_REG)

385 OUT_BYTE(drive­>ctl,IDE_CONTROL_REG);

386 OUT_BYTE(rq­>nr_sectors,IDE_NSECTOR_REG);

387 #ifdef CONFIG_BLK_DEV_PDC4030

388 if (drive­>select.b.lba || IS_PDC4030_DRIVE) {

389 #else /* !CONFIG_BLK_DEV_PDC4030 */

390 if (drive­>select.b.lba) {

391 #endif /* CONFIG_BLK_DEV_PDC4030 */

392 #ifdef DEBUG

393 printk("%s: %sing: LBAsect=%ld, sectors=%ld, buffer=0x%08lx\n",

394 drive­>name, (rq­>cmd==READ)?"read":"writ",

395 block, rq­>nr_sectors, (unsigned long) rq­>buffer);

396 #endif

397 OUT_BYTE(block,IDE_SECTOR_REG);

398 OUT_BYTE(block>>=8,IDE_LCYL_REG);

399 OUT_BYTE(block>>=8,IDE_HCYL_REG);

400 OUT_BYTE(((block>>8)&0x0f)|drive­>select.all,IDE_SELECT_REG);

401 } else {

402 unsigned int sect,head,cyl,track;

403 track = block / drive­>sect;

404 sect = block % drive­>sect + 1;

405 OUT_BYTE(sect,IDE_SECTOR_REG);

406 head = track % drive­>head;

407 cyl = track / drive­>head;

408 OUT_BYTE(cyl,IDE_LCYL_REG);

409 OUT_BYTE(cyl>>8,IDE_HCYL_REG);

410 OUT_BYTE(head|drive­>select.all,IDE_SELECT_REG);

411 #ifdef DEBUG

412 printk("%s: %sing: CHS=%d/%d/%d, sectors=%ld, buffer=0x%08lx\n",

413 drive­>name, (rq­>cmd==READ)?"read":"writ", cyl,

414 head, sect, rq­>nr_sectors, (unsigned long) rq­>buffer);

415 #endif

416 }

417 #ifdef CONFIG_BLK_DEV_PDC4030

418 if (IS_PDC4030_DRIVE) {

419 extern ide_startstop_t do_pdc4030_io(ide_drive_t *, struct request *);

420 return do_pdc4030_io (drive, rq);

421 }

422 #endif /* CONFIG_BLK_DEV_PDC4030 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1140

IDE_CONTROL_REG include/linux/ide.h

==================== include/linux/ide.h 126 126 ====================
126 #define IDE_CONTROL_REG (HWIF(drive)­>io_ports[IDE_CONTROL_OFFSET])

I/O ide_do_request() 1336
SELECT_INTERRUPT bit1 0 IDE

386
LBA 390 CHS 401 CHS

403 404 406 407

==================== drivers/ide/ide­disk.c 423 431 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()>do_rw_disk()]
423 if (rq­>cmd == READ) {

424 #ifdef CONFIG_BLK_DEV_IDEDMA

425 if (drive­>using_dma && !(HWIF(drive)­>dmaproc(ide_dma_read, drive)))

426 return ide_started;

427 #endif /* CONFIG_BLK_DEV_IDEDMA */

428 ide_set_handler(drive, &read_intr, WAIT_CMD, NULL);

429 OUT_BYTE(drive­>mult_count ? WIN_MULTREAD : WIN_READ, IDE_COMMAND_REG);

430 return ide_started;

431 }

I/O CPU I/O
I/O CPU I/O ”

DMA CPU
CPU DMA

CPU
CPU CPU

CPU
DMA I/O CPU DMA

CPU DMA CPU poll
CPU 4 CPU

Linux 3
DMA I/O DMA

DMA CONFIG_BLK_DEV_IDEDMA
425 426 DMA I/O

CPU
read_intr() ide_set_handler() drivers/ide/ide.c

==================== drivers/ide/ide.c 525 548 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1141

>ide_do_request()>start_request>do_rw_disk()>ide_set_handler()]
525 /*

526 * This should get invoked any time we exit the driver to

527 * wait for an interrupt response from a drive. handler() points

528 * at the appropriate code to handle the next interrupt, and a

529 * timer is started to prevent us from waiting forever in case

530 * something goes wrong (see the ide_timer_expiry() handler later on).

531 */

532 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,

533 unsigned int timeout, ide_expiry_t *expiry)

534 {

535 unsigned long flags;

536 ide_hwgroup_t *hwgroup = HWGROUP(drive);

537

538 spin_lock_irqsave(&io_request_lock, flags);

539 if (hwgroup­>handler != NULL) {

540 printk("%s: ide_set_handler: handler not null; old=%p, new=%p\n",

541 drive­>name, hwgroup­>handler, handler);

542 }

543 hwgroup­>handler = handler;

544 hwgroup­>expiry = expiry;

545 hwgroup­>timer.expires = jiffies + timeout;

546 add_timer(&hwgroup­>timer);

547 spin_unlock_irqrestore(&io_request_lock, flags);

548 }

NULL
ide_hwgroup_t

ide_hwgroup_t

CPU
429 CPU

CPU
ide_drive_t mult_count 0 WIN_READ

WIN_MULTREAD
386 IDE

mult_count 430
ide_started CPU

read_intr()

==================== drivers/ide/ide­disk.c 432 476 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()>do_rw_disk()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1142

432 if (rq­>cmd == WRITE) {

433 ide_startstop_t startstop;

434 #ifdef CONFIG_BLK_DEV_IDEDMA

435 if (drive­>using_dma && !(HWIF(drive)­>dmaproc(ide_dma_write, drive)))

436 return ide_started;

437 #endif /* CONFIG_BLK_DEV_IDEDMA */

438 OUT_BYTE(drive­>mult_count ? WIN_MULTWRITE : WIN_WRITE, IDE_COMMAND_REG);

439 if (ide_wait_stat(&startstop, drive, DATA_READY, drive­>bad_wstat, WAIT_DRQ)) {

440 printk(KERN_ERR "%s: no DRQ after issuing %s\n", drive­>name,

441 drive­>mult_count ? "MULTWRITE" : "WRITE");

442 return startstop;

443 }

444 if (!drive­>unmask)

445 __cli(); /* local CPU only */

446 if (drive­>mult_count) {

447 ide_hwgroup_t *hwgroup = HWGROUP(drive);

448 /*

449 * Ugh.. this part looks ugly because we MUST set up

450 * the interrupt handler before outputting the first block

451 * of data to be written. If we hit an error (corrupted buffer list)

452 * in ide_multwrite(), then we need to remove the handler/timer

453 * before returning. Fortunately, this NEVER happens (right?).

454 *

455 * Except when you get an error it seems...

456 */

457 hwgroup­>wrq = *rq; /* scratchpad */

458 ide_set_handler (drive, &multwrite_intr, WAIT_CMD, NULL);

459 if (ide_multwrite(drive, drive­>mult_count)) {

460 unsigned long flags;

461 spin_lock_irqsave(&io_request_lock, flags);

462 hwgroup­>handler = NULL;

463 del_timer(&hwgroup­>timer);

464 spin_unlock_irqrestore(&io_request_lock, flags);

465 return ide_stopped;

466 }

467 } else {

468 ide_set_handler (drive, &write_intr, WAIT_CMD, NULL);

469 idedisk_output_data(drive, rq­>buffer, SECTOR_WORDS);

470 }

471 return ide_started;

472 }

473 printk(KERN_ERR "%s: bad command: %d\n", drive­>name, rq­>cmd);

474 ide_end_request(0, HWGROUP(drive));

475 return ide_stopped;

476 }

DMA
WIN_WRITE WIN_MULTWRITE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1143

ide_wait_stat() 400
I/O bh

DRQ 1 CPU
447 466

write_intr()
idedisk_output_data() drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 79 87 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()>do_rw_disk()>idedisk_output_data()]
79 static inline void idedisk_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)

80 {

81 if (drive­>bswap) {

82 idedisk_bswap_data(buffer, wcount);

83 ide_output_data(drive, buffer, wcount);

84 idedisk_bswap_data(buffer, wcount);

85 } else

86 ide_output_data(drive, buffer, wcount);

87 }

ide_drive_t
buffer

SECTOR_WORDS 16

ide_output_data()
CPU big_ending little_ending 16 32

CPU

ide_output_data() drivers/ide/ide.c

==================== drivers/ide/ide.c 405 436 ====================
[run_task_queue()>__run_task_queue()>generic_unplug_device()>__generic_unplug_device()>do_ide_request()
>ide_do_request()>start_request()>do_rw_disk()>idedisk_output_data()>ide_output_data()]
405 /*

406 * This is used for most PIO data transfers *to* the IDE interface

407 */

408 void ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)

409 {

410 byte io_32bit = drive­>io_32bit;

411

412 if (io_32bit) {

413 #if SUPPORT_VLB_SYNC

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1144

414 if (io_32bit & 2) {

415 unsigned long flags;

416 __save_flags(flags); /* local CPU only */

417 __cli(); /* local CPU only */

418 do_vlb_sync(IDE_NSECTOR_REG);

419 outsl(IDE_DATA_REG, buffer, wcount);

420 __restore_flags(flags); /* local CPU only */

421 } else

422 #endif /* SUPPORT_VLB_SYNC */

423 outsl(IDE_DATA_REG, buffer, wcount);

424 } else {

425 #if SUPPORT_SLOW_DATA_PORTS

426 if (drive­>slow) {

427 unsigned short *ptr = (unsigned short *) buffer;

428 while (wcount­­) {

429 outw_p(*ptr++, IDE_DATA_REG);

430 outw_p(*ptr++, IDE_DATA_REG);

431 }

432 } else

433 #endif /* SUPPORT_SLOW_DATA_PORTS */

434 outsw(IDE_DATA_REG, buffer, wcount<<1);

435 }

436 }

IDE 16
OUTS IDE 32 IDE

434

CPU write_intr() ide_started
471
start_request() 1189 special_all

0 do_special()
0 special_all 0 do_special()

drivers/ide/ide.c
I/O

CPU IDE
hwif_init() init_irq() request_irq() IDE

ide_intr() CPU 3 ide_intr()
drivers/ide/ide.c

==================== drivers/ide/ide.c 1524 1626 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()]
1524 /*

1525 * entry point for all interrupts, caller does __cli() for us

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1145

1526 */

1527 void ide_intr (int irq, void *dev_id, struct pt_regs *regs)

1528 {

1529 unsigned long flags;

1530 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;

1531 ide_hwif_t *hwif;

1532 ide_drive_t *drive;

1533 ide_handler_t *handler;

1534 ide_startstop_t startstop;

1535

1536 spin_lock_irqsave(&io_request_lock, flags);

1537 hwif = hwgroup­>hwif;

1538

1539 if (!ide_ack_intr(hwif)) {

1540 spin_unlock_irqrestore(&io_request_lock, flags);

1541 return;

1542 }

1543

1544 if ((handler = hwgroup­>handler) == NULL || hwgroup­>poll_timeout != 0) {

1545 /*

1546 * Not expecting an interrupt from this drive.

1547 * That means this could be:

1548 * (1) an interrupt from another PCI device

1549 * sharing the same PCI INT# as us.

1550 * or (2) a drive just entered sleep or standby mode,

1551 * and is interrupting to let us know.

1552 * or (3) a spurious interrupt of unknown origin.

1553 *

1554 * For PCI, we cannot tell the difference,

1555 * so in that case we just ignore it and hope it goes away.

1556 */

1557 #ifdef CONFIG_BLK_DEV_IDEPCI

1558 if (IDE_PCI_DEVID_EQ(hwif­>pci_devid, IDE_PCI_DEVID_NULL))

1559 #endif /* CONFIG_BLK_DEV_IDEPCI */

1560 {

1561 /*

1562 * Probably not a shared PCI interrupt,

1563 * so we can safely try to do something about it:

1564 */

1565 unexpected_intr(irq, hwgroup);

1566 #ifdef CONFIG_BLK_DEV_IDEPCI

1567 } else {

1568 /*

1569 * Whack the status register, just in case we have a leftover pending IRQ.

1570 */

1571 (void) IN_BYTE(hwif­>io_ports[IDE_STATUS_OFFSET]);

1572 #endif /* CONFIG_BLK_DEV_IDEPCI */

1573 }

1574 spin_unlock_irqrestore(&io_request_lock, flags);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1146

1575 return;

1576 }

1577 drive = hwgroup­>drive;

1578 if (!drive) {

1579 /*

1580 * This should NEVER happen, and there isn't much we could do about it here.

1581 */

1582 spin_unlock_irqrestore(&io_request_lock, flags);

1583 return;

1584 }

1585 if (!drive_is_ready(drive)) {

1586 /*

1587 * This happens regularly when we share a PCI IRQ with another device.

1588 * Unfortunately, it can also happen with some buggy drives that trigger

1589 * the IRQ before their status register is up to date. Hopefully we have

1590 * enough advance overhead that the latter isn't a problem.

1591 */

1592 spin_unlock_irqrestore(&io_request_lock, flags);

1593 return;

1594 }

1595 if (!hwgroup­>busy) {

1596 hwgroup­>busy = 1; /* paranoia */

1597 printk("%s: ide_intr: hwgroup­>busy was 0 ??\n", drive­>name);

1598 }

1599 hwgroup­>handler = NULL;

1600 del_timer(&hwgroup­>timer);

1601 spin_unlock(&io_request_lock);

1602

1603 if (drive­>unmask)

1604 ide__sti(); /* local CPU only */

1605 startstop = handler(drive); /* service this interrupt, may set handler for next interrupt */

1606 spin_lock_irq(&io_request_lock);

1607

1608 /*

1609 * Note that handler() may have set things up for another

1610 * interrupt to occur soon, but it cannot happen until

1611 * we exit from this routine, because it will be the

1612 * same irq as is currently being serviced here, and Linux

1613 * won't allow another of the same (on any CPU) until we return.

1614 */

1615 set_recovery_timer(HWIF(drive));

1616 drive­>service_time = jiffies ­ drive­>service_start;

1617 if (startstop == ide_stopped) {

1618 if (hwgroup­>handler == NULL) { /* paranoia */

1619 hwgroup­>busy = 0;

1620 ide_do_request(hwgroup, hwif­>irq);

1621 } else {

1622 printk("%s: ide_intr: huh? expected NULL handler on exit\n", drive­>name);

1623 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1147

1624 }

1625 spin_unlock_irqrestore(&io_request_lock, flags);

1626 }

void
3 dev_id ide_hwgroup_t

IDE 1537 i386 CPU
ide_ack_intr() include/asm­i386/ide.h

==================== include/asm­i386/ide.h 109 109 ====================
109 #define ide_ack_intr(hwif) (1)

do_rw_disk() read_intr()
hwgroup­>handler 0 1544

1578 hwgroup­>drive 0
1585

hwgroup­>handler handler 1599 0

del_timer() 1600
1605 read_intr()

drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 134 182 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()]
134 /*

135 * read_intr() is the handler for disk read/multread interrupts

136 */

137 static ide_startstop_t read_intr (ide_drive_t *drive)

138 {

139 byte stat;

140 int i;

141 unsigned int msect, nsect;

142 struct request *rq;

143

144 /* new way for dealing with premature shared PCI interrupts */

145 if (!OK_STAT(stat=GET_STAT(),DATA_READY,BAD_R_STAT)) {

146 if (stat & (ERR_STAT|DRQ_STAT)) {

147 return ide_error(drive, "read_intr", stat);

148 }

149 /* no data yet, so wait for another interrupt */

150 ide_set_handler(drive, &read_intr, WAIT_CMD, NULL);

151 return ide_started;

152 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1148

153 msect = drive­>mult_count;

154

155 read_next:

156 rq = HWGROUP(drive)­>rq;

157 if (msect) {

158 if ((nsect = rq­>current_nr_sectors) > msect)

159 nsect = msect;

160 msect ­= nsect;

161 } else

162 nsect = 1;

163 idedisk_input_data(drive, rq­>buffer, nsect * SECTOR_WORDS);

164 #ifdef DEBUG

165 printk("%s: read: sectors(%ld­%ld), buffer=0x%08lx, remaining=%ld\n",

166 drive­>name, rq­>sector, rq­>sector+nsect­1,

167 (unsigned long) rq­>buffer+(nsect<<9), rq­>nr_sectors­nsect);

168 #endif

169 rq­>sector += nsect;

170 rq­>buffer += nsect<<9;

171 rq­>errors = 0;

172 i = (rq­>nr_sectors ­= nsect);

173 if (((long)(rq­>current_nr_sectors ­= nsect)) <= 0)

174 ide_end_request(1, HWGROUP(drive));

175 if (i > 0) {

176 if (msect)

177 goto read_next;

178 ide_set_handler (drive, &read_intr, WAIT_CMD, NULL);

179 return ide_started;

180 }

181 return ide_stopped;

182 }

OK_STAT() GET_STAT() DATA_READY
BAD_R_STAT DATA_READY 1 BAD_R_STAT 0

150 read_intr()

ide_hwgroup_t
IDE IDE ide_hwgroup_t

rq request HWGROUP()
drive­>mult_count

rq­>current_nr_sectors
nsect

idedisk_input_data() drivers/ide/ide­disk.c
idedisk_output_data()

buffer sector nr_sectors
current_nr_sectors 169 170 172 173

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1149

172 sector nr_sectors
current_nr_sectors

nsect

request
DMA DMA

Intelegent DMA

(1)

ide_end_request()
173 174 177

(2)

178 179
ide_end_request() 173 174

(3)
181

ide_end_request() 173 174
ide_end_request()

drivers/ide/ide.c

==================== drivers/ide/ide.c 505 523 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()>ide_end_request()]
505 /*

506 * This is our end_request replacement function.

507 */

508 void ide_end_request (byte uptodate, ide_hwgroup_t *hwgroup)

509 {

510 struct request *rq;

511 unsigned long flags;

512

513 spin_lock_irqsave(&io_request_lock, flags);

514 rq = hwgroup­>rq;

515

516 if (!end_that_request_first(rq, uptodate, hwgroup­>drive­>name)) {

517 add_blkdev_randomness(MAJOR(rq­>rq_dev));

518 blkdev_dequeue_request(rq);

519 hwgroup­>rq = NULL;

520 end_that_request_last(rq);

521 }

522 spin_unlock_irqrestore(&io_request_lock, flags);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1150

523 }

end_that_request_first() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 1099 1137 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()>ide_end_request()>end_that_request_first()]
1099 /*

1100 * First step of what used to be end_request

1101 *

1102 * 0 means continue with end_that_request_last,

1103 * 1 means we are done

1104 */

1105

1106 int end_that_request_first (struct request *req, int uptodate, char *name)

1107 {

1108 struct buffer_head * bh;

1109 int nsect;

1110

1111 req­>errors = 0;

1112 if (!uptodate)

1113 printk("end_request: I/O error, dev %s (%s), sector %lu\n",

1114 kdevname(req­>rq_dev), name, req­>sector);

1115

1116 if ((bh = req­>bh) != NULL) {

1117 nsect = bh­>b_size >> 9;

1118 req­>bh = bh­>b_reqnext;

1119 bh­>b_reqnext = NULL;

1120 bh­>b_end_io(bh, uptodate);

1121 if ((bh = req­>bh) != NULL) {

1122 req­>hard_sector += nsect;

1123 req­>hard_nr_sectors ­= nsect;

1124 req­>sector = req­>hard_sector;

1125 req­>nr_sectors = req­>hard_nr_sectors;

1126

1127 req­>current_nr_sectors = bh­>b_size >> 9;

1128 if (req­>nr_sectors < req­>current_nr_sectors) {

1129 req­>nr_sectors = req­>current_nr_sectors;

1130 printk("end_request: buffer­list destroyed\n");

1131 }

1132 req­>buffer = bh­>b_data;

1133 return 1;

1134 }

1135 }

1136 return 0;

1137 }

1118
b_end_io

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1151

__block_prepare_write()
getblk() init_buffer()

end_buffer_io_sync() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 978 985 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()>ide_end_request()>end_that_request_first()
>end_buffer_io_sync()]
978 /*

979 * Default IO end handler, used by "ll_rw_block()".

980 */

981 static void end_buffer_io_sync(struct buffer_head *bh, int uptodate)

982 {

983 mark_buffer_uptodate(bh, uptodate);

984 unlock_buffer(bh);

985 }

BH_Uptodate 1
unlock_buffer() focks.h

==================== include/linux/locks.h 29 35 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()>ide_end_request()>end_that_request_first()
>end_buffer_io_sync()>unlock_buffer()]
29 extern inline void unlock_buffer(struct buffer_head *bh)

30 {

31 clear_bit(BH_Lock, &bh­>b_state);

32 smp_mb__after_clear_bit();

33 if (waitqueue_active(&bh­>b_wait))

34 wake_up(&bh­>b_wait);

35 }

BH_lock
wait_on_buffer()

block_write() block_read() ll_rw_block()
wait_on_buffer() wait_on_buffer()

end_that_request_first()
request 1

0
ide_end_request() end_that_request_first() 1

read_intr()
0

blkdev_dequeue_request() request
IDE NULL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1152

end_that_request_last()
add_blkdev_randomness()

end_that_request_last() drivers/block/ll_rw_blk.c

==================== drivers/block/ll_rw_blk.c 1139 1149 ====================
[do_IRQ()>handle_IRQ_event()>ide_intr()>read_intr()>ide_end_request()>end_that_request_last()]
1139 void end_that_request_last(struct request *req)

1140 {

1141 if (req­>e) {

1142 printk("end_that_request_last called with non­dequeued req\n");

1143 BUG();

1144 }

1145 if (req­>sem != NULL)

1146 up(req­>sem);

1147

1148 blkdev_release_request(req);

1149 }

request 1148 req­>sem up()
ioctl() IDE

up()
read_intr() 175

ide_end_request() end_that_request_first()
msect 0 read_next 155

ide_set_handler()

CPU read_intr() ide_intr() ide_intr() 1606
ide_started

ide_intr()
ide_stopped request

set_recovery_timer()
ide_hwif_t last_time

service_time
read_intr() ide_stopped ide_do_request() IDE

IDE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1153

I/O DMA IDE
DMA DMA

CONFIG_BLK_DEV_IDEDMA
DMA

PC DMA “DMA DMA
DMA DMA CPU

”CPU CPU
CPU

”

CPU DMA PC
DMA PCI PC DMA

PCI
PCI

PCI PCI

IDE
DMA PC

DMA DMA DMA Bus Master DMA BMDMA
BMDMA PCI DMA “DMA

BMDMA IDE DMA IDE
I/O IDE resource[4]

IDE DMA
”DMA “DMA DMA

IDE IDE
BMIDTPX DMA IDE

DMA DMA

DMA IDE
do_rw_disk()

drivers/ide/ide­disk.c

==================== drivers/ide/ide­disk.c 377 383 ====================
377 /*

378 * do_rw_disk() issues READ and WRITE commands to a disk,

379 * using LBA if supported, or CHS otherwise, to address sectors.

380 * It also takes care of issuing special DRIVE_CMDs.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1154

381 */

382 static ide_startstop_t do_rw_disk (ide_drive_t *drive, struct request *rq, unsigned long block)

383 {

.

==================== drivers/ide/ide­disk.c 423 437 ====================
423 if (rq­>cmd == READ) {

424 #ifdef CONFIG_BLK_DEV_IDEDMA

425 if (drive­>using_dma && !(HWIF(drive)­>dmaproc(ide_dma_read, drive)))

426 return ide_started;

427 #endif /* CONFIG_BLK_DEV_IDEDMA */

428 ide_set_handler(drive, &read_intr, WAIT_CMD, NULL);

429 OUT_BYTE(drive­>mult_count ? WIN_MULTREAD : WIN_READ, IDE_COMMAND_REG);

430 return ide_started;

431 }

432 if (rq­>cmd == WRITE) {

433 ide_startstop_t startstop;

434 #ifdef CONFIG_BLK_DEV_IDEDMA

435 if (drive­>using_dma && !(HWIF(drive)­>dmaproc(ide_dma_write, drive)))

436 return ide_started;

437 #endif /* CONFIG_BLK_DEV_IDEDMA */

.

==================== drivers/ide/ide­disk.c 476 476 ====================
476 }

423 IDE
I/O

DMA I/O
DMA IDE ide_hwif_t dmaproc

func ide_dma_read idc_dma_write
ide_dmaproc() drivers/ide/ide­dma.c

==================== drivers/ide/ide­dma.c 447 543 ====================
[do_rw_disk()>ide_dmaproc()]
447 /*

448 * ide_dmaproc() initiates/aborts DMA read/write operations on a drive.

449 *

450 * The caller is assumed to have selected the drive and programmed the drive's

451 * sector address using CHS or LBA. All that remains is to prepare for DMA

452 * and then issue the actual read/write DMA/PIO command to the drive.

453 *

454 * For ATAPI devices, we just prepare for DMA and return. The caller should

455 * then issue the packet command to the drive and call us again with

456 * ide_dma_begin afterwards.

457 *

458 * Returns 0 if all went well.

459 * Returns 1 if DMA read/write could not be started, in which case

460 * the caller should revert to PIO for the current request.

461 * May also be invoked from trm290.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1155

462 */

463 int ide_dmaproc (ide_dma_action_t func, ide_drive_t *drive)

464 {

465 ide_hwif_t *hwif = HWIF(drive);

466 unsigned long dma_base = hwif­>dma_base;

467 byte unit = (drive­>select.b.unit & 0x01);

468 unsigned int count, reading = 0;

469 byte dma_stat;

470

471 switch (func) {

472 case ide_dma_off:

473 printk("%s: DMA disabled\n", drive­>name);

474 case ide_dma_off_quietly:

475 outb(inb(dma_base+2) & ~(1<<(5+unit)), dma_base+2);

476 case ide_dma_on:

477 drive­>using_dma = (func == ide_dma_on);

478 if (drive­>using_dma)

479 outb(inb(dma_base+2)|(1<<(5+unit)), dma_base+2);

480 return 0;

481 case ide_dma_check:

482 return config_drive_for_dma (drive);

483 case ide_dma_read:

484 reading = 1 << 3;

485 case ide_dma_write:

486 SELECT_READ_WRITE(hwif,drive,func);

487 if (!(count = ide_build_dmatable(drive, func)))

488 return 1; /* try PIO instead of DMA */

489 outl(hwif­>dmatable_dma, dma_base + 4); /* PRD table */

490 outb(reading, dma_base); /* specify r/w */

491 outb(inb(dma_base+2)|6, dma_base+2); /* clear INTR & ERROR flags */

492 drive­>waiting_for_dma = 1;

493 if (drive­>media != ide_disk)

494 return 0;

495 ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, dma_timer_expiry); /* issue cmd to

drive */

496 OUT_BYTE(reading ? WIN_READDMA : WIN_WRITEDMA, IDE_COMMAND_REG);

497 case ide_dma_begin:

498 /* Note that this is done *after* the cmd has

499 * been issued to the drive, as per the BM­IDE spec.

500 * The Promise Ultra33 doesn't work correctly when

501 * we do this part before issuing the drive cmd.

502 */

503 outb(inb(dma_base)|1, dma_base); /* start DMA */

504 return 0;

505 case ide_dma_end: /* returns 1 on error, 0 otherwise */

506 drive­>waiting_for_dma = 0;

507 outb(inb(dma_base)&~1, dma_base); /* stop DMA */

508 dma_stat = inb(dma_base+2); /* get DMA status */

509 outb(dma_stat|6, dma_base+2); /* clear the INTR & ERROR bits */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1156

510 ide_destroy_dmatable(drive); /* purge DMA mappings */

511 return (dma_stat & 7) != 4; /* verify good DMA status */

512 case ide_dma_test_irq: /* returns 1 if dma irq issued, 0 otherwise */

513 dma_stat = inb(dma_base+2);

514 #if 0 /* do not set unless you know what you are doing */

515 if (dma_stat & 4) {

516 byte stat = GET_STAT();

517 outb(dma_base+2, dma_stat & 0xE4);

518 }

519 #endif

520 return (dma_stat & 4) == 4; /* return 1 if INTR asserted */

521 case ide_dma_bad_drive:

522 case ide_dma_good_drive:

523 return check_drive_lists(drive, (func == ide_dma_good_drive));

524 case ide_dma_verbose:

525 return report_drive_dmaing(drive);

526 case ide_dma_timeout:

527 #ifdef CONFIG_BLK_DEV_IDEDMA_TIMEOUT

528 /*

529 * Have to issue an abort and requeue the request

530 * DMA engine got turned off by a goofy ASIC, and

531 * we have to clean up the mess, and here is as good

532 * as any. Do it globally for all chipsets.

533 */

534 #endif /* CONFIG_BLK_DEV_IDEDMA_TIMEOUT */

535 case ide_dma_retune:

536 case ide_dma_lostirq:

537 printk("ide_dmaproc: chipset supported %s func only: %d\n", ide_dmafunc_verbose(func),

func);

538 return 1;

539 default:

540 printk("ide_dmaproc: unsupported %s func: %d\n", ide_dmafunc_verbose(func), func);

541 return 1;

542 }

543 }

ide_dma_read ide_dma_write 484 break return
reading 0x8 0x0 IDE BMDMA

496 break return ide_dma_read
ide_dma_write ide_dma_begin SELECT_READ_WRITE
include/linux/ide.h

==================== include/linux/ide.h 203 207 ====================
203 #define SELECT_READ_WRITE(hwif,drive,func) \

204 { \

205 if (hwif­>rwproc) \

206 hwif­>rwproc(drive,func); \

207 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1157

IDE IDE
rwproc 0

DMA ide_build_dmatable() DMA
drivers/ide/ide­dma.c

==================== drivers/ide/ide­dma.c 248 309 ====================
[do_rw_disk()>ide_dmaproc()>ide_build_dmatable()]
248 int ide_build_dmatable (ide_drive_t *drive, ide_dma_action_t func)

249 {

250 unsigned int *table = HWIF(drive)­>dmatable_cpu;

251 #ifdef CONFIG_BLK_DEV_TRM290

252 unsigned int is_trm290_chipset = (HWIF(drive)­>chipset == ide_trm290);

253 #else

254 const int is_trm290_chipset = 0;

255 #endif

256 unsigned int count = 0;

257 int i;

258 struct scatterlist *sg;

259

260 HWIF(drive)­>sg_nents = i = ide_build_sglist(HWIF(drive), HWGROUP(drive)­>rq);

261

262 sg = HWIF(drive)­>sg_table;

263 while (i && sg_dma_len(sg)) {

264 u32 cur_addr;

265 u32 cur_len;

266

267 cur_addr = sg_dma_address(sg);

268 cur_len = sg_dma_len(sg);

269

270 /*

271 * Fill in the dma table, without crossing any 64kB boundaries.

272 * Most hardware requires 16­bit alignment of all blocks,

273 * but the trm290 requires 32­bit alignment.

274 */

275

276 while (cur_len) {

277 if (++count >= PRD_ENTRIES) {

278 printk("%s: DMA table too small\n", drive­>name);

279 pci_unmap_sg(HWIF(drive)­>pci_dev,

280 HWIF(drive)­>sg_table,

281 HWIF(drive)­>sg_nents,

282 HWIF(drive)­>sg_dma_direction);

283 return 0; /* revert to PIO for this request */

284 } else {

285 u32 xcount, bcount = 0x10000 ­ (cur_addr & 0xffff);

286

287 if (bcount > cur_len)

288 bcount = cur_len;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1158

289 *table++ = cpu_to_le32(cur_addr);

290 xcount = bcount & 0xffff;

291 if (is_trm290_chipset)

292 xcount = ((xcount >> 2) ­ 1) << 16;

293 *table++ = cpu_to_le32(xcount);

294 cur_addr += bcount;

295 cur_len ­= bcount;

296 }

297 }

298

299 sg++;

300 i­­;

301 }

302

303 if (!count)

304 printk("%s: empty DMA table?\n", drive­>name);

305 else if (!is_trm290_chipset)

306 *­­table |= cpu_to_le32(0x80000000);

307

308 return count;

309 }

ide_hwif_t dmatable_cpu dmatable_dma
DMA dmatable_cpu

CPU DMA dmatable_dma
IDE DMA DMA ide_hwif_t

sg_table scatterlist scatterlist DMA
address length

IDE scatterlist
I/O buffer_head buffer_head

scatterlist DMA
include/asm­i386/scatterlist.h

==================== include/asm­i386/scatterlist.h 4 9 ====================
4 struct scatterlist {

5 char * address; /* Location data is to be transferred to */

6 char * alt_address; /* Location of actual if address is a

7 * dma indirect buffer. NULL otherwise */

8 unsigned int length;

9 };

ide_build_sglist()
drivers/ide/ide­dma.c

==================== drivers/ide/ide­dma.c 214 241 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1159

214 static int ide_build_sglist (ide_hwif_t *hwif, struct request *rq)

215 {

216 struct buffer_head *bh;

217 struct scatterlist *sg = hwif­>sg_table;

218 int nents = 0;

219

220 if (rq­>cmd == READ)

221 hwif­>sg_dma_direction = PCI_DMA_FROMDEVICE;

222 else

223 hwif­>sg_dma_direction = PCI_DMA_TODEVICE;

224 bh = rq­>bh;

225 do {

226 unsigned char *virt_addr = bh­>b_data;

227 unsigned int size = bh­>b_size;

228

229 while ((bh = bh­>b_reqnext) != NULL) {

230 if ((virt_addr + size) != (unsigned char *) bh­>b_data)

231 break;

232 size += bh­>b_size;

233 }

234 memset(&sg[nents], 0, sizeof(*sg));

235 sg[nents].address = virt_addr;

236 sg[nents].length = size;

237 nents++;

238 } while (bh != NULL);

239

240 return pci_map_sg(hwif­>pci_dev, sg, nents, hwif­>sg_dma_direction);

241 }

pci_map_sg()
nents scatterlist

nents ide_hwif_t sg_nents scatterlist
DMA ide_build_dmatable() 260 DMA

DMA IDE DMA
64KB 32 16 DMA

scatterlist while
64KB DMA

DMA DMA 64KB 64KB
DMA 64KB 16KB

48KB 285 DMA 32
DMA Physical Region Descriptor

289 293 “Little
Ending 267 sg_dma_address()

294 sg_dma_address() include/asm­i386/pci.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1160

==================== include/asm­i386/pci.h 164 165 ====================
164 #define sg_dma_address(sg) (virt_to_bus((sg)­>address))

165 #define sg_dma_len(sg) ((sg)­>length)

virt_to_bus virt_to_phys
include/asm­i386/io.h

==================== include/asm­i386/io.h 157 161 ====================
157 /*

158 * IO bus memory addresses are also 1:1 with the physical address

159 */

160 #define virt_to_bus virt_to_phys

161 #define bus_to_virt phys_to_virt

DMA IDE
PRD_ENTRIES 256 256 DMA

DMA ide_build_dmatable() 0 ide_dmaproc() 1 488
do_rw_disk() 425 435 ide_dmaproc() 1 I/O

ide_dmaproc() 487 DMA DMA

==================== drivers/ide/ide­dma.c 489 504 ====================
[do_rw_disk()>ide_dmaproc()]
489 outl(hwif­>dmatable_dma, dma_base + 4); /* PRD table */

490 outb(reading, dma_base); /* specify r/w */

491 outb(inb(dma_base+2)|6, dma_base+2); /* clear INTR & ERROR flags */

492 drive­>waiting_for_dma = 1;

493 if (drive­>media != ide_disk)

494 return 0;

495 ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, dma_timer_expiry); /* issue cmd to

drive */

496 OUT_BYTE(reading ? WIN_READDMA : WIN_WRITEDMA, IDE_COMMAND_REG);

497 case ide_dma_begin:

498 /* Note that this is done *after* the cmd has

499 * been issued to the drive, as per the BM­IDE spec.

500 * The Promise Ultra33 doesn't work correctly when

501 * we do this part before issuing the drive cmd.

502 */

503 outb(inb(dma_base)|1, dma_base); /* start DMA */

504 return 0;

DMA hwif­>dmatable_dma 489
490

0 491 IDE DMA 16 8

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1161

ide0 8 ide1 ide_hwif_t dma_base
DMA dma_base 466 dma_base

8 (dma_base+2) 8 (dma_base+4) 32

ide_set_handler() DMA ide_dma_intr()
dma_timer_expiry() ide_set_handler() drivers/ide/ide.c

==================== drivers/ide/ide.c 532 548 ====================
532 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,

533 unsigned int timeout, ide_expiry_t *expiry)

534 {

535 unsigned long flags;

536 ide_hwgroup_t *hwgroup = HWGROUP(drive);

537

538 spin_lock_irqsave(&io_request_lock, flags);

539 if (hwgroup­>handler != NULL) {

540 printk("%s: ide_set_handler: handler not null; old=%p, new=%p\n",

541 drive­>name, hwgroup­>handler, handler);

542 }

543 hwgroup­>handler = handler;

544 hwgroup­>expiry = expiry;

545 hwgroup­>timer.expires = jiffies + timeout;

546 add_timer(&hwgroup­>timer);

547 spin_unlock_irqrestore(&io_request_lock, flags);

548 }

IDE WIN_READDMA WIN_WRITEDMA 496
503 DMA 1 IDE

DMA CPU IDE
DMA DMA DMA

IDE DMA
DMA

CPU CPU DMA ide_dma_intr()
drivers/ide/ide­dma.c

==================== drivers/ide/ide­dma.c 189 212 ====================
189 /*

190 * dma_intr() is the handler for disk read/write DMA interrupts

191 */

192 ide_startstop_t ide_dma_intr (ide_drive_t *drive)

193 {

194 int i;

195 byte stat, dma_stat;

196

197 dma_stat = HWIF(drive)­>dmaproc(ide_dma_end, drive);

198 stat = GET_STAT(); /* get drive status */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1162

199 if (OK_STAT(stat,DRIVE_READY,drive­>bad_wstat|DRQ_STAT)) {

200 if (!dma_stat) {

201 struct request *rq = HWGROUP(drive)­>rq;

202 rq = HWGROUP(drive)­>rq;

203 for (i = rq­>nr_sectors; i > 0;) {

204 i ­= rq­>current_nr_sectors;

205 ide_end_request(1, HWGROUP(drive));

206 }

207 return ide_stopped;

208 }

209 printk("%s: dma_intr: bad DMA status\n", drive­>name);

210 }

211 return ide_error(drive, "dma_intr", stat);

212 }

DMA DMA ide_dma_end
ide_dmaproc()

==================== drivers/ide/ide­dma.c 505 511 ====================
[ide_dma_intr()>ide_dmaproc()]
505 case ide_dma_end: /* returns 1 on error, 0 otherwise */

506 drive­>waiting_for_dma = 0;

507 outb(inb(dma_base)&~1, dma_base); /* stop DMA */

508 dma_stat = inb(dma_base+2); /* get DMA status */

509 outb(dma_stat|6, dma_base+2); /* clear the INTR & ERROR bits */

510 ide_destroy_dmatable(drive); /* purge DMA mappings */

511 return (dma_stat & 7) != 4; /* verify good DMA status */

DMA 0
INTR 0 ide_destroy_dmatable()

drivers/ide/ide­dma.c

==================== drivers/ide/ide­dma.c 311 319 ====================
[ide_dma_intr()>ide_dmaproc()>ide_destroy_dmatable()]
311 /* Teardown mappings after DMA has completed. */

312 void ide_destroy_dmatable (ide_drive_t *drive)

313 {

314 struct pci_dev *dev = HWIF(drive)­>pci_dev;

315 struct scatterlist *sg = HWIF(drive)­>sg_table;

316 int nents = HWIF(drive)­>sg_nents;

317

318 pci_unmap_sg(dev, sg, nents, HWIF(drive)­>sg_dma_direction);

319 }

pci_unmap_sg() DMA DMA
DMA DMA

ide_end_request()
I/O

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1163

DMA I/O ide_end_request()

IDE IDE
CD_ROM

IDE
IDE SCSI SCSI

drivers/scsi
drivers/md raid0.c raid1.c

8.6

/dev/null
PC

Linux

Linux

Ethernet
socket Unix/Linux

CPU

Unix

I/O
TTY TTY

4 0 1 63 63
64 255 192 UART

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1164

CRT
PC

1 1 /dev/mem 2
/dev/kmem 3 ”/dev/null 8 /dev/random

Linux
Documentation/devices.txt

UART VGA

ioctl()

file_operations
/dev/null

/dev/null 1 1

MEM_MAJOR include/linux/major.h

==================== include/linux/major.h 19 19 ====================
19 #define MEM_MAJOR 1

file_operations memory_fops drivers/char/mem.c

==================== drivers/char/mem.c 613 615 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1165

613 static struct file_operations memory_fops = {

614 open: memory_open, /* just a selector for the real open */

615 };

1
memory_fops file_operations memory_open()

drivers/char/mem.c

==================== drivers/char/mem.c 549 584 ====================
549 static int memory_open(struct inode * inode, struct file * filp)

550 {

551 switch (MINOR(inode­>i_rdev)) {

552 case 1:

553 filp­>f_op = &mem_fops;

554 break;

555 case 2:

556 filp­>f_op = &kmem_fops;

557 break;

558 case 3:

559 filp­>f_op = &null_fops;

560 break;

561 #if !defined(__mc68000__)

562 case 4:

563 filp­>f_op = &port_fops;

564 break;

565 #endif

566 case 5:

567 filp­>f_op = &zero_fops;

568 break;

569 case 7:

570 filp­>f_op = &full_fops;

571 break;

572 case 8:

573 filp­>f_op = &random_fops;

574 break;

575 case 9:

576 filp­>f_op = &urandom_fops;

577 break;

578 default:

579 return ­ENXIO;

580 }

581 if (filp­>f_op && filp­>f_op­>open)

582 return filp­>f_op­>open(inode,filp);

583 return 0;

584 }

/dev/null 3 file_operations null_fops
drivers/char/mem.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1166

==================== drivers/char/mem.c 521 525 ====================
521 static struct file_operations null_fops = {

522 llseek: null_lseek,

523 read: read_null,

524 write: write_null,

525 };

open NULL write()
write_null() drivers/char/mem.c

==================== drivers/char/mem.c 344 348 ====================
344 static ssize_t write_null(struct file * file, const char * buf,

345 size_t count, loff_t *ppos)

346 {

347 return count;

348 }

count

read() read_null()

==================== drivers/char/mem.c 338 342 ====================
338 static ssize_t read_null(struct file * file, char * buf,

339 size_t count, loff_t *ppos)

340 {

341 return 0;

342 }

0 0 EOF ­1

8.7

console
TTY

CRT
CRT

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1167

80

16
Unix

PC PC

CPU

Unix

”

Unix/Linux

Linux PC
COM1 COM2 PC Linux

PC PC

Linux

PC web
PC

Unix C
Linux “Shell script Shell

“echo please wait >>
/dev/tty0 Unix

127 ASCII 7 RS232
7 8

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1168

0
RS232

ASCII 8

8 256
8 RS232 8

CJKV
256

7 8

”

(1) ASCII
(2) ISO646
(3) ISO8859
(4) ISO2022 7 GB2312
(5) Unix EUC 8 GB2312 GBK
(6) Unicode
(7) ISO10646

Linux Linux

ASCII 70
7 RS232

10% 7 5
6 7 7 128

94
8

10 IBM 8 EBCDIC

ASCII

7
95

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1169

64
Base64

ASCII ISO ISO646
[] { } \ |

26 æ
80 7 ISO 80

ISO8859 8 ISO8859 10
8 6 ISO8859 6 ISO8859­6

7 ISO8859­7 8 ISO8859­8
8

ISO8859 8

7
7 8

1978
JIS C 6626

1980 GB2312

ISO2022 90
ISO2022­CN

GB2312 ISO2022­JP JIS C 6626 ISO2022­KR
ISO2022 ASCII CJK

7 0x21 0x7E
ISO2022 “Escape designator sequence

ESC 0x1b
ESC Escape

ISO2022
0x0e “SO Shift Out 0x0f “SI Shift

In SO
Escape GB2312 “0x1b 0x24 0x29 0x41”

“<Esc>$)A SI

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1170

64 0x0e 0x0f 0x1b
ASCII GB2312 HZ

RFC 1834 ASCII GB2312 “~{ ASCII
“~} “~}

“~
“~ C “\

Linux ISO2022 GB2312
GB2312 GB2312

Linux ISO2022
“\0

0 ISO2022
0x21 0x7e

^C ^D ^Z 0xff EOF ­1
SI

SO Linux
“/

“/usr/students/classes/ 98 0x2f
“/ path_walk()

Linux Unix 80
Unix

80 Unix
RS232

7 Unix Unix
Unix

EUC Unix 8 EUC
ISO2022 7 ASCII

0 8
1 EUC

4 ASCII 0 ASCII 1
1 2 0x8e 3

0x8f GB2312 GBK 2 3
EUC EUC­CN EUC­JP EUC­KR

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1171

EUC­TW 4 EUC­CN GB2312
“8 ASCII

0 1
0xa1 0xfe 0xff Unix

1
7 0x2f “/ 0xaf

GBK 8
0x81 0xfe 0x40 0x7e 0x80 0xfe

GBK 0 0x40 0x7e

EUC­CN GBK ISO­2022
1 1

ISO2022
EUC

0x5B ASCII “[“

Unicode
“Unicode Consortium

Unicode ISO10646
80 ISO WGZ

Unicodc Consortium ISO
Unicode ISO

ISO10646­1 ISO10646 ISO10646­1:1993 ISO10646­1:2000
1993 2000 Unicode Consortium 1990 Unicode 1.0

1996 1999 2.0 3.0 ISO Unicode Consortium
1990 Unicode Consortium Unicode 1.0

1991 1993 ISO10646­1 Unicode Consortium

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1172

Unicode 1.1 ISO10646 1996 2.0

Unicode Linux

Ken Lunde CJKV Information Processing Tony Graham Unicode: A
Primer

ISO10646 Unicode ISO
Unicode

ISO ISO10646 4 UCS­4
Unicode 2 UCS­2 “a ASCII 0x61

Unicode 0x0061 ISO10646 0x00000061

ISO10646 Unicode
Unicode 2

ISO
Unicode Consortium 1991 ISO 2 UCS­2 ISO10646

”BMP Basic Multilingual Plane Unicode
Unicode Consortium 2 2

0xD800 0xDFFF surrogate 2
4 0x10000 0x10ffff

0xD800
0xDFFF 0xDC00 0xDFFF UCS­2

2

N = 0x10000 + (H ­ 0xd800) × 0x400 + (L ­ 0xdc00)

H 0xd800 0xdbff L 0xdc00
0xdfff

UCS­2 ISO UTF­16
16 BMP Unicode UTF­16

UCS­2
ISO10646 Unicode

Unicode 49194 27786

16
ASCII Unicode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1173

“a Unicode 0x0061 0 0
0x03 ^C 0x04 ^D 0x1b ESC 0x2f /

gcc char unsigned
short Unicode
0x0000 0x00 java java char 16

8 Linux

Unicode Consortium ISO
UTF­8 8 16

UTF­16 Unicode 16 32 4
UTF­8

ISO2022 GB2312 GBK
UTF­8

• 7 ASCII 0x00 0x7F Unicode UTF­8
0

• 7 11 0x80 0x7FF Unicode
UTF­8 110 11 5

10 11 6
• 11 16 0x800 0xFFFF Unicode

UTF­8 1110 16 4
10 16 6 10

16 6
• 16 21 0x10000 0xlFFFFF

Unicode surrogate UTF­8
5 11110 21

10 21 6
0 ASCII 1

1 1
10

UTF­8
(1) ASCII UTF­8

ASCII
(2) 1

UTF­8

0 ASCII 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1174

(3) 0 1 1 0

(4) Unicode
(5) 8 UTF­8

0x00 0x03 0x1b 0x2f 8 UTF­8

Linux Unicode UTF­8 path_walk()
path_walk() UTF­8 UTF­8 0x00

0x2f UTF­8
path_walk() Unicode Unicode

Linux Linux
Unicode Unix

PC
Linux

virtual console “Alt “F1
“F12 12

12 /dev/tty1 /dev/tty12
/dev/tty1 /dev/tty0

Alt+F2 /dev/tty0 /dev/tty2 /dev /dev/console
/dev/tty0

Linux 6
login Alt

4
/dev/tty0 0 /dev/tty1 1

4 UART
0 /dev/tty0 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1175

63 /dev/tty1 /dev/tty63 63 PC 12
12 64 255 /dev/ttyS0 /dev/ttyS191

192 UART
/dev/tty0 /dev/tty1 /dev/tty63 /dev 7

/dev/vcs /dev/vcs1 /dev/vcs63
/dev/vcs2

file_operations vcs_fops tty_fops
/dev 64 7 /dev/vcsa /dev/vcsa1

/dev/vcsa63 128 191 63
“a “attribute VGA

EGA BIOS

/dev 5
alternate 64 225 /dev/cua0

/dev/cua191 192 “callout /dev/tttyS0
/dev/ttyS191

RS232C

modem

“callout
callout callout /dev/cua0

/dev/cua191 modem “dial in
/dev/ttyS0 /dev/ttyS191

Cyclades 19 20 19 dial in
/dev/ttyC0 /dev/ttyC31 20 “call out /dev/cub0 /dev/cub31

Linux/Documentation devices.txt

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1176

pseudo tty
master 2 /dev/ptyAX

A 16 “pqrstuvwxyzPQRST X 16 16 0 f
256 slave 3

/dev/ttyAX 256 /dev/ptyp0 /dev/ttyp0

Linux Unix X Window GUI

shell shell

8.7

8.7

”

”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1177

shell telnetd

file_operations tty_fops 2 3 4 5 7
file_operations

(1)

(2)
file_operations

(3) RS232 Modem

file_operations
tty_driver include/linux/tty_driver.h

==================== include/linux/tty_driver.h 120 179 ====================
120 struct tty_driver {

121 int magic; /* magic number for this structure */

122 const char *driver_name;

123 const char *name;

124 int name_base; /* offset of printed name */

125 short major; /* major device number */

126 short minor_start; /* start of minor device number*/

127 short num; /* number of devices */

128 short type; /* type of tty driver */

129 short subtype; /* subtype of tty driver */

130 struct termios init_termios; /* Initial termios */

131 int flags; /* tty driver flags */

132 int *refcount; /* for loadable tty drivers */

133 struct proc_dir_entry *proc_entry; /* /proc fs entry */

134 struct tty_driver *other; /* only used for the PTY driver */

135

136 /*

137 * Pointer to the tty data structures

138 */

139 struct tty_struct **table;

140 struct termios **termios;

141 struct termios **termios_locked;

142 void *driver_state; /* only used for the PTY driver */

143

144 /*

145 * Interface routines from the upper tty layer to the tty

146 * driver.

147 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1178

148 int (*open)(struct tty_struct * tty, struct file * filp);

149 void (*close)(struct tty_struct * tty, struct file * filp);

150 int (*write)(struct tty_struct * tty, int from_user,

151 const unsigned char *buf, int count);

152 void (*put_char)(struct tty_struct *tty, unsigned char ch);

153 void (*flush_chars)(struct tty_struct *tty);

154 int (*write_room)(struct tty_struct *tty);

155 int (*chars_in_buffer)(struct tty_struct *tty);

156 int (*ioctl)(struct tty_struct *tty, struct file * file,

157 unsigned int cmd, unsigned long arg);

158 void (*set_termios)(struct tty_struct *tty, struct termios * old);

159 void (*throttle)(struct tty_struct * tty);

160 void (*unthrottle)(struct tty_struct * tty);

161 void (*stop)(struct tty_struct *tty);

162 void (*start)(struct tty_struct *tty);

163 void (*hangup)(struct tty_struct *tty);

164 void (*break_ctl)(struct tty_struct *tty, int state);

165 void (*flush_buffer)(struct tty_struct *tty);

166 void (*set_ldisc)(struct tty_struct *tty);

167 void (*wait_until_sent)(struct tty_struct *tty, int timeout);

168 void (*send_xchar)(struct tty_struct *tty, char ch);

169 int (*read_proc)(char *page, char **start, off_t off,

170 int count, int *eof, void *data);

171 int (*write_proc)(struct file *file, const char *buffer,

172 unsigned long count, void *data);

173

174 /*

175 * linked list pointers

176 */

177 struct tty_driver *next;

178 struct tty_driver *prev;

179 };

tty_driver tty_driver
console_driver

tty_ldisc include/linux/tty_ldisc.h

==================== include/linux/tty_ldisc.h 103 132 ====================
103 struct tty_ldisc {

104 int magic;

105 char *name;

106 int num;

107 int flags;

108 /*

109 * The following routines are called from above.

110 */

111 int (*open)(struct tty_struct *);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1179

112 void (*close)(struct tty_struct *);

113 void (*flush_buffer)(struct tty_struct *tty);

114 ssize_t (*chars_in_buffer)(struct tty_struct *tty);

115 ssize_t (*read)(struct tty_struct * tty, struct file * file,

116 unsigned char * buf, size_t nr);

117 ssize_t (*write)(struct tty_struct * tty, struct file * file,

118 const unsigned char * buf, size_t nr);

119 int (*ioctl)(struct tty_struct * tty, struct file * file,

120 unsigned int cmd, unsigned long arg);

121 void (*set_termios)(struct tty_struct *tty, struct termios * old);

122 unsigned int (*poll)(struct tty_struct *, struct file *,

123 struct poll_table_struct *);

124

125 /*

126 * The following routines are called from below.

127 */

128 void (*receive_buf)(struct tty_struct *, const unsigned char *cp,

129 char *fp, int count);

130 int (*receive_room)(struct tty_struct *);

131 void (*write_wakeup)(struct tty_struct *);

132 };

“ldisc “Line Discipline file_operations
open read write

receive_buf receive_room write_wakeup
tty_ldisc

drivers/char/tty_io.c

==================== drivers/char/tty_io.c 119 119 ====================
119 struct tty_ldisc ldiscs[NR_LDISCS]; /* line disc dispatch table */

NR_LDISCS 16
tty_register_ldisc() tty_ldisc

tty_driver
tty_ldisc

tty_ldisc

tty_fops
drivers/char/tty_io.c

==================== drivers/char/tty_io.c 407 416 ====================
407 static struct file_operations tty_fops = {

408 llseek: tty_lseek,

409 read: tty_read,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1180

410 write: tty_write,

411 poll: tty_poll,

412 ioctl: tty_ioctl,

413 open: tty_open,

414 release: tty_release,

415 fasync: tty_fasync,

416 };

tty_open() drivers/char/tty_io.c

==================== drivers/char/tty_io.c 1285 1360 ====================
1285 static int tty_open(struct inode * inode, struct file * filp)

1286 {

1287 struct tty_struct *tty;

1288 int noctty, retval;

1289 kdev_t device;

1290 unsigned short saved_flags;

1291 char buf[64];

1292

1293 saved_flags = filp­>f_flags;

1294 retry_open:

1295 noctty = filp­>f_flags & O_NOCTTY;

1296 device = inode­>i_rdev;

1297 if (device == TTY_DEV) {

1298 if (!current­>tty)

1299 return ­ENXIO;

1300 device = current­>tty­>device;

1301 filp­>f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */

1302 /* noctty = 1; */

1303 }

1304 #ifdef CONFIG_VT

1305 if (device == CONSOLE_DEV) {

1306 extern int fg_console;

1307 device = MKDEV(TTY_MAJOR, fg_console + 1);

1308 noctty = 1;

1309 }

1310 #endif

1311 if (device == SYSCONS_DEV) {

1312 struct console *c = console_drivers;

1313 while(c && !c­>device)

1314 c = c­>next;

1315 if (!c)

1316 return ­ENODEV;

1317 device = c­>device(c);

1318 filp­>f_flags |= O_NONBLOCK; /* Don't let /dev/console block */

1319 noctty = 1;

1320 }

1321

1322 if (device == PTMX_DEV) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1181

1323 #ifdef CONFIG_UNIX98_PTYS

1324

1325 /* find a free pty. */

1326 int major, minor;

1327 struct tty_driver *driver;

1328

1329 /* find a device that is not in use. */

1330 retval = ­1;

1331 for (major = 0 ; major < UNIX98_NR_MAJORS ; major++) {

1332 driver = &ptm_driver[major];

1333 for (minor = driver­>minor_start ;

1334 minor < driver­>minor_start + driver­>num ;

1335 minor++) {

1336 device = MKDEV(driver­>major, minor);

1337 if (!init_dev(device, &tty)) goto ptmx_found; /* ok! */

1338 }

1339 }

1340 return ­EIO; /* no free ptys */

1341 ptmx_found:

1342 set_bit(TTY_PTY_LOCK, &tty­>flags); /* LOCK THE SLAVE */

1343 minor ­= driver­>minor_start;

1344 devpts_pty_new(driver­>other­>name_base + minor, MKDEV(driver­>other­>major, minor +

driver­>other­>minor_start));

1345 tty_register_devfs(&pts_driver[major], DEVFS_FL_NO_PERSISTENCE,

1346 pts_driver[major].minor_start + minor);

1347 noctty = 1;

1348 goto init_dev_done;

1349

1350 #else /* CONFIG_UNIX_98_PTYS */

1351

1352 return ­ENODEV;

1353

1354 #endif /* CONFIG_UNIX_98_PTYS */

1355 }

1356

1357 retval = init_dev(device, &tty);

1358 if (retval)

1359 return retval;

1360

inode i_rdev
TTY_DEV drivers/char/tty_io.c

==================== drivers/char/tty_io.c 108 108 ====================
108 #define TTY_DEV MKDEV(TTYAUX_MAJOR,0)

5 0 /dev/tty

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1182

open() flags O_NOCTTY 1 1295
noctty task_structure tty

tty_struet 0
­ENXIO

/dev/tty O_NONBLOCK
CONFIG_VT

CONSOLE_DEV SYSCON_DEV drivers/char/n_tty.c

==================== drivers/char/n_tty.c 48 49 ====================
48 #define CONSOLE_DEV MKDEV(TTY_MAJOR,0)

49 #define SYSCONS_DEV MKDEV(TTYAUX_MAJOR,1)

4 0 /dev/tty0
fg_console

0 1 1
1307 fg_console

noctty 1 5 1 /dev/console
/dev/console /dev/tty0

/dev/console /dev/tty0 5 1
register_console()

console console_drivers
printk() console

device
/dev/console console_drivers 0 console

PTMX_DEV drivers/char/tty_io.c

==================== drivers/char/tty_io.c 110 110 ====================
110 #define PTMX_DEV MKDEV(TTYAUX_MAJOR,2)

Documents/device.txt 5 2
/dev/ptmx

2 3 256 8 BSD
System V System V

/dev/ptmx /dev/console

System V
Unix/Linux

256 System V
BSD

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1183

/dev/ptyr32
/dev/ptyx87 System V

Unix Unix98 System V
125 135 136 143

8×256 2048 Linux
CONFIG_UNIX98_PTYS 2.1 C glibc

glibc ptsname()

UNIX98_NR_MAJORS tty_driver ptm_driver[] pts_driver[]
/dev/ptmx

1331 for ptm_driver[]
init_dev()

ptmx_found
ptm_driver[] pts_driver[] tty_driver other

1344 driver ptm_driver[] driver­>other
pts_driver[] devpts_pty_new() inode

tty_register_devfs devfs /dev/pts/0 /dev/pts/134

/dev/ptmx
1357 init_dev() tty_struct

tty_struct include/linux/tty.h

==================== include/linux/tty.h 245 310 ====================
245 /*

246 * Where all of the state associated with a tty is kept while the tty

247 * is open. Since the termios state should be kept even if the tty

248 * has been closed ­­­ for things like the baud rate, etc ­­­ it is

249 * not stored here, but rather a pointer to the real state is stored

250 * here. Possible the winsize structure should have the same

251 * treatment, but (1) the default 80x24 is usually right and (2) it's

252 * most often used by a windowing system, which will set the correct

253 * size each time the window is created or resized anyway.

254 * IMPORTANT: since this structure is dynamically allocated, it must

255 * be no larger than 4096 bytes. Changing TTY_FLIPBUF_SIZE will change

256 * the size of this structure, and it needs to be done with care.

257 * ­ TYT, 9/14/92

258 */

259 struct tty_struct {

260 int magic;

261 struct tty_driver driver;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1184

262 struct tty_ldisc ldisc;

263 struct termios *termios, *termios_locked;

264 int pgrp;

265 int session;

266 kdev_t device;

267 unsigned long flags;

268 int count;

269 struct winsize winsize;

270 unsigned char stopped:1, hw_stopped:1, flow_stopped:1, packet:1;

271 unsigned char low_latency:1, warned:1;

272 unsigned char ctrl_status;

273

274 struct tty_struct *link;

275 struct fasync_struct *fasync;

276 struct tty_flip_buffer flip;

277 int max_flip_cnt;

278 int alt_speed; /* For magic substitution of 38400 bps */

279 wait_queue_head_t write_wait;

280 wait_queue_head_t read_wait;

281 struct tq_struct tq_hangup;

282 void *disc_data;

283 void *driver_data;

284 struct list_head tty_files;

285

286 #define N_TTY_BUF_SIZE 4096

287

288 /*

289 * The following is data for the N_TTY line discipline. For

290 * historical reasons, this is included in the tty structure.

291 */

292 unsigned int column;

293 unsigned char lnext:1, erasing:1, raw:1, real_raw:1, icanon:1;

294 unsigned char closing:1;

295 unsigned short minimum_to_wake;

296 unsigned overrun_time;

297 int num_overrun;

298 unsigned long process_char_map[256/(8*sizeof(unsigned long))];

299 char *read_buf;

300 int read_head;

301 int read_tail;

302 int read_cnt;

303 unsigned long read_flags[N_TTY_BUF_SIZE/(8*sizeof(unsigned long))];

304 int canon_data;

305 unsigned long canon_head;

306 unsigned int canon_column;

307 struct semaphore atomic_read;

308 struct semaphore atomic_write;

309 spinlock_t read_lock;

310 };

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1185

tty_driver 261 tty_driver
tty_drivers

tty_register_driver()
tty_driver
get_tty_driver() tty_driver tty_struct

tty_ldisc 262 tty_ldisc ldiscs[]
tty_struct tty_ldisc tty_struct

termios termios
termios

tty_ldisc
include/asm­i386/termbits.h

==================== include/asm­i386/termbits.h 10 18 ====================
10 #define NCCS 19

11 struct termios {

12 tcflag_t c_iflag; /* input mode flags */

13 tcflag_t c_oflag; /* output mode flags */

14 tcflag_t c_cflag; /* control mode flags */

15 tcflag_t c_lflag; /* local mode flags */

16 cc_t c_line; /* line discipline */

17 cc_t c_cc[NCCS]; /* control characters */

18 };

c_lflag
ISG 0000001 ICANON 0000002 ECHO 0000010 c_lflag

0 raw mode cooked
mode
tty_struct flip tty_flip_buffer

include/linux/tty.h

==================== include/linux/tty.h 132 149 ====================
132 /*

133 * This is the flip buffer used for the tty driver. The buffer is

134 * located in the tty structure, and is used as a high speed interface

135 * between the tty driver and the tty line discipline.

136 */

137 #define TTY_FLIPBUF_SIZE 512

138

139 struct tty_flip_buffer {

140 struct tq_struct tqueue;

141 struct semaphore pty_sem;

142 char *char_buf_ptr;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1186

143 unsigned char *flag_buf_ptr;

144 int count;

145 int buf_num;

146 unsigned char char_buf[2*TTY_FLIPBUF_SIZE];

147 char flag_buf[2*TTY_FLIPBUF_SIZE];

148 unsigned char slop[4]; /* N.B. bug overwrites buffer by 1 */

149 };

flip process_char_map 8
32 1

init_dev()
drivers/char/tty_io.c

==================== drivers/char/tty_io.c 806 867 ====================
[tty_open()>init_dev()]
806 static int init_dev(kdev_t device, struct tty_struct **ret_tty)

807 {

808 struct tty_struct *tty, *o_tty;

809 struct termios *tp, **tp_loc, *o_tp, **o_tp_loc;

810 struct termios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;

811 struct tty_driver *driver;

812 int retval=0;

813 int idx;

814

815 driver = get_tty_driver(device);

816 if (!driver)

817 return ­ENODEV;

818

819 idx = MINOR(device) ­ driver­>minor_start;

820

821 /*

822 * Check whether we need to acquire the tty semaphore to avoid

823 * race conditions. For now, play it safe.

824 */

825 down_tty_sem(idx);

826

827 /* check whether we're reopening an existing tty */

828 tty = driver­>table[idx];

829 if (tty) goto fast_track;

830

831 /*

832 * First time open is complex, especially for PTY devices.

833 * This code guarantees that either everything succeeds and the

834 * TTY is ready for operation, or else the table slots are vacated

835 * and the allocated memory released. (Except that the termios

836 * and locked termios may be retained.)

837 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1187

838

839 o_tty = NULL;

840 tp = o_tp = NULL;

841 ltp = o_ltp = NULL;

842

843 tty = alloc_tty_struct();

844 if(!tty)

845 goto fail_no_mem;

846 initialize_tty_struct(tty);

847 tty­>device = device;

848 tty­>driver = *driver;

849

850 tp_loc = &driver­>termios[idx];

851 if (!*tp_loc) {

852 tp = (struct termios *) kmalloc(sizeof(struct termios),

853 GFP_KERNEL);

854 if (!tp)

855 goto free_mem_out;

856 *tp = driver­>init_termios;

857 }

858

859 ltp_loc = &driver­>termios_locked[idx];

860 if (!*ltp_loc) {

861 ltp = (struct termios *) kmalloc(sizeof(struct termios),

862 GFP_KERNEL);

863 if (!ltp)

864 goto free_mem_out;

865 memset(ltp, 0, sizeof(struct termios));

866 }

867

file_operations
tty_open()
tty_struct tty_struct

init_dev() tty_struct
get_tty_driver() tty_drivers

tty_driver 815 table tty_struct
tty_struct 5 TTY

64 255 192
/dev/cua0 /dev/cua191 tty_drivers

tty_driver 192 tty_struct
0 minor_start

819
tty_struct 0 828 829

alloc_tty_struct() 848

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1188

tty_driver tty_struct
initialize_tty_struct() drivers/char/tty_io.c

==================== drivers/char/tty_io.c 1958 1977 ====================
[tty_open()>init_dev()>initialize_tty_struct()]
1958 static void initialize_tty_struct(struct tty_struct *tty)

1959 {

1960 memset(tty, 0, sizeof(struct tty_struct));

1961 tty­>magic = TTY_MAGIC;

1962 tty­>ldisc = ldiscs[N_TTY];

1963 tty­>pgrp = ­1;

1964 tty­>flip.char_buf_ptr = tty­>flip.char_buf;

1965 tty­>flip.flag_buf_ptr = tty­>flip.flag_buf;

1966 tty­>flip.tqueue.routine = flush_to_ldisc;

1967 tty­>flip.tqueue.data = tty;

1968 init_MUTEX(&tty­>flip.pty_sem);

1969 init_waitqueue_head(&tty­>write_wait);

1970 init_waitqueue_head(&tty­>read_wait);

1971 tty­>tq_hangup.routine = do_tty_hangup;

1972 tty­>tq_hangup.data = tty;

1973 sema_init(&tty­>atomic_read, 1);

1974 sema_init(&tty­>atomic_write, 1);

1975 spin_lock_init(&tty­>read_lock);

1976 INIT_LIST_HEAD(&tty­>tty_files);

1977 }

1962 tty_ldisc
tty_struct

tty_ldisc ldiscs[N_TTY] N_TTY 0
VGA

ioctl()
init_dev() tty_driver termios termios

termios_locked termios
termios 0 termios 852

861 termios[] driver ”termios
init_termios 856 termios_locked[] 0 865

drivers/char/tty_io.c

==================== drivers/char/tty_io.c 868 913 ====================
[tty_open()>init_dev()]
868 if (driver­>type == TTY_DRIVER_TYPE_PTY) {

869 o_tty = alloc_tty_struct();

870 if (!o_tty)

871 goto free_mem_out;

872 initialize_tty_struct(o_tty);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1189

873 o_tty­>device = (kdev_t) MKDEV(driver­>other­>major,

874 driver­>other­>minor_start + idx);

875 o_tty­>driver = *driver­>other;

876

877 o_tp_loc = &driver­>other­>termios[idx];

878 if (!*o_tp_loc) {

879 o_tp = (struct termios *)

880 kmalloc(sizeof(struct termios), GFP_KERNEL);

881 if (!o_tp)

882 goto free_mem_out;

883 *o_tp = driver­>other­>init_termios;

884 }

885

886 o_ltp_loc = &driver­>other­>termios_locked[idx];

887 if (!*o_ltp_loc) {

888 o_ltp = (struct termios *)

889 kmalloc(sizeof(struct termios), GFP_KERNEL);

890 if (!o_ltp)

891 goto free_mem_out;

892 memset(o_ltp, 0, sizeof(struct termios));

893 }

894

895 /*

896 * Everything allocated ... set up the o_tty structure.

897 */

898 driver­>other­>table[idx] = o_tty;

899 if (!*o_tp_loc)

900 *o_tp_loc = o_tp;

901 if (!*o_ltp_loc)

902 *o_ltp_loc = o_ltp;

903 o_tty­>termios = *o_tp_loc;

904 o_tty­>termios_locked = *o_ltp_loc;

905 (*driver­>other­>refcount)++;

906 if (driver­>subtype == PTY_TYPE_MASTER)

907 o_tty­>count++;

908

909 /* Establish the links in both directions */

910 tty­>link = o_tty;

911 o_tty­>link = tty;

912 }

913

tty_struct

tty_struct tty 843 o_tty 869 o_tty
“the other tty tty tty_driver

other 875 driver tty_driver driver­>other

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1190

tty_driver tty_struct link
910 911

tty_struct 828 tty_struct
tty_struct fast_track 956

drivers/char/tty_io.c

==================== drivers/char/tty_io.c 914 1005 ====================
[tty_open()>init_dev()]
914 /*

915 * All structures have been allocated, so now we install them.

916 * Failures after this point use release_mem to clean up, so

917 * there's no need to null out the local pointers.

918 */

919 driver­>table[idx] = tty;

920

921 if (!*tp_loc)

922 *tp_loc = tp;

923 if (!*ltp_loc)

924 *ltp_loc = ltp;

925 tty­>termios = *tp_loc;

926 tty­>termios_locked = *ltp_loc;

927 (*driver­>refcount)++;

928 tty­>count++;

929

930 /*

931 * Structures all installed ... call the ldisc open routines.

932 * If we fail here just call release_mem to clean up. No need

933 * to decrement the use counts, as release_mem doesn't care.

934 */

935 if (tty­>ldisc.open) {

936 retval = (tty­>ldisc.open)(tty);

937 if (retval)

938 goto release_mem_out;

939 }

940 if (o_tty && o_tty­>ldisc.open) {

941 retval = (o_tty­>ldisc.open)(o_tty);

942 if (retval) {

943 if (tty­>ldisc.close)

944 (tty­>ldisc.close)(tty);

945 goto release_mem_out;

946 }

947 }

948 goto success;

949

950 /*

951 * This fast open can be used if the tty is already open.

952 * No memory is allocated, and the only failures are from

953 * attempting to open a closing tty or attempting multiple

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1191

954 * opens on a pty master.

955 */

956 fast_track:

957 if (test_bit(TTY_CLOSING, &tty­>flags)) {

958 retval = ­EIO;

959 goto end_init;

960 }

961 if (driver­>type == TTY_DRIVER_TYPE_PTY &&

962 driver­>subtype == PTY_TYPE_MASTER) {

963 /*

964 * special case for PTY masters: only one open permitted,

965 * and the slave side open count is incremented as well.

966 */

967 if (tty­>count) {

968 retval = ­EIO;

969 goto end_init;

970 }

971 tty­>link­>count++;

972 }

973 tty­>count++;

974 tty­>driver = *driver; /* N.B. why do this every time?? */

975

976 success:

977 *ret_tty = tty;

978

979 /* All paths come through here to release the semaphore */

980 end_init:

981 up_tty_sem(idx);

982 return retval;

983

984 /* Release locally allocated memory ... nothing placed in slots */

985 free_mem_out:

986 if (o_tp)

987 kfree(o_tp);

988 if (o_tty)

989 free_tty_struct(o_tty);

990 if (ltp)

991 kfree(ltp);

992 if (tp)

993 kfree(tp);

994 free_tty_struct(tty);

995

996 fail_no_mem:

997 retval = ­ENOMEM;

998 goto end_init;

999

1000 /* call the tty release_mem routine to clean out this slot */

1001 release_mem_out:

1002 printk("init_dev: ldisc open failed, clearing slot %d\n", idx);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1192

1003 release_mem(tty, idx);

1004 goto end_init;

1005 }

tty_struct tty_driver table[] 919
termios tty_struct 921 925

tty_struct tty_ldisc
open 0

N_TTY tty_ldisc tty_ldisc_N_TTY open
n_tty_open() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 860 877 ====================
[tty_open()>init_dev()>n_tty_open()]
860 static int n_tty_open(struct tty_struct *tty)

861 {

862 if (!tty)

863 return ­EINVAL;

864

865 if (!tty­>read_buf) {

866 tty­>read_buf = alloc_buf();

867 if (!tty­>read_buf)

868 return ­ENOMEM;

869 }

870 memset(tty­>read_buf, 0, N_TTY_BUF_SIZE);

871 reset_buffer_flags(tty);

872 tty­>column = 0;

873 n_tty_set_termios(tty, 0);

874 tty­>minimum_to_wake = 1;

875 tty­>closing = 0;

876 return 0;

877 }

tty_driver flip tty_flip_buffer

Unix “cooked

tty_driver tty_flip_buffer
tty_driver read_buf

866
tty_struct read_flags[]

read_head canon_read
reset_buffer_flags() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 118 133 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1193

[tty_open()>init_dev()>n_tty_open()>reset_buffer_flags()]
118 /*

119 * Reset the read buffer counters, clear the flags,

120 * and make sure the driver is unthrottled. Called

121 * from n_tty_open() and n_tty_flush_buffer().

122 */

123 static void reset_buffer_flags(struct tty_struct *tty)

124 {

125 unsigned long flags;

126

127 spin_lock_irqsave(&tty­>read_lock, flags);

128 tty­>read_head = tty­>read_tail = tty­>read_cnt = 0;

129 spin_unlock_irqrestore(&tty­>read_lock, flags);

130 tty­>canon_head = tty­>canon_data = tty­>erasing = 0;

131 memset(&tty­>read_flags, 0, sizeof tty­>read_flags);

132 check_unthrottle(tty);

133 }

tty_read()
n_tty_open() n_tty_set_termios()

termios tty_struct process_char_map
termios process_char_map 32 256

1
drivers/char/n_tty.c

==================== drivers/char/n_tty.c 786 849 ====================
[tty_opon()>init_dev()>n_tty_open()>n_tty_set_termios()]
786 static void n_tty_set_termios(struct tty_struct *tty, struct termios * old)

787 {

788 if (!tty)

789 return;

790

791 tty­>icanon = (L_ICANON(tty) != 0);

792 if (test_bit(TTY_HW_COOK_IN, &tty­>flags)) {

793 tty­>raw = 1;

794 tty­>real_raw = 1;

795 return;

796 }

797 if (I_ISTRIP(tty) || I_IUCLC(tty) || I_IGNCR(tty) ||

798 I_ICRNL(tty) || I_INLCR(tty) || L_ICANON(tty) ||

799 I_IXON(tty) || L_ISIG(tty) || L_ECHO(tty) ||

800 I_PARMRK(tty)) {

801 cli();

802 memset(tty­>process_char_map, 0, 256/8);

803

804 if (I_IGNCR(tty) || I_ICRNL(tty))

805 set_bit('\r', &tty­>process_char_map);

806 if (I_INLCR(tty))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1194

807 set_bit('\n', &tty­>process_char_map);

808

809 if (L_ICANON(tty)) {

810 set_bit(ERASE_CHAR(tty), &tty­>process_char_map);

811 set_bit(KILL_CHAR(tty), &tty­>process_char_map);

812 set_bit(EOF_CHAR(tty), &tty­>process_char_map);

813 set_bit('\n', &tty­>process_char_map);

814 set_bit(EOL_CHAR(tty), &tty­>process_char_map);

815 if (L_IEXTEN(tty)) {

816 set_bit(WERASE_CHAR(tty),

817 &tty­>process_char_map);

818 set_bit(LNEXT_CHAR(tty),

819 &tty­>process_char_map);

820 set_bit(EOL2_CHAR(tty),

821 &tty­>process_char_map);

822 if (L_ECHO(tty))

823 set_bit(REPRINT_CHAR(tty),

824 &tty­>process_char_map);

825 }

826 }

827 if (I_IXON(tty)) {

828 set_bit(START_CHAR(tty), &tty­>process_char_map);

829 set_bit(STOP_CHAR(tty), &tty­>process_char_map);

830 }

831 if (L_ISIG(tty)) {

832 set_bit(INTR_CHAR(tty), &tty­>process_char_map);

833 set_bit(QUIT_CHAR(tty), &tty­>process_char_map);

834 set_bit(SUSP_CHAR(tty), &tty­>process_char_map);

835 }

836 clear_bit(__DISABLED_CHAR, &tty­>process_char_map);

837 sti();

838 tty­>raw = 0;

839 tty­>real_raw = 0;

840 } else {

841 tty­>raw = 1;

842 if ((I_IGNBRK(tty) || (!I_BRKINT(tty) && !I_PARMRK(tty))) &&

843 (I_IGNPAR(tty) || !I_INPCK(tty)) &&

844 (tty­>driver.flags & TTY_DRIVER_REAL_RAW))

845 tty­>real_raw = 1;

846 else

847 tty­>real_raw = 0;

848 }

849 }

include/linux/tty.h include/asm­i386/termbits.h

==================== include/linux/tty.h 183 186 ====================
183 #define _I_FLAG(tty,f) ((tty)­>termios­>c_iflag & (f))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1195

184 #define _O_FLAG(tty,f) ((tty)­>termios­>c_oflag & (f))

185 #define _C_FLAG(tty,f) ((tty)­>termios­>c_cflag & (f))

186 #define _L_FLAG(tty,f) ((tty)­>termios­>c_lflag & (f))

termios c_iflag c_oflag c_cflag c_lflag
L_ICANON(tty)

==================== include/linux/tty.h 230 230 ====================
230 #define L_ICANON(tty) _L_FLAG((tty),ICANON)

L_ c_lflag ICANON I_IGNCR
c_iflag IGNCR L_ECHO c_lflag ECHO

L_ICANON “canonical mode

L_ISTRIP 0 7
L_IUCLC
L_IGNCR “\
L_ICRNL “\r “\n I_IGNCR 0
L_INLCR “\n “\r
L_IXON CTRL_S CTRL_Q
L_ISIG CTRL_C
L_ECHO

Ctrl­S Ctrl­Q
Ctrl­S Ctrl­Q termios c_cc[]

include/linux/tty.h include/asm­i386/termbits.h

==================== include/linux/tty.h 173 174 ====================
173 #define START_CHAR(tty) ((tty)­>termios­>c_cc[VSTART])

174 #define STOP_CHAR(tty) ((tty)­>termios­>c_cc[VSTOP])

==================== include/asm­i386/termbits.h 29 30 ====================
29 #define VSTART 8

30 #define VSTOP 9

termios c_cc[8]
c_cc[9]

init_dev() ret_tty tty_struct tty_open()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1196

drivers/char/tty_io.c

==================== drivers/char/tty_io.c 1361 1425 ====================
[tty_opon()]
1361 #ifdef CONFIG_UNIX98_PTYS

1362 init_dev_done:

1363 #endif

1364 filp­>private_data = tty;

1365 file_move(filp, &tty­>tty_files);

1366 check_tty_count(tty, "tty_open");

1367 if (tty­>driver.type == TTY_DRIVER_TYPE_PTY &&

1368 tty­>driver.subtype == PTY_TYPE_MASTER)

1369 noctty = 1;

1370 #ifdef TTY_DEBUG_HANGUP

1371 printk("opening %s...", tty_name(tty, buf));

1372 #endif

1373 if (tty­>driver.open)

1374 retval = tty­>driver.open(tty, filp);

1375 else

1376 retval = ­ENODEV;

1377 filp­>f_flags = saved_flags;

1378

1379 if (!retval && test_bit(TTY_EXCLUSIVE, &tty­>flags) && !suser())

1380 retval = ­EBUSY;

1381

1382 if (retval) {

1383 #ifdef TTY_DEBUG_HANGUP

1384 printk("error %d in opening %s...", retval,

1385 tty_name(tty, buf));

1386 #endif

1387

1388 release_dev(filp);

1389 if (retval != ­ERESTARTSYS)

1390 return retval;

1391 if (signal_pending(current))

1392 return retval;

1393 schedule();

1394 /*

1395 * Need to reset f_op in case a hangup happened.

1396 */

1397 filp­>f_op = &tty_fops;

1398 goto retry_open;

1399 }

1400 if (!noctty &&

1401 current­>leader &&

1402 !current­>tty &&

1403 tty­>session == 0) {

1404 task_lock(current);

1405 current­>tty = tty;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1197

1406 task_unlock(current);

1407 current­>tty_old_pgrp = 0;

1408 tty­>session = current­>session;

1409 tty­>pgrp = current­>pgrp;

1410 }

1411 if ((tty­>driver.type == TTY_DRIVER_TYPE_SERIAL) &&

1412 (tty­>driver.subtype == SERIAL_TYPE_CALLOUT) &&

1413 (tty­>count == 1)) {

1414 static int nr_warns;

1415 if (nr_warns < 5) {

1416 printk(KERN_WARNING "tty_io.c: "

1417 "process %d (%s) used obsolete /dev/%s ­ "

1418 "update software to use /dev/ttyS%d\n",

1419 current­>pid, current­>comm,

1420 tty_name(tty, buf), TTY_NUMBER(tty));

1421 nr_warns++;

1422 }

1423 }

1424 return 0;

1425 }

file file void private_data
tty_struct

tty_struct tty_files file_move()
file file

tty_ldisc open
1373

tty_driver console_driver open con_open() drivers/char/console.c

==================== drivers/char/console.c 2304 2328 ====================
[tty_open()>con_open()]
2304 /*

2305 * Allocate the console screen memory.

2306 */

2307 static int con_open(struct tty_struct *tty, struct file * filp)

2308 {

2309 unsigned int currcons;

2310 int i;

2311

2312 currcons = MINOR(tty­>device) ­ tty­>driver.minor_start;

2313

2314 i = vc_allocate(currcons);

2315 if (i)

2316 return i;

2317

2318 vt_cons[currcons]­>vc_num = currcons;

2319 tty­>driver_data = vt_cons[currcons];

2320

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1198

2321 if (!tty­>winsize.ws_row && !tty­>winsize.ws_col) {

2322 tty­>winsize.ws_row = video_num_lines;

2323 tty­>winsize.ws_col = video_num_columns;

2324 }

2325 if (tty­>count == 1)

2326 vcs_make_devfs (currcons, 0);

2327 return 0;

2328 }

vc_allocate() drivers/char/console.c
vcs_make_devfs() /dev vcs

vcs
tty_open()

VGA
vcs VGA SVGA

“frame
buffer

drivers/video

8.8

PC VGA

echo

Linux

CPU
file_operations tty_read()

drivers/char/tty_io.c

==================== drivers/char/tty_io.c 645 667 ====================
645 static ssize_t tty_read(struct file * file, char * buf, size_t count,

646 loff_t *ppos)

647 {

648 int i;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1199

649 struct tty_struct * tty;

650 struct inode *inode;

651

652 /* Can't seek (pread) on ttys. */

653 if (ppos != &file­>f_pos)

654 return ­ESPIPE;

655

656 tty = (struct tty_struct *)file­>private_data;

657 inode = file­>f_dentry­>d_inode;

658 if (tty_paranoia_check(tty, inode­>i_rdev, "tty_read"))

659 return ­EIO;

660 if (!tty || (test_bit(TTY_IO_ERROR, &tty­>flags)))

661 return ­EIO;

662

663 /* This check not only needs to be done before reading, but also

664 whenever read_chan() gets woken up after sleeping, so I've

665 moved it to there. This should only be done for the N_TTY

666 line discipline, anyway. Same goes for write_chan(). ­­ jlc. */

667 #if 0

==================== drivers/char/tty_io.c 678 688 ====================
678 #endif

679 lock_kernel();

680 if (tty­>ldisc.read)

681 i = (tty­>ldisc.read)(tty,file,buf,count);

682 else

683 i = ­EIO;

684 unlock_kernel();

685 if (i > 0)

686 inode­>i_atime = CURRENT_TIME;

687 return i;

688 }

tty_struct
file private_data 656

tty_struct
tty_ldisc N_TTY

tty_ldisc tty_ldisc_N_TTY tty_register_ldisc() 681
read drivers/char/n_tty.c

==================== drivers/char/n_tty.c 1213 1230 ====================
1213 struct tty_ldisc tty_ldisc_N_TTY = {

1214 TTY_LDISC_MAGIC, /* magic */

1215 "n_tty", /* name */

1216 0, /* num */

1217 0, /* flags */

1218 n_tty_open, /* open */

1219 n_tty_close, /* close */

1220 n_tty_flush_buffer, /* flush_buffer */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1200

1221 n_tty_chars_in_buffer, /* chars_in_buffer */

1222 read_chan, /* read */

1223 write_chan, /* write */

1224 n_tty_ioctl, /* ioctl */

1225 n_tty_set_termios, /* set_termios */

1226 normal_poll, /* poll */

1227 n_tty_receive_buf, /* receive_buf */

1228 n_tty_receive_room, /* receive_room */

1229 0 /* write_wakeup */

1230 };

read read_chan() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 925 962 ====================
[tty_read()>read_chan()]
925 static ssize_t read_chan(struct tty_struct *tty, struct file *file,

926 unsigned char *buf, size_t nr)

927 {

928 unsigned char *b = buf;

929 DECLARE_WAITQUEUE(wait, current);

930 int c;

931 int minimum, time;

932 ssize_t retval = 0;

933 ssize_t size;

934 long timeout;

935 unsigned long flags;

936

937 do_it_again:

938

939 if (!tty­>read_buf) {

940 printk("n_tty_read_chan: called with read_buf == NULL?!?\n");

941 return ­EIO;

942 }

943

944 /* Job control check ­­ must be done at start and after

945 every sleep (POSIX.1 7.1.1.4). */

946 /* NOTE: not yet done after every sleep pending a thorough

947 check of the logic of this change. ­­ jlc */

948 /* don't stop on /dev/console */

949 if (file­>f_dentry­>d_inode­>i_rdev != CONSOLE_DEV &&

950 file­>f_dentry­>d_inode­>i_rdev != SYSCONS_DEV &&

951 current­>tty == tty) {

952 if (tty­>pgrp <= 0)

953 printk("read_chan: tty­>pgrp <= 0!\n");

954 else if (current­>pgrp != tty­>pgrp) {

955 if (is_ignored(SIGTTIN) ||

956 is_orphaned_pgrp(current­>pgrp))

957 return ­EIO;

958 kill_pg(current­>pgrp, SIGTTIN, 1);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1201

959 return ­ERESTARTSYS;

960 }

961 }

962

==================== drivers/char/n_tty.c 963 994 ====================
[tty_read()>read_chan()]
963 minimum = time = 0;

964 timeout = MAX_SCHEDULE_TIMEOUT;

965 if (!tty­>icanon) {

966 time = (HZ / 10) * TIME_CHAR(tty);

967 minimum = MIN_CHAR(tty);

968 if (minimum) {

969 if (time)

970 tty­>minimum_to_wake = 1;

971 else if (!waitqueue_active(&tty­>read_wait) ||

972 (tty­>minimum_to_wake > minimum))

973 tty­>minimum_to_wake = minimum;

974 } else {

975 timeout = 0;

976 if (time) {

977 timeout = time;

978 time = 0;

979 }

980 tty­>minimum_to_wake = minimum = 1;

981 }

982 }

983

984 if (file­>f_flags & O_NONBLOCK) {

985 if (down_trylock(&tty­>atomic_read))

986 return ­EAGAIN;

987 }

988 else {

989 if (down_interruptible(&tty­>atomic_read))

990 return ­ERESTARTSYS;

991 }

992

993 add_wait_queue(&tty­>read_wait, &wait);

994 set_bit(TTY_DONT_FLIP, &tty­>flags);

minimum_to_wake
965 982

1

wait_queue_t wait read_wait

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1202

tty­>flags TTY_DONT_FLIP 1

while drivers/char/n_tty.c

==================== drivers/char/n_tty.c 995 1037 ====================
[tty_read()>read_chan()]
995 while (nr) {

996 /* First test for status change. */

997 if (tty­>packet && tty­>link­>ctrl_status) {

998 unsigned char cs;

999 if (b != buf)

1000 break;

1001 cs = tty­>link­>ctrl_status;

1002 tty­>link­>ctrl_status = 0;

1003 put_user(cs, b++);

1004 nr­­;

1005 break;

1006 }

1007 /* This statement must be first before checking for input

1008 so that any interrupt will set the state back to

1009 TASK_RUNNING. */

1010 set_current_state(TASK_INTERRUPTIBLE);

1011

1012 if (((minimum ­ (b ­ buf)) < tty­>minimum_to_wake) &&

1013 ((minimum ­ (b ­ buf)) >= 1))

1014 tty­>minimum_to_wake = (minimum ­ (b ­ buf));

1015

1016 if (!input_available_p(tty, 0)) {

1017 if (test_bit(TTY_OTHER_CLOSED, &tty­>flags)) {

1018 retval = ­EIO;

1019 break;

1020 }

1021 if (tty_hung_up_p(file))

1022 break;

1023 if (!timeout)

1024 break;

1025 if (file­>f_flags & O_NONBLOCK) {

1026 retval = ­EAGAIN;

1027 break;

1028 }

1029 if (signal_pending(current)) {

1030 retval = ­ERESTARTSYS;

1031 break;

1032 }

1033 clear_bit(TTY_DONT_FLIP, &tty­>flags);

1034 timeout = schedule_timeout(timeout);

1035 set_bit(TTY_DONT_FLIP, &tty­>flags);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1203

1036 continue;

1037 }

ioctl() “packet
tty­>packet 1

tty­>link­>ctrl_status 0

b 928 buf (b­buf)
tty­>minimum_to_wake 1 1

1012~1014
input_available_p()

drivers/char/n_tty.c

==================== drivers/char/n_tty.c 879 888 ====================
[tty_read()>read_chan()>input_available_p()]
879 static inline int input_available_p(struct tty_struct *tty, int amt)

880 {

881 if (tty­>icanon) {

882 if (tty­>canon_data)

883 return 1;

884 } else if (tty­>read_cnt >= (amt ? amt : 1))

885 return 1;

886

887 return 0;

888 }

drivers/char/n_tty.c

==================== drivers/char/n_tty.c 1038 1098 ====================
[tty_read()>read_chan()]
1038 current­>state = TASK_RUNNING;

1039

1040 /* Deal with packet mode. */

1041 if (tty­>packet && b == buf) {

1042 put_user(TIOCPKT_DATA, b++);

1043 nr­­;

1044 }

1045

1046 if (tty­>icanon) {

1047 /* N.B. avoid overrun if nr == 0 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1204

1048 while (nr && tty­>read_cnt) {

1049 int eol;

1050

1051 eol = test_and_clear_bit(tty­>read_tail,

1052 &tty­>read_flags);

1053 c = tty­>read_buf[tty­>read_tail];

1054 spin_lock_irqsave(&tty­>read_lock, flags);

1055 tty­>read_tail = ((tty­>read_tail+1) &

1056 (N_TTY_BUF_SIZE­1));

1057 tty­>read_cnt­­;

1058 spin_unlock_irqrestore(&tty­>read_lock, flags);

1059

1060 if (!eol || (c != __DISABLED_CHAR)) {

1061 put_user(c, b++);

1062 nr­­;

1063 }

1064 if (eol) {

1065 /* this test should be redundant:

1066 * we shouldn't be reading data if

1067 * canon_data is 0

1068 */

1069 if (­­tty­>canon_data < 0)

1070 tty­>canon_data = 0;

1071 break;

1072 }

1073 }

1074 } else {

1075 int uncopied;

1076 uncopied = copy_from_read_buf(tty, &b, &nr);

1077 uncopied += copy_from_read_buf(tty, &b, &nr);

1078 if (uncopied) {

1079 retval = ­EFAULT;

1080 break;

1081 }

1082 }

1083

1084 /* If there is enough space in the read buffer now, let the

1085 * low­level driver know. We use n_tty_chars_in_buffer() to

1086 * check the buffer, as it now knows about canonical mode.

1087 * Otherwise, if the driver is throttled and the line is

1088 * longer than TTY_THRESHOLD_UNTHROTTLE in canonical mode,

1089 * we won't get any more characters.

1090 */

1091 if (n_tty_chars_in_buffer(tty) <= TTY_THRESHOLD_UNTHROTTLE)

1092 check_unthrottle(tty);

1093

1094 if (b ­ buf >= minimum)

1095 break;

1096 if (time)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1205

1097 timeout = time;

1098 }

packet
1041 1044 1046 1074

“\n tty­>read_cnt
tty­>read_buf[] 1055

tty­>read_tail tty_struct read_flags
tty­>read_tail 1

put_user()

__DISABLED_CHAR “\0 __DISABLED_CHAR
include/linux/tty.h

==================== include/linux/tty.h 125 130 ====================
125 /*

126 * This character is the same as _POSIX_VDISABLE: it cannot be used as

127 * a c_cc[] character, but indicates that a particular special character

128 * isn't in use (eg VINTR has no character etc)

129 */

130 #define __DISABLED_CHAR '\0'

1074 1082 tty­>read_buf[]

“\0 copy_from_read_buf()
drivers/char/n_tty.c

==================== drivers/char/n_tty.c 890 923 ====================
[tty_read()>read_chan()>copy_from_read_buf()]
890 /*

891 * Helper function to speed up read_chan. It is only called when

892 * ICANON is off; it copies characters straight from the tty queue to

893 * user space directly. It can be profitably called twice; once to

894 * drain the space from the tail pointer to the (physical) end of the

895 * buffer, and once to drain the space from the (physical) beginning of

896 * the buffer to head pointer.

897 */

898 static inline int copy_from_read_buf(struct tty_struct *tty,

899 unsigned char **b,

900 size_t *nr)

901

902 {

903 int retval;

904 ssize_t n;

905 unsigned long flags;

906

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1206

907 retval = 0;

908 spin_lock_irqsave(&tty­>read_lock, flags);

909 n = MIN(*nr, MIN(tty­>read_cnt, N_TTY_BUF_SIZE ­ tty­>read_tail));

910 spin_unlock_irqrestore(&tty­>read_lock, flags);

911 if (n) {

912 mb();

913 retval = copy_to_user(*b, &tty­>read_buf[tty­>read_tail], n);

914 n ­= retval;

915 spin_lock_irqsave(&tty­>read_lock, flags);

916 tty­>read_tail = (tty­>read_tail + n) & (N_TTY_BUF_SIZE­1);

917 tty­>read_cnt ­= n;

918 spin_unlock_irqrestore(&tty­>read_lock, flags);

919 *b += n;

920 *nr ­= n;

921 }

922 return retval;

923 }

copy_from_read_buf()

”TTY_THRESHOLD_UNTHROTTLE
check_unthrottle() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 105 116 ====================
[tty_read()>read_chan()>check_unthrottle()]
105 /*

106 * Check whether to call the driver.unthrottle function.

107 * We test the TTY_THROTTLED bit first so that it always

108 * indicates the current state.

109 */

110 static void check_unthrottle(struct tty_struct * tty)

111 {

112 if (tty­>count &&

113 test_and_clear_bit(TTY_THROTTLED, &tty­>flags) &&

114 tty­>driver.unthrottle)

115 tty­>driver.unthrottle(tty);

116 }

TTY_THROTTLED
try_driver tty_driver console_driver

con_unthrottle() drivers/char/console.c

==================== drivers/char/n_tty.c 105 116 ====================
[tty_read()>read_chan()>check_unthrottle()>con_unthrottle()]
2256 static void con_unthrottle(struct tty_struct *tty)

2257 {

2258 struct vt_struct *vt = (struct vt_struct *) tty­>driver_data;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1207

2259

2260 wake_up_interruptible(&vt­>paste_wait);

2261 }

read_chan() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 1099 1116 ====================
[tty_read()>read_chan()]
1099 clear_bit(TTY_DONT_FLIP, &tty­>flags);

1100 up(&tty­>atomic_read);

1101 remove_wait_queue(&tty­>read_wait, &wait);

1102

1103 if (!waitqueue_active(&tty­>read_wait))

1104 tty­>minimum_to_wake = minimum;

1105

1106 current­>state = TASK_RUNNING;

1107 size = b ­ buf;

1108 if (size) {

1109 retval = size;

1110 if (nr)

1111 clear_bit(TTY_PUSH, &tty­>flags);

1112 } else if (test_and_clear_bit(TTY_PUSH, &tty­>flags))

1113 goto do_it_again;

1114

1115 return retval;

1116 }

buf
b b­buf

nr

TTY_PUSH EOF 1

0
1113 goto 937 do_it_again

(1)

(2)

(3)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1208

CPU
keyboard_interrupt() PC

“A
“A 0x1c

CPU “A 0x1e CPU
“A

0xf0 0x1c
CPU

0x1e 1 0x9e CPU
7

Shift 0x2a 0x36
“a CPU 4 4
0x36 0x1e 0x9e 0xb6

ASCII “a CPU

PC 83
101 104 Ctrl

0xe0 Ctrl [0xe0 0x14]
[0xe0 0xf0 0x14] [0xe0 0x1d] [0xe0 0x9d]

“A 0x1c 0x1e
“A 0xf0 0x1c 0x9e

Shift 0x59 0x36
Shift 0xf0 0x59 0xb6
Ctrl 0xe0 0x14 0xe0 0x1d
Ctrl 0xe0 0xf0 0x14 0xe0 0x9d

CPU

“make code “break
code

keyboard_interrupt() drivers/char/pc_keyb.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1209

==================== drivers/char/pc_keyb.c 479 488 ====================
479 static void keyboard_interrupt(int irq, void *dev_id, struct pt_regs *regs)

480 {

481 #ifdef CONFIG_VT

482 kbd_pt_regs = regs;

483 #endif

484

485 spin_lock_irq(&kbd_controller_lock);

486 handle_kbd_event();

487 spin_unlock_irq(&kbd_controller_lock);

488 }

CPU
kbd_controller_lock handle_kbd_event()

==================== drivers/char/pc_keyb.c 446 476 ====================
[keyboard_interrupt()>handle_kbd_event()]
446 static unsigned char handle_kbd_event(void)

447 {

448 unsigned char status = kbd_read_status();

449 unsigned int work = 10000;

450

451 while ((­­work > 0) && (status & KBD_STAT_OBF)) {

452 unsigned char scancode;

453

454 scancode = kbd_read_input();

455

456 /* Error bytes must be ignored to make the

457 Synaptics touchpads compaq use work */

458 #if 1

459 /* Ignore error bytes */

460 if (!(status & (KBD_STAT_GTO | KBD_STAT_PERR)))

461 #endif

462 {

463 if (status & KBD_STAT_MOUSE_OBF)

464 handle_mouse_event(scancode);

465 else

466 handle_keyboard_event(scancode);

467 }

468

469 status = kbd_read_status();

470 }

471

472 if (!work)

473 printk(KERN_ERR "pc_keyb: controller jammed (0x%02X).\n", status);

474

475 return status;

476 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1210

KBD_STAT_OBF OBF “Output Buffer Full
1

kbd_read_status() kbd_read_input() include/asm­i386/keyboard.h

==================== include/asm­i386/keyboard.h 48 49 ====================
48 #define kbd_read_input() inb(KBD_DATA_REG)

49 #define kbd_read_status() inb(KBD_STATUS_REG)

PC

while

KBD_STAT_OBF 0 10000
1 handle_keyboard_event()

drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 429 438 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()]
429 static inline void handle_keyboard_event(unsigned char scancode)

430 {

431 #ifdef CONFIG_VT

432 kbd_exists = 1;

433 if (do_acknowledge(scancode))

434 handle_scancode(scancode, !(scancode & 0x80));

435 #endif

436 tasklet_schedule(&keyboard_tasklet);

437 }

438

KBD_REPLY_ACK 0xfa KBD_REPLY_RESEND 0xfe
CPU reply_expected

reply_expected 1 handle_keyboard_event()
reply_expected 1 do_acknowledge()
drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 265 289 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>do_acknowledge()]
265 static int do_acknowledge(unsigned char scancode)

266 {

267 if (reply_expected) {

268 /* Unfortunately, we must recognise these codes only if we know they

269 * are known to be valid (i.e., after sending a command), because there

270 * are some brain­damaged keyboards (yes, FOCUS 9000 again) which have

271 * keys with such codes :(

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1211

272 */

273 if (scancode == KBD_REPLY_ACK) {

274 acknowledge = 1;

275 reply_expected = 0;

276 return 0;

277 } else if (scancode == KBD_REPLY_RESEND) {

278 resend = 1;

279 reply_expected = 0;

280 return 0;

281 }

282 /* Should not happen... */

283 #if 0

284 printk(KERN_DEBUG "keyboard reply expected ­ got %02x\n",

285 scancode);

286 #endif

287 }

288 return 1;

289 }

handle_scancode() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 201 237 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()]
201 void handle_scancode(unsigned char scancode, int down)

202 {

203 unsigned char keycode;

204 char up_flag = down ? 0 : 0200;

205 char raw_mode;

206

207 pm_access(pm_kbd);

208

209 do_poke_blanked_console = 1;

210 tasklet_schedule(&console_tasklet);

211 add_keyboard_randomness(scancode | up_flag);

212

213 tty = ttytab? ttytab[fg_console]: NULL;

214 if (tty && (!tty­>driver_data)) {

215 /*

216 * We touch the tty structure via the the ttytab array

217 * without knowing whether or not tty is open, which

218 * is inherently dangerous. We currently rely on that

219 * fact that console_open sets tty­>driver_data when

220 * it opens it, and clears it when it closes it.

221 */

222 tty = NULL;

223 }

224 kbd = kbd_table + fg_console;

225 if ((raw_mode = (kbd­>kbdmode == VC_RAW))) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1212

226 put_queue(scancode | up_flag);

227 /* we do not return yet, because we want to maintain

228 the key_down array, so that we have the correct

229 values when finishing RAW mode or when changing VT's */

230 }

231

232 /*

233 * Convert scancode to keycode

234 */

235 if (!kbd_translate(scancode, &keycode, raw_mode))

236 return;

237

down 1 0 up_flag

pm_access()

3 bh
tasklet tasklet

console_tasklet() tasklet
tasklet_schedule()

add_keyboard_randomness()

PC tty_struct
kbd_struct Alt

tty_struct kbd_struct
ttytab[] kbd_table[] fg_console

tty kbd tty_struct
kbd_struct

VC_RAW ioctl()
raw

VC_RAW

kbd_translate() include/asm­i386/keyboard.h
pckbd_translate()

==================== include/asm­i386/keyboard.h 34 34 ====================
34 #define kbd_translate pckbd_translate

PC drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 291 359 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1213

[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()>pckbd_translate()]
291 int pckbd_translate(unsigned char scancode, unsigned char *keycode,

292 char raw_mode)

293 {

294 static int prev_scancode;

295

296 /* special prefix scancodes.. */

297 if (scancode == 0xe0 || scancode == 0xe1) {

298 prev_scancode = scancode;

299 return 0;

300 }

301

302 /* 0xFF is sent by a few keyboards, ignore it. 0x00 is error */

303 if (scancode == 0x00 || scancode == 0xff) {

304 prev_scancode = 0;

305 return 0;

306 }

307

308 scancode &= 0x7f;

309

310 if (prev_scancode) {

311 /*

312 * usually it will be 0xe0, but a Pause key generates

313 * e1 1d 45 e1 9d c5 when pressed, and nothing when released

314 */

315 if (prev_scancode != 0xe0) {

316 if (prev_scancode == 0xe1 && scancode == 0x1d) {

317 prev_scancode = 0x100;

318 return 0;

319 } else if (prev_scancode == 0x100 && scancode == 0x45) {

320 *keycode = E1_PAUSE;

321 prev_scancode = 0;

322 } else {

323 #ifdef KBD_REPORT_UNKN

324 if (!raw_mode)

325 printk(KERN_INFO "keyboard: unknown e1 escape sequence\n");

326 #endif

327 prev_scancode = 0;

328 return 0;

329 }

330 } else {

331 prev_scancode = 0;

332 /*

333 * The keyboard maintains its own internal caps lock and

334 * num lock statuses. In caps lock mode E0 AA precedes make

335 * code and E0 2A follows break code. In num lock mode,

336 * E0 2A precedes make code and E0 AA follows break code.

337 * We do our own book­keeping, so we will just ignore these.

338 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1214

339 /*

340 * For my keyboard there is no caps lock mode, but there are

341 * both Shift­L and Shift­R modes. The former mode generates

342 * E0 2A / E0 AA pairs, the latter E0 B6 / E0 36 pairs.

343 * So, we should also ignore the latter. ­ aeb@cwi.nl

344 */

345 if (scancode == 0x2a || scancode == 0x36)

346 return 0;

347

348 if (e0_keys[scancode])

349 *keycode = e0_keys[scancode];

350 else {

351 #ifdef KBD_REPORT_UNKN

352 if (!raw_mode)

353 printk(KERN_INFO "keyboard: unknown scancode e0 %02x\n",

354 scancode);

355 #endif

356 return 0;

357 }

358 }

359 } else if (scancode >= SC_LIM) {

0xe0 0xe1
prev_scancode

prev_scancode 0 handle_scancode()
236 0x00 0xff

prev_scancode 0
0xe0

0xe1 Pause [0xe1 0x1d
0x45] [0xe1 0x1d 0xc5] 0x100 316 329

E1_PAUSE Pause
0xe0 Shift NumLock

CapsLock Shift Linux
Shift 345 346

drivers/char/pc_keyb.c e0_keys[]

==================== drivers/char/pc_keyb.c 227 244 ====================
227 static unsigned char e0_keys[128] = {

228 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00­0x07 */

229 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08­0x0f */

230 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10­0x17 */

231 0, 0, 0, 0, E0_KPENTER, E0_RCTRL, 0, 0, /* 0x18­0x1f */

232 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20­0x27 */

233 0, 0, 0, 0, 0, 0, 0, 0, /* 0x28­0x2f */

234 0, 0, 0, 0, 0, E0_KPSLASH, 0, E0_PRSCR, /* 0x30­0x37 */

235 E0_RALT, 0, 0, 0, 0, E0_F13, E0_F14, E0_HELP, /* 0x38­0x3f */

mailto:aeb@cwi.nl
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1215

236 E0_DO, E0_F17, 0, 0, 0, 0, E0_BREAK, E0_HOME, /* 0x40­0x47 */

237 E0_UP, E0_PGUP, 0, E0_LEFT, E0_OK, E0_RIGHT, E0_KPMINPLUS, E0_END,/* 0x48­0x4f */

238 E0_DOWN, E0_PGDN, E0_INS, E0_DEL, 0, 0, 0, 0, /* 0x50­0x57 */

239 0, 0, 0, E0_MSLW, E0_MSRW, E0_MSTM, 0, 0, /* 0x58­0x5f */

240 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60­0x67 */

241 0, 0, 0, 0, 0, 0, 0, E0_MACRO, /* 0x68­0x6f */

242 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70­0x77 */

243 0, 0, 0, 0, 0, 0, 0, 0 /* 0x78­0x7f */

244 };

Ctrl [0xe0 0x1d] 0x1d E0_RCTRL
PageUp [0xe0 0x49] 0x49 E0_PGUP

drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 131 158 ====================
131 /*

132 * Translation of escaped scancodes to keycodes.

133 * This is now user­settable.

134 * The keycodes 1­88,96­111,119 are fairly standard, and

135 * should probably not be changed ­ changing might confuse X.

136 * X also interprets scancode 0x5d (KEY_Begin).

137 *

138 * For 1­88 keycode equals scancode.

139 */

140

141 #define E0_KPENTER 96

142 #define E0_RCTRL 97

143 #define E0_KPSLASH 98

144 #define E0_PRSCR 99

145 #define E0_RALT 100

146 #define E0_BREAK 101 /* (control­pause) */

147 #define E0_HOME 102

148 #define E0_UP 103

149 #define E0_PGUP 104

150 #define E0_LEFT 105

151 #define E0_RIGHT 106

152 #define E0_END 107

153 #define E0_DOWN 108

154 #define E0_PGDN 109

155 #define E0_INS 110

156 #define E0_DEL 111

157

158 #define E1_PAUSE 119

e0_keys[] ioctl() X
Window

==================== drivers/char/pc_keyb.c 359 384 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1216

[keyboard_interrupt()>handle_kbd_enevt()>handle_keyboard_event()>handle_scancode()>pckbd_translate()]
359 } else if (scancode >= SC_LIM) {

360 /* This happens with the FOCUS 9000 keyboard

361 Its keys PF1..PF12 are reported to generate

362 55 73 77 78 79 7a 7b 7c 74 7e 6d 6f

363 Moreover, unless repeated, they do not generate

364 key­down events, so we have to zero up_flag below */

365 /* Also, Japanese 86/106 keyboards are reported to

366 generate 0x73 and 0x7d for \ ­ and \ | respectively. */

367 /* Also, some Brazilian keyboard is reported to produce

368 0x73 and 0x7e for \ ? and KP­dot, respectively. */

369

370 *keycode = high_keys[scancode ­ SC_LIM];

371

372 if (!*keycode) {

373 if (!raw_mode) {

374 #ifdef KBD_REPORT_UNKN

375 printk(KERN_INFO "keyboard: unrecognized scancode (%02x)"

376 " ­ ignored\n", scancode);

377 #endif

378 }

379 return 0;

380 }

381 } else

382 *keycode = scancode;

383 return 1;

384 }

SC_LIM 89 0x59 SC_LIM 382
high_keys[] (scancode ­ SC_LIM)

drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 194 201 ====================
194 static unsigned char high_keys[128 ­ SC_LIM] = {

195 RGN1, RGN2, RGN3, RGN4, 0, 0, 0, /* 0x59­0x5f */

196 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60­0x67 */

197 0, 0, 0, 0, 0, FOCUS_PF11, 0, FOCUS_PF12, /* 0x68­0x6f */

198 0, 0, 0, FOCUS_PF2, FOCUS_PF9, 0, 0, FOCUS_PF3, /* 0x70­0x77 */

199 FOCUS_PF4, FOCUS_PF5, FOCUS_PF6, FOCUS_PF7, /* 0x78­0x7b */

200 FOCUS_PF8, JAP_86, FOCUS_PF10, 0 /* 0x7c­0x7f */

201 };

89 127 FOCUS_PF2 PF2
FOCUS_PF1 85

0xe0 128
126 120

120 126

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1217

96 111 PC Macintoshi

handle_scancode() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 238 269 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()]
238 /*

239 * At this point the variable `keycode' contains the keycode.

240 * Note: the keycode must not be 0 (++Geert: on m68k 0 is valid).

241 * We keep track of the up/down status of the key, and

242 * return the keycode if in MEDIUMRAW mode.

243 */

244

245 if (up_flag) {

246 rep = 0;

247 if(!test_and_clear_bit(keycode, key_down))

248 up_flag = kbd_unexpected_up(keycode);

249 } else

250 rep = test_and_set_bit(keycode, key_down);

251

252 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */

253 if (keycode == SYSRQ_KEY) {

254 sysrq_pressed = !up_flag;

255 return;

256 } else if (sysrq_pressed) {

257 if (!up_flag) {

258 handle_sysrq(kbd_sysrq_xlate[keycode], kbd_pt_regs, kbd, tty);

259 return;

260 }

261 }

262 #endif

263

264 if (kbd­>kbdmode == VC_MEDIUMRAW) {

265 /* soon keycodes will require more than one byte */

266 put_queue(keycode + up_flag);

267 raw_mode = 1; /* Most key classes will be ignored */

268 }

269

up_flag down up

key_down
key_down 1 1

250

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1218

0 0
kbd_unexpected_up()

SysRq
VC_MEDIUMRAW

266

ASCII

ASCII
ASCII

==================== drivers/char/keyboard.c 270 324 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()]
270 /*

271 * Small change in philosophy: earlier we defined repetition by

272 * rep = keycode == prev_keycode;

273 * prev_keycode = keycode;

274 * but now by the fact that the depressed key was down already.

275 * Does this ever make a difference? Yes.

276 */

277

278 /*

279 * Repeat a key only if the input buffers are empty or the

280 * characters get echoed locally. This makes key repeat usable

281 * with slow applications and under heavy loads.

282 */

283 if (!rep ||

284 (vc_kbd_mode(kbd,VC_REPEAT) && tty &&

285 (L_ECHO(tty) || (tty­>driver.chars_in_buffer(tty) == 0)))) {

286 u_short keysym;

287 u_char type;

288

289 /* the XOR below used to be an OR */

290 int shift_final = (shift_state | kbd­>slockstate) ^

291 kbd­>lockstate;

292 ushort *key_map = key_maps[shift_final];

293

294 if (key_map != NULL) {

295 keysym = key_map[keycode];

296 type = KTYP(keysym);

297

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1219

298 if (type >= 0xf0) {

299 type ­= 0xf0;

300 if (raw_mode && ! (TYPES_ALLOWED_IN_RAW_MODE & (1 << type)))

301 return;

302 if (type == KT_LETTER) {

303 type = KT_LATIN;

304 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {

305 key_map = key_maps[shift_final ^ (1<<KG_SHIFT)];

306 if (key_map)

307 keysym = key_map[keycode];

308 }

309 }

310 (*key_handler[type])(keysym & 0xff, up_flag);

311 if (type != KT_SLOCK)

312 kbd­>slockstate = 0;

313 } else {

314 /* maybe only if (kbd­>kbdmode == VC_UNICODE) ? */

315 if (!up_flag && !raw_mode)

316 to_utf8(keysym);

317 }

318 } else {

319 /* maybe beep? */

320 /* we have at least to update shift_state */

321 #if 1 /* how? two almost equivalent choices follow */

322 compute_shiftstate();

323 kbd­>slockstate = 0; /* play it safe */

324 #else

.

==================== drivers/char/keyboard.c 329 332 ====================
329 #endif

330 }

331 }

332 }

rep 0
VC_REPEAT

“echo

keysym
127 128 16 8

8 Linux ASCII
ioctl()

“A “A”

0x41 Shift Shift
“a 0x61 Ctrl

4 Alt Ctrl Altgr Alt

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1220

Shift
shift_state 28 0 4

4 Alt Ctrl Altgr Shift 16
7 drivers/char/defkeymap.c

key_maps[] shift_state

==================== drivers/char/defkeymap.c 141 146 ====================
141 ushort *key_maps[MAX_NR_KEYMAPS] = {

142 plain_map, shift_map, altgr_map, 0,

143 ctrl_map, shift_ctrl_map, 0, 0,

144 alt_map, 0, 0, 0,

145 ctrl_alt_map, 0

146 };

shift_state 0 plain_map[] Shift
shift_state 1 shif_t_map[] Alt Ctrl Alt­Ctrl­B shift_state

12 ctrl_alt_map[] drivers/char/defkeymap.c
drivers/char/defkeymap.map

ioctl() /usr/bin/loadkeys

“sticky
kbd­>slockstate 1 Shift

kbd­>lockstate 1 290 291 shift_state
kbd­>slockstate kbd­>lockstate shift_final key_maps[]

292
295

7 plain_map[]

==================== drivers/char/defkeymap.c 8 25 ====================
8 u_short plain_map[NR_KEYS] = {

9 0xf200, 0xf01b, 0xf031, 0xf032, 0xf033, 0xf034, 0xf035, 0xf036,

10 0xf037, 0xf038, 0xf039, 0xf030, 0xf02d, 0xf03d, 0xf07f, 0xf009,

11 0xfb71, 0xfb77, 0xfb65, 0xfb72, 0xfb74, 0xfb79, 0xfb75, 0xfb69,

12 0xfb6f, 0xfb70, 0xf05b, 0xf05d, 0xf201, 0xf702, 0xfb61, 0xfb73,

13 0xfb64, 0xfb66, 0xfb67, 0xfb68, 0xfb6a, 0xfb6b, 0xfb6c, 0xf03b,

14 0xf027, 0xf060, 0xf700, 0xf05c, 0xfb7a, 0xfb78, 0xfb63, 0xfb76,

15 0xfb62, 0xfb6e, 0xfb6d, 0xf02c, 0xf02e, 0xf02f, 0xf700, 0xf30c,

16 0xf703, 0xf020, 0xf207, 0xf100, 0xf101, 0xf102, 0xf103, 0xf104,

17 0xf105, 0xf106, 0xf107, 0xf108, 0xf109, 0xf208, 0xf209, 0xf307,

18 0xf308, 0xf309, 0xf30b, 0xf304, 0xf305, 0xf306, 0xf30a, 0xf301,

19 0xf302, 0xf303, 0xf300, 0xf310, 0xf206, 0xf200, 0xf03c, 0xf10a,

20 0xf10b, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200,

21 0xf30e, 0xf702, 0xf30d, 0xf01c, 0xf701, 0xf205, 0xf114, 0xf603,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1221

22 0xf118, 0xf601, 0xf602, 0xf117, 0xf600, 0xf119, 0xf115, 0xf116,

23 0xf11a, 0xf10c, 0xf10d, 0xf11b, 0xf11c, 0xf110, 0xf311, 0xf11d,

24 0xf200, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200, 0xf200,

25 };

“A 0x1e 0x1e 89
0xfb61 8 8 “a 0x61 8

0xf0 0xf0 0xf0 Unicode UTF­8
include/linux/keyboard.h 13

==================== include/linux/keyboard.h 35 47 ====================
35 #define KT_LATIN 0 /* we depend on this being zero */

36 #define KT_LETTER 11 /* symbol that can be acted upon by CapsLock */

37 #define KT_FN 1

38 #define KT_SPEC 2

39 #define KT_PAD 3

40 #define KT_DEAD 4

41 #define KT_CONS 5

42 #define KT_CUR 6

43 #define KT_SHIFT 7

44 #define KT_META 8

45 #define KT_ASCII 9

46 #define KT_LOCK 10

47 #define KT_SLOCK 12

KT_LATIN KT_LETTER KT_FN KT_SPEC
KT_PAD KT_SHIFT KT_ASCII
“ASCII KT_DEAD

“A 0xfb KT_LETTER
handle_scancode() KTYP() 8

0xf0 299 312
Shift shift_state

TYPES_ALLOWED_IN_RAW_MODE drivers/char/keyboard.c

==================== drivers/char/keyboard.c 121 123 ====================
121 /* Key types processed even in raw modes */

122

123 #define TYPES_ALLOWED_IN_RAW_MODE ((1 << KT_SPEC) | (1 << KT_SHIFT))

KT_SPEC KT_SHIFT

Shift KT_LETTER
KT_LATIN CapsLock KT_LETTER KT_LATIN

CapsLock Led Shift

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1222

key_handler[]
drivers/char/keyboard.c

==================== drivers/char/keyboard.c 115 119 ====================
115 static k_hand key_handler[16] = {

116 do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift,

117 do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_dead2,

118 do_ignore, do_ignore

119 };

16 13 3
KT_LATIN do_self() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 542 557 ====================
542 static void do_self(unsigned char value, char up_flag)

543 {

544 if (up_flag)

545 return; /* no action, if this is a key release */

546

547 if (diacr)

548 value = handle_diacr(value);

549

550 if (dead_key_next) {

551 dead_key_next = 0;

552 diacr = value;

553 return;

554 }

555

556 put_queue(value);

557 }

up_flag 0
diacr dead_key_next 0

put_queue()
diacr dead_key_next “accent

“diacritical “A
Ctrl “. “o “A

diacr dead_key_next
“. 0x34 Ctrl ctrl_map[]
0xf20e KT_SPEC key_handler[]

do_spec() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 525 535 ====================
525 static void do_spec(unsigned char value, char up_flag)

526 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1223

527 if (up_flag)

528 return;

529 if (value >= SIZE(spec_fn_table))

530 return;

531 if ((kbd­>kbdmode == VC_RAW || kbd­>kbdmode == VC_MEDIUMRAW) &&

532 !(SPECIALS_ALLOWED_IN_RAW_MODE & (1 << value)))

533 return;

534 spec_fn_table[value]();

535 }

drivers/char/keyboard.c spec_fn_table[]

==================== drivers/char/keyboard.c 132 138 ====================
132 static void_fnp spec_fn_table[] = {

133 do_null, enter, show_ptregs, show_mem,

134 show_state, send_intr, lastcons, caps_toggle,

135 num, hold, scroll_forw, scroll_back,

136 boot_it, caps_on, compose, SAK,

137 decr_console, incr_console, spawn_console, bare_num

138 };

8 0x0e compose()

==================== drivers/char/keyboard.c 488 491 ====================
488 static void compose(void)

489 {

490 dead_key_next = 1;

491 }

“o do_self() dead_key_next 1 diacr
dead_key_next 0 “A diacr 0 handle_diacr()
drivers/char/keyboard.c

==================== drivers/char/keyboard.c 589 613 ====================
589 /*

590 * We have a combining character DIACR here, followed by the character CH.

591 * If the combination occurs in the table, return the corresponding value.

592 * Otherwise, if CH is a space or equals DIACR, return DIACR.

593 * Otherwise, conclude that DIACR was not combining after all,

594 * queue it and return CH.

595 */

596 unsigned char handle_diacr(unsigned char ch)

597 {

598 int d = diacr;

599 int i;

600

601 diacr = 0;

602

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1224

603 for (i = 0; i < accent_table_size; i++) {

604 if (accent_table[i].diacr == d && accent_table[i].base == ch)

605 return accent_table[i].result;

606 }

607

608 if (ch == ' ' || ch == d)

609 return d;

610

611 put_queue(d);

612 return ch;

613 }

accent_table[] 605
do_self()

key_handler[]
handle_scancode() 0xf0

0xf0 Unicode UTF­8 handle_scancode()

==================== drivers/char/keyboard.c 313 317 ====================
313 } else {

314 /* maybe only if (kbd­>kbdmode == VC_UNICODE) ? */

315 if (!up_flag && !raw_mode)

316 to_utf8(keysym);

317 }

to_utf8() to_utf8() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 171 184 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()>to_utf8()]
171 void to_utf8(ushort c) {

172 if (c < 0x80)

173 put_queue(c); /* 0******* */

174 else if (c < 0x800) {

175 put_queue(0xc0 | (c >> 6)); /* 110***** 10****** */

176 put_queue(0x80 | (c & 0x3f));

177 } else {

178 put_queue(0xe0 | (c >> 12)); /* 1110**** 10****** 10****** */

179 put_queue(0x80 | ((c >> 6) & 0x3f));

180 put_queue(0x80 | (c & 0x3f));

181 }

182 /* UTF­8 is defined for words of up to 31 bits,

183 but we need only 16 bits here */

184 }

UTF­8
Unicode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1225

handle_scancode() key_maps[] shift_final
318 330

key_down[]
shift_state key_down[] shift_state handle_scancode()

==================== drivers/char/keyboard.c 322 323 ====================
322 compute_shiftstate();

323 kbd­>slockstate = 0; /* play it safe */

compute_shiftstate() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 737 763 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_keyboard_event()>handle_scancode()>compute_shiftstate()]
737 /* called after returning from RAW mode or when changing consoles ­

738 recompute k_down[] and shift_state from key_down[] */

739 /* maybe called when keymap is undefined, so that shiftkey release is seen */

740 void compute_shiftstate(void)

741 {

742 int i, j, k, sym, val;

743

744 shift_state = 0;

745 for(i=0; i < SIZE(k_down); i++)

746 k_down[i] = 0;

747

748 for(i=0; i < SIZE(key_down); i++)

749 if(key_down[i]) { /* skip this word if not a single bit on */

750 k = i*BITS_PER_LONG;

751 for(j=0; j<BITS_PER_LONG; j++,k++)

752 if(test_bit(k, key_down)) {

753 sym = U(plain_map[k]);

754 if(KTYP(sym) == KT_SHIFT || KTYP(sym) == KT_SLOCK) {

755 val = KVAL(sym);

756 if (val == KVAL(K_CAPSSHIFT))

757 val = KVAL(K_SHIFT);

758 k_down[val]++;

759 shift_state |= (1<<val);

760 }

761 }

762 }

763 }

key_down[] plain_map[]
shiftstate 1

handle_scancode()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1226

put_queue() drivers/char/keyboard.c

==================== drivers/char/keyboard.c 335 342 ====================
335 void put_queue(int ch)

336 {

337 wake_up(&keypress_wait);

338 if (tty) {

339 tty_insert_flip_char(tty, ch, 0);

340 con_schedule_flip(tty);

341 }

342 }

tty_struct “flip ”

include/linux/tty_flip.h

==================== include/linux/tty_flip.h 10 18 ====================
[put_queue()>tty_insert_flip_char()]
10 _INLINE_ void tty_insert_flip_char(struct tty_struct *tty,

11 unsigned char ch, char flag)

12 {

13 if (tty­>flip.count < TTY_FLIPBUF_SIZE) {

14 tty­>flip.count++;

15 *tty­>flip.flag_buf_ptr++ = flag;

16 *tty­>flip.char_buf_ptr++ = ch;

17 }

CPU

3 bh
tasklet flip

con_schedule_flip() tasklet include/linux/kbd_kern.h
tasklet console_tasklet() tasklet

==================== include/linux/kbd_kern.h 164 168 ====================
[put_queue()>con_schedule_flip()]
164 extern inline void con_schedule_flip(struct tty_struct *t)

165 {

166 queue_task(&t­>flip.tqueue, &con_task_queue);

167 tasklet_schedule(&console_tasklet);

168 }

tasklet drivers/char/console.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1227

==================== drivers/char/console.c 2372 2372 ====================
2372 DECLARE_TASKLET_DISABLED(console_tasklet, console_softint, 0);

3 tasklet console_softint()
drivers/char/console.c

==================== drivers/char/console.c 2003 2045 ====================
2003 /*

2004 * This is the console switching tasklet.

2005 *

2006 * Doing console switching in a tasklet allows

2007 * us to do the switches asynchronously (needed when we want

2008 * to switch due to a keyboard interrupt). Synchronization

2009 * with other console code and prevention of re­entrancy is

2010 * ensured with console_lock.

2011 */

2012 static void console_softint(unsigned long ignored)

2013 {

2014 /* Runs the task queue outside of the console lock. These

2015 * callbacks can come back into the console code and thus

2016 * will perform their own locking.

2017 */

2018 run_task_queue(&con_task_queue);

2019

2020 spin_lock_irq(&console_lock);

2021

2022 if (want_console >= 0) {

2023 if (want_console != fg_console && vc_cons_allocated(want_console)) {

2024 hide_cursor(fg_console);

2025 change_console(want_console);

2026 /* we only changed when the console had already

2027 been allocated ­ a new console is not created

2028 in an interrupt routine */

2029 }

2030 want_console = ­1;

2031 }

2032 if (do_poke_blanked_console) { /* do not unblank for a LED change */

2033 do_poke_blanked_console = 0;

2034 poke_blanked_console();

2035 }

2036 if (scrollback_delta) {

2037 int currcons = fg_console;

2038 clear_selection();

2039 if (vcmode == KD_TEXT)

2040 sw­>con_scrolldelta(vc_cons[currcons].d, scrollback_delta);

2041 scrollback_delta = 0;

2042 }

2043

2044 spin_unlock_irq(&console_lock);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1228

2045 }

console_softint()
Alt F2

run_task_queue()
con_schedule_flip() tty_struct flip.tqueue

initialize_tty_struct()
flush_to_ldisc() drivers/char/tty_io.c

==================== drivers/char/tty_io.c 1863 1901 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()]
1863 /*

1864 * This routine is called out of the software interrupt to flush data

1865 * from the flip buffer to the line discipline.

1866 */

1867 static void flush_to_ldisc(void *private_)

1868 {

1869 struct tty_struct *tty = (struct tty_struct *) private_;

1870 unsigned char *cp;

1871 char *fp;

1872 int count;

1873 unsigned long flags;

1874

1875 if (test_bit(TTY_DONT_FLIP, &tty­>flags)) {

1876 queue_task(&tty­>flip.tqueue, &tq_timer);

1877 return;

1878 }

1879 if (tty­>flip.buf_num) {

1880 cp = tty­>flip.char_buf + TTY_FLIPBUF_SIZE;

1881 fp = tty­>flip.flag_buf + TTY_FLIPBUF_SIZE;

1882 tty­>flip.buf_num = 0;

1883

1884 save_flags(flags); cli();

1885 tty­>flip.char_buf_ptr = tty­>flip.char_buf;

1886 tty­>flip.flag_buf_ptr = tty­>flip.flag_buf;

1887 } else {

1888 cp = tty­>flip.char_buf;

1889 fp = tty­>flip.flag_buf;

1890 tty­>flip.buf_num = 1;

1891

1892 save_flags(flags); cli();

1893 tty­>flip.char_buf_ptr = tty­>flip.char_buf + TTY_FLIPBUF_SIZE;

1894 tty­>flip.flag_buf_ptr = tty­>flip.flag_buf + TTY_FLIPBUF_SIZE;

1895 }

1896 count = tty­>flip.count;

1897 tty­>flip.count = 0;

1898 restore_flags(flags);

1899

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1229

1900 tty­>ldisc.receive_buf(tty, cp, fp, count);

1901 }

tty­>ldisc.receive_buf() flip

tasklet
flush_to_ldisc() put_queue()

tasklet
CPU CPU

tasklet

“flip
include/linux/tty.h

==================== include/linux/tty.h 139 149 ====================
139 struct tty_flip_buffer {

140 struct tq_struct tqueue;

141 struct semaphore pty_sem;

142 char *char_buf_ptr;

143 unsigned char *flag_buf_ptr;

144 int count;

145 int buf_num;

146 unsigned char char_buf[2*TTY_FLIPBUF_SIZE];

147 char flag_buf[2*TTY_FLIPBUF_SIZE];

148 unsigned char slop[4]; /* N.B. bug overwrites buffer by 1 */

149 };

char_buf[] TTY_FLIPBUF_SIZE char_buf[]
flag_buf[] flag put_queue()

tty_insert_flip_char() flag 0 char_buf_ptr flag_buf_ptr
tty_insert_flip_char() flush_to_ldisc()

tty_insert_flip_char()
flush_to_ldisc()

tty_struct TTY_DONT_FLIP 1 tq_timer
read_chan()

TTY_DONT_FLIP 1 0
tty_ldisc receive_buf tty_ldisc_N_TTY

n_tty_receive_buf() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 705 778 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()]
705 static void n_tty_receive_buf(struct tty_struct *tty, const unsigned char *cp,

706 char *fp, int count)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1230

707 {

708 const unsigned char *p;

709 char *f, flags = TTY_NORMAL;

710 int i;

711 char buf[64];

712 unsigned long cpuflags;

713

714 if (!tty­>read_buf)

715 return;

716

717 if (tty­>real_raw) {

718 spin_lock_irqsave(&tty­>read_lock, cpuflags);

719 i = MIN(count, MIN(N_TTY_BUF_SIZE ­ tty­>read_cnt,

720 N_TTY_BUF_SIZE ­ tty­>read_head));

721 memcpy(tty­>read_buf + tty­>read_head, cp, i);

722 tty­>read_head = (tty­>read_head + i) & (N_TTY_BUF_SIZE­1);

723 tty­>read_cnt += i;

724 cp += i;

725 count ­= i;

726

727 i = MIN(count, MIN(N_TTY_BUF_SIZE ­ tty­>read_cnt,

728 N_TTY_BUF_SIZE ­ tty­>read_head));

729 memcpy(tty­>read_buf + tty­>read_head, cp, i);

730 tty­>read_head = (tty­>read_head + i) & (N_TTY_BUF_SIZE­1);

731 tty­>read_cnt += i;

732 spin_unlock_irqrestore(&tty­>read_lock, cpuflags);

733 } else {

734 for (i=count, p = cp, f = fp; i; i­­, p++) {

735 if (f)

736 flags = *f++;

737 switch (flags) {

738 case TTY_NORMAL:

739 n_tty_receive_char(tty, *p);

740 break;

741 case TTY_BREAK:

742 n_tty_receive_break(tty);

743 break;

744 case TTY_PARITY:

745 case TTY_FRAME:

746 n_tty_receive_parity_error(tty, *p);

747 break;

748 case TTY_OVERRUN:

749 n_tty_receive_overrun(tty);

750 break;

751 default:

752 printk("%s: unknown flag %d\n",

753 tty_name(tty, buf), flags);

754 break;

755 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1231

756 }

757 if (tty­>driver.flush_chars)

758 tty­>driver.flush_chars(tty);

759 }

760

761 if (!tty­>icanon && (tty­>read_cnt >= tty­>minimum_to_wake)) {

762 kill_fasync(&tty­>fasync, SIGIO, POLL_IN);

763 if (waitqueue_active(&tty­>read_wait))

764 wake_up_interruptible(&tty­>read_wait);

765 }

766

767 /*

768 * Check the remaining room for the input canonicalization

769 * mode. We don't want to throttle the driver if we're in

770 * canonical mode and don't have a newline yet!

771 */

772 if (n_tty_receive_room(tty) < TTY_THRESHOLD_THROTTLE) {

773 /* check TTY_THROTTLED first so it indicates our state */

774 if (!test_and_set_bit(TTY_THROTTLED, &tty­>flags) &&

775 tty­>driver.throttle)

776 tty­>driver.throttle(tty);

777 }

778 }

tty_struct raw real_raw real_raw
Break

termios ioctl() TCSETSF

real_raw flip read_buf[]
718 732 734 756 for

flip flag flag
tty_insert_flip_char() flip flag 0

TTY_NORMAL n_tty_receive_char() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 500 552 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()]
500 static inline void n_tty_receive_char(struct tty_struct *tty, unsigned char c)

501 {

502 if (tty­>raw) {

503 put_tty_queue(c, tty);

504 return;

505 }

506

507 if (tty­>stopped && !tty­>flow_stopped &&

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1232

508 I_IXON(tty) && I_IXANY(tty)) {

509 start_tty(tty);

510 return;

511 }

512

513 if (I_ISTRIP(tty))

514 c &= 0x7f;

515 if (I_IUCLC(tty) && L_IEXTEN(tty))

516 c=tolower(c);

517

518 if (tty­>closing) {

519 if (I_IXON(tty)) {

520 if (c == START_CHAR(tty))

521 start_tty(tty);

522 else if (c == STOP_CHAR(tty))

523 stop_tty(tty);

524 }

525 return;

526 }

527

528 /*

529 * If the previous character was LNEXT, or we know that this

530 * character is not one of the characters that we'll have to

531 * handle specially, do shortcut processing to speed things

532 * up.

533 */

534 if (!test_bit(c, &tty­>process_char_map) || tty­>lnext) {

535 finish_erasing(tty);

536 tty­>lnext = 0;

537 if (L_ECHO(tty)) {

538 if (tty­>read_cnt >= N_TTY_BUF_SIZE­1) {

539 put_char('\a', tty); /* beep if no space */

540 return;

541 }

542 /* Record the column of first canon char. */

543 if (tty­>canon_head == tty­>read_head)

544 tty­>canon_column = tty­>column;

545 echo_char(c, tty);

546 }

547 if (I_PARMRK(tty) && c == (unsigned char) '\377')

548 put_tty_queue(c, tty);

549 put_tty_queue(c, tty);

550 return;

551 }

552

flip read_buf[]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1233

==================== drivers/char/n_tty.c 89 103 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>put_tty_queue()]
89 static inline void put_tty_queue(unsigned char c, struct tty_struct *tty)

90 {

91 unsigned long flags;

92 /*

93 * The problem of stomping on the buffers ends here.

94 * Why didn't anyone see this one comming? ­­AJK

95 */

96 spin_lock_irqsave(&tty­>read_lock, flags);

97 if (tty­>read_cnt < N_TTY_BUF_SIZE) {

98 tty­>read_buf[tty­>read_head] = c;

99 tty­>read_head = (tty­>read_head + 1) & (N_TTY_BUF_SIZE­1);

100 tty­>read_cnt++;

101 }

102 spin_unlock_irqrestore(&tty­>read_lock, flags);

103 }

read_buf[] tty­>read_head
read_buf[]

”

XON/XOFF Ctrl­Q Ctrl­S

try_struct process_char_map

put_tty_queue() read_buf[] 535 550
“erase Backspace
process_char_map “erase finish_erasing()

echo_char() read_buf[]
“\a

put_char()
C inline drivers/char/n_tty.c

==================== drivers/char/n_tty.c 301 304 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>put_char()]
301 static inline void put_char(unsigned char c, struct tty_struct *tty)

302 {

303 tty­>driver.put_char(tty, c);

304 }

tty_driver put_char
tty_default_put_char()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1234

echo_char() drivers/char/n_tty.c

==================== drivers/char/n_tty.c 308 316 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()]
308 static void echo_char(unsigned char c, struct tty_struct *tty)

309 {

310 if (L_ECHOCTL(tty) && iscntrl(c) && c != '\t') {

311 put_char('^', tty);

312 put_char(c ^ 0100, tty);

313 tty­>column += 2;

314 } else

315 opost(c, tty);

316 }

Ctrl “^
opost()

drivers/char/n_tty.c

==================== drivers/char/n_tty.c 172 233 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_try_receive_buf()>n_tty_receive_char()>echo_char()>opost()]
172 /*

173 * Perform OPOST processing. Returns ­1 when the output device is

174 * full and the character must be retried.

175 */

176 static int opost(unsigned char c, struct tty_struct *tty)

177 {

178 int space, spaces;

179

180 space = tty­>driver.write_room(tty);

181 if (!space)

182 return ­1;

183

184 if (O_OPOST(tty)) {

185 switch (c) {

186 case '\n':

187 if (O_ONLRET(tty))

188 tty­>column = 0;

189 if (O_ONLCR(tty)) {

190 if (space < 2)

191 return ­1;

192 tty­>driver.put_char(tty, '\r');

193 tty­>column = 0;

194 }

195 tty­>canon_column = tty­>column;

196 break;

197 case '\r':

198 if (O_ONOCR(tty) && tty­>column == 0)

199 return 0;

200 if (O_OCRNL(tty)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1235

201 c = '\n';

202 if (O_ONLRET(tty))

203 tty­>canon_column = tty­>column = 0;

204 break;

205 }

206 tty­>canon_column = tty­>column = 0;

207 break;

208 case '\t':

209 spaces = 8 ­ (tty­>column & 7);

210 if (O_TABDLY(tty) == XTABS) {

211 if (space < spaces)

212 return ­1;

213 tty­>column += spaces;

214 tty­>driver.write(tty, 0, " ", spaces);

215 return 0;

216 }

217 tty­>column += spaces;

218 break;

219 case '\b':

220 if (tty­>column > 0)

221 tty­>column­­;

222 break;

223 default:

224 if (O_OLCUC(tty))

225 c = toupper(c);

226 if (!iscntrl(c))

227 tty­>column++;

228 break;

229 }

230 }

231 tty­>driver.put_char(tty, c);

232 return 0;

233 }

“\r “\n “\t “\b”
“\n “\r “\t

put_char()
tty_driver put_char

tty_default_put_char() drivers/char/tty_io.c

==================== drivers/char/tty_io.c 1979 1985 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()>opost()
>tty_default_put_char()]
1979 /*

1980 * The default put_char routine if the driver did not define one.

1981 */

1982 void tty_default_put_char(struct tty_struct *tty, unsigned char ch)

1983 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1236

1984 tty­>driver.write(tty, 0, &ch, 1);

1985 }

con_write()
drivers/char/console.c

==================== drivers/char/console.c 2217 2227 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()>opost()
>tty_default_put_char()>con_write()]
2217 static int con_write(struct tty_struct * tty, int from_user,

2218 const unsigned char *buf, int count)

2219 {

2220 int retval;

2221

2222 pm_access(pm_con);

2223 retval = do_con_write(tty, from_user, buf, count);

2224 con_flush_chars(tty);

2225

2226 return retval;

2227 }

from_user 1 0
buf count

read() write()
do_con_write() drivers/char/console.c

==================== drivers/char/console.c 1807 1854 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()>opost()
>tty_default_put_char()>con_write()>do_con_write()]
1807 static int do_con_write(struct tty_struct * tty, int from_user,

1808 const unsigned char *buf, int count)

1809 {

1810 #ifdef VT_BUF_VRAM_ONLY

1811 #define FLUSH do { } while(0);

1812 #else

1813 #define FLUSH if (draw_x >= 0) { \

1814 sw­>con_putcs(vc_cons[currcons].d, (u16 *)draw_from, (u16 *)draw_to­(u16 *)draw_from, y, draw_x);

\

1815 draw_x = ­1; \

1816 }

1817 #endif

1818

1819 int c, tc, ok, n = 0, draw_x = ­1;

1820 unsigned int currcons;

1821 unsigned long draw_from = 0, draw_to = 0;

1822 struct vt_struct *vt = (struct vt_struct *)tty­>driver_data;

1823 u16 himask, charmask;

1824 const unsigned char *orig_buf = NULL;

1825 int orig_count;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1237

1826

1827 currcons = vt­>vc_num;

1828 if (!vc_cons_allocated(currcons)) {

1829 /* could this happen? */

1830 static int error = 0;

1831 if (!error) {

1832 error = 1;

1833 printk("con_write: tty %d not allocated\n", currcons+1);

1834 }

1835 return 0;

1836 }

1837

1838 orig_buf = buf;

1839 orig_count = count;

1840

1841 if (from_user) {

1842 down(&con_buf_sem);

1843

1844 again:

1845 if (count > CON_BUF_SIZE)

1846 count = CON_BUF_SIZE;

1847 if (copy_from_user(con_buf, buf, count)) {

1848 n = 0; /* ?? are error codes legal here ?? */

1849 goto out;

1850 }

1851

1852 buf = con_buf;

1853 }

1854

==================== drivers/char/console.c 1855 1913 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()>opost()
>tty_default_put_char()>con_write()>do_con_write()]
1855 /* At this point 'buf' is guarenteed to be a kernel buffer

1856 * and therefore no access to userspace (and therefore sleeping)

1857 * will be needed. The con_buf_sem serializes all tty based

1858 * console rendering and vcs write/read operations. We hold

1859 * the console spinlock during the entire write.

1860 */

1861

1862 spin_lock_irq(&console_lock);

1863

1864 himask = hi_font_mask;

1865 charmask = himask ? 0x1ff : 0xff;

1866

1867 /* undraw cursor first */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1238

1868 if (IS_FG)

1869 hide_cursor(currcons);

1870

1871 while (!tty­>stopped && count) {

1872 c = *buf;

1873 buf++;

1874 n++;

1875 count­­;

1876

1877 if (utf) {

1878 /* Combine UTF­8 into Unicode */

1879 /* Incomplete characters silently ignored */

1880 if(c > 0x7f) {

1881 if (utf_count > 0 && (c & 0xc0) == 0x80) {

1882 utf_char = (utf_char << 6) | (c & 0x3f);

1883 utf_count­­;

1884 if (utf_count == 0)

1885 tc = c = utf_char;

1886 else continue;

1887 } else {

1888 if ((c & 0xe0) == 0xc0) {

1889 utf_count = 1;

1890 utf_char = (c & 0x1f);

1891 } else if ((c & 0xf0) == 0xe0) {

1892 utf_count = 2;

1893 utf_char = (c & 0x0f);

1894 } else if ((c & 0xf8) == 0xf0) {

1895 utf_count = 3;

1896 utf_char = (c & 0x07);

1897 } else if ((c & 0xfc) == 0xf8) {

1898 utf_count = 4;

1899 utf_char = (c & 0x03);

1900 } else if ((c & 0xfe) == 0xfc) {

1901 utf_count = 5;

1902 utf_char = (c & 0x01);

1903 } else

1904 utf_count = 0;

1905 continue;

1906 }

1907 } else {

1908 tc = c;

1909 utf_count = 0;

1910 }

1911 } else { /* no utf */

1912 tc = translate[toggle_meta ? (c|0x80) : c];

1913 }

hide_cursor() while utf
drivers/char/console_macros.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1239

==================== drivers/char/console_macros.h 26 28 ====================
26 #define utf (vc_cons[currcons].d­>vc_utf)

27 #define utf_count (vc_cons[currcons].d­>vc_utf_count)

28 #define utf_char (vc_cons[currcons].d­>vc_utf_char)

UTF­8 UTF­8 16
Unicode tc to_utf8()

8 16 Unicode 8 Unicode
translate drivers/char/console_macros.h

==================== drivers/char/console_macros.h 21 21 ====================
21 #define translate (vc_cons[currcons].d­>vc_translate)

vc_data vc_translate 256 8
ASCII 16 Unicode translations[][]

drivers/char/consolemap.c

==================== drivers/char/consolemap.c 24 28 ====================
24 static unsigned short translations[][256] = {

25 /* 8­bit Latin­1 mapped to Unicode ­­ trivial mapping */

26 {

27 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,

28 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f,

.

==================== drivers/char/consolemap.c 59 61 ====================
59 },

60 /* VT100 graphics mapped to Unicode */

61 {

.

==================== drivers/char/consolemap.c 94 98 ====================
94 },

95 /* IBM Codepage 437 mapped to Unicode */

96 {

97 0x0000, 0x263a, 0x263b, 0x2665, 0x2666, 0x2663, 0x2660, 0x2022,

98 0x25d8, 0x25cb, 0x25d9, 0x2642, 0x2640, 0x266a, 0x266b, 0x263c,

.

==================== drivers/char/consolemap.c 129 133 ====================
129 },

130 /* User mapping ­­ default to codes for direct font mapping */

131 {

132 0xf000, 0xf001, 0xf002, 0xf003, 0xf004, 0xf005, 0xf006, 0xf007,

133 0xf008, 0xf009, 0xf00a, 0xf00b, 0xf00c, 0xf00d, 0xf00e, 0xf00f,

.

==================== drivers/char/consolemap.c 164 165 ====================
164 }

165 };

4 vc_translate

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1240

ioctl() ioctl()
ioctl()

vt_ioctl() 700 /usr/bin setfont
setkeycodes loadkeys

translations[][] ASCII
“Latin­1 8 16

256 CJKV

tc 16 Unicode c 8
drivers/char/console.c

==================== drivers/char/console.c 1914 2001 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()>echo_char()>opost()
>tty_default_put_char()>con_write()>do_con_write()]
1914

1915 /* If the original code was a control character we

1916 * only allow a glyph to be displayed if the code is

1917 * not normally used (such as for cursor movement) or

1918 * if the disp_ctrl mode has been explicitly enabled.

1919 * Certain characters (as given by the CTRL_ALWAYS

1920 * bitmap) are always displayed as control characters,

1921 * as the console would be pretty useless without

1922 * them; to display an arbitrary font position use the

1923 * direct­to­font zone in UTF­8 mode.

1924 */

1925 ok = tc && (c >= 32 ||

1926 (!utf && !(((disp_ctrl ? CTRL_ALWAYS

1927 : CTRL_ACTION) >> c) & 1)))

1928 && (c != 127 || disp_ctrl)

1929 && (c != 128+27);

1930

1931 if (vc_state == ESnormal && ok) {

1932 /* Now try to find out how to display it */

1933 tc = conv_uni_to_pc(vc_cons[currcons].d, tc);

1934 if (tc == ­4) {

1935 /* If we got ­4 (not found) then see if we have

1936 defined a replacement character (U+FFFD) */

1937 tc = conv_uni_to_pc(vc_cons[currcons].d, 0xfffd);

1938

1939 /* One reason for the ­4 can be that we just

1940 did a clear_unimap();

1941 try at least to show something. */

1942 if (tc == ­4)

1943 tc = c;

1944 } else if (tc == ­3) {

1945 /* Bad hash table ­­ hope for the best */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1241

1946 tc = c;

1947 }

1948 if (tc & ~charmask)

1949 continue; /* Conversion failed */

1950

1951 if (need_wrap || decim)

1952 FLUSH

1953 if (need_wrap) {

1954 cr(currcons);

1955 lf(currcons);

1956 }

1957 if (decim)

1958 insert_char(currcons, 1);

1959 scr_writew(himask ?

1960 ((attr << 8) & ~himask) + ((tc & 0x100) ? himask : 0) + (tc & 0xff) :

1961 (attr << 8) + tc,

1962 (u16 *) pos);

1963 if (DO_UPDATE && draw_x < 0) {

1964 draw_x = x;

1965 draw_from = pos;

1966 }

1967 if (x == video_num_columns ­ 1) {

1968 need_wrap = decawm;

1969 draw_to = pos+2;

1970 } else {

1971 x++;

1972 draw_to = (pos+=2);

1973 }

1974 continue;

1975 }

1976 FLUSH

1977 do_con_trol(tty, currcons, c);

1978 }

1979 FLUSH

1980 spin_unlock_irq(&console_lock);

1981

1982 out:

1983 if (from_user) {

1984 /* If the user requested something larger than

1985 * the CON_BUF_SIZE, and the tty is not stopped,

1986 * keep going.

1987 */

1988 if ((orig_count > CON_BUF_SIZE) && !tty­>stopped) {

1989 orig_count ­= CON_BUF_SIZE;

1990 orig_buf += CON_BUF_SIZE;

1991 count = orig_count;

1992 buf = orig_buf;

1993 goto again;

1994 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1242

1995

1996 up(&con_buf_sem);

1997 }

1998

1999 return n;

2000 #undef FLUSH

2001 }

1925
32

ok 1
16

8 conv_uni_to_pc()
drivers/char/consolemap.c

==================== drivers/char/consolemap.c 635 667 ====================
635 int

636 conv_uni_to_pc(struct vc_data *conp, long ucs)

637 {

638 int h;

639 u16 **p1, *p2;

640 struct uni_pagedir *p;

641

642 /* Only 16­bit codes supported at this time */

643 if (ucs > 0xffff)

644 ucs = 0xfffd; /* U+FFFD: REPLACEMENT CHARACTER */

645 else if (ucs < 0x20 || ucs >= 0xfffe)

646 return ­1; /* Not a printable character */

647 else if (ucs == 0xfeff || (ucs >= 0x200a && ucs <= 0x200f))

648 return ­2; /* Zero­width space */

649 /*

650 * UNI_DIRECT_BASE indicates the start of the region in the User Zone

651 * which always has a 1:1 mapping to the currently loaded font. The

652 * UNI_DIRECT_MASK indicates the bit span of the region.

653 */

654 else if ((ucs & ~UNI_DIRECT_MASK) == UNI_DIRECT_BASE)

655 return ucs & UNI_DIRECT_MASK;

656

657 if (!*conp­>vc_uni_pagedir_loc)

658 return ­3;

659

660 p = (struct uni_pagedir *)*conp­>vc_uni_pagedir_loc;

661 if ((p1 = p­>uni_pgdir[ucs >> 11]) &&

662 (p2 = p1[(ucs >> 6) & 0x1f]) &&

663 (h = p2[ucs & 0x3f]) < MAX_GLYPH)

664 return h;

665

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1243

666 return ­4; /* not found */

667 }

660 664 vc_data vc_uni_pagedir_loc
uni_pagedir drivers/char/consolemap.c

==================== drivers/char/consolemap.c 174 180 ====================
174 struct uni_pagedir {

175 u16 **uni_pgdir[32];

176 unsigned long refcount;

177 unsigned long sum;

178 unsigned char *inverse_translations[4];

179 int readonly;

180 };

glyph
VGA 256

Unicode

conv_uni_to_pc() Unicode
ASCII

16 Unicode 64K
16

Unicode 32 uni_pgdir[]
16 Unicode 5

0 32 5
uni_pgdir[]

con_set_default_unimap() dfont_unitable[]
dfont_unitable[]

drivers/char
cp437.uni 437 Unicode)

==================== drivers/char/cp437.uni 1 18 ====================
1 #

2 # Unicode table for IBM Codepage 437. Note that there are many more

3 # substitutions that could be conceived (for example, thick­line

4 # graphs probably should be replaced with double­line ones, accented

5 # Latin characters should replaced with their nonaccented versions,

6 # and some upper case Greek characters could be replaced by Latin), however,

7 # I have limited myself to the Unicodes used by the kernel ISO 8859­1,

8 # DEC VT, and IBM CP 437 tables.

9 #

10 # ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

11 #

12 # Basic IBM dingbats, some of which will never have a purpose clear

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1244

13 # to mankind

14 #

15 0x00 U+0000

16 0x01 U+263a

17 0x02 U+263b

18 0x03 U+2665

.

==================== drivers/char/cp437.uni 47 53 ====================
47 #

48 # The ASCII range is identity­mapped, but some of the characters also

49 # have to act as substitutes, especially the upper­case characters.

50 #

51 0x20 U+0020

52 0x21 U+0021

53 0x22 U+0022 U+00a8

.

==================== drivers/char/cp437.uni 84 87 ====================
84 0x41 U+0041 U+00c0 U+00c1 U+00c2 U+00c3

85 0x42 U+0042

86 0x43 U+0043 U+00a9

87 0x44 U+0044

.

==================== drivers/char/cp437.uni 285 291 ====================
285 #

286 # Square bullet, non­spacing blank

287 # Mapping U+fffd to the square bullet means it is the substitution

288 # character

289 #

290 0xfe U+25a0 U+fffd

291 0xff U+00a0

0x42 “B Unicode 0x42 0x41 “A 5 Unicode
0xff 256 Linux

conmakehash dfont_unitable[] defkeymap.c
drivers/char /Makefile

==================== drivers/char/Makefile 15 15 ====================
15 FONTMAPFILE = cp437.uni

.

==================== drivers/char/Makefile 197 198 ====================
197 consolemap_deftbl.c: $(FONTMAPFILE) conmakehash

198 ./conmakehash $(FONTMAPFILE) > consolemap_deftbl.c

.uni Makefile
FONTMAPFILE conmakehash conmakehash.c
drivers/char

scr_writew() 16 tc

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1245

”attr scr_writew() include/linux/vt_buffer.h

==================== include/linux/vt_buffer.h 23 23 ====================
23 #define scr_writew(val, addr) (*(addr) = (val))

PC VGA RAM 0xa0000 BIOS
CPU

Linux CJKV

drivers/video
frame buffer

n_tty_receive_char()
drivers/char/n_tty.c

==================== drivers/char/n_tty.c 553 584 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()]
553 if (c == '\r') {

554 if (I_IGNCR(tty))

555 return;

556 if (I_ICRNL(tty))

557 c = '\n';

558 } else if (c == '\n' && I_INLCR(tty))

559 c = '\r';

560 if (I_IXON(tty)) {

561 if (c == START_CHAR(tty)) {

562 start_tty(tty);

563 return;

564 }

565 if (c == STOP_CHAR(tty)) {

566 stop_tty(tty);

567 return;

568 }

569 }

570 if (L_ISIG(tty)) {

571 int signal;

572 signal = SIGINT;

573 if (c == INTR_CHAR(tty))

574 goto send_signal;

575 signal = SIGQUIT;

576 if (c == QUIT_CHAR(tty))

577 goto send_signal;

578 signal = SIGTSTP;

579 if (c == SUSP_CHAR(tty)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1246

580 send_signal:

581 isig(signal, tty, 0);

582 return;

583 }

584 }

“\r “\n XON/XOFF
process_char_map

Ctrl­C Ctrl­Z
ioctl() ioctl()

canonical

==================== drivers/char/n_tty.c 585 685 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()>n_tty_receive_char()]
585 if (tty­>icanon) {

586 if (c == ERASE_CHAR(tty) || c == KILL_CHAR(tty) ||

587 (c == WERASE_CHAR(tty) && L_IEXTEN(tty))) {

588 eraser(c, tty);

589 return;

590 }

591 if (c == LNEXT_CHAR(tty) && L_IEXTEN(tty)) {

592 tty­>lnext = 1;

593 if (L_ECHO(tty)) {

594 finish_erasing(tty);

595 if (L_ECHOCTL(tty)) {

596 put_char('^', tty);

597 put_char('\b', tty);

598 }

599 }

600 return;

601 }

602 if (c == REPRINT_CHAR(tty) && L_ECHO(tty) &&

603 L_IEXTEN(tty)) {

604 unsigned long tail = tty­>canon_head;

605

606 finish_erasing(tty);

607 echo_char(c, tty);

608 opost('\n', tty);

609 while (tail != tty­>read_head) {

610 echo_char(tty­>read_buf[tail], tty);

611 tail = (tail+1) & (N_TTY_BUF_SIZE­1);

612 }

613 return;

614 }

615 if (c == '\n') {

616 if (L_ECHO(tty) || L_ECHONL(tty)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1247

617 if (tty­>read_cnt >= N_TTY_BUF_SIZE­1) {

618 put_char('\a', tty);

619 return;

620 }

621 opost('\n', tty);

622 }

623 goto handle_newline;

624 }

625 if (c == EOF_CHAR(tty)) {

626 if (tty­>canon_head != tty­>read_head)

627 set_bit(TTY_PUSH, &tty­>flags);

628 c = __DISABLED_CHAR;

629 goto handle_newline;

630 }

631 if ((c == EOL_CHAR(tty)) ||

632 (c == EOL2_CHAR(tty) && L_IEXTEN(tty))) {

633 /*

634 * XXX are EOL_CHAR and EOL2_CHAR echoed?!?

635 */

636 if (L_ECHO(tty)) {

637 if (tty­>read_cnt >= N_TTY_BUF_SIZE­1) {

638 put_char('\a', tty);

639 return;

640 }

641 /* Record the column of first canon char. */

642 if (tty­>canon_head == tty­>read_head)

643 tty­>canon_column = tty­>column;

644 echo_char(c, tty);

645 }

646 /*

647 * XXX does PARMRK doubling happen for

648 * EOL_CHAR and EOL2_CHAR?

649 */

650 if (I_PARMRK(tty) && c == (unsigned char) '\377')

651 put_tty_queue(c, tty);

652

653 handle_newline:

654 set_bit(tty­>read_head, &tty­>read_flags);

655 put_tty_queue(c, tty);

656 tty­>canon_head = tty­>read_head;

657 tty­>canon_data++;

658 kill_fasync(&tty­>fasync, SIGIO, POLL_IN);

659 if (waitqueue_active(&tty­>read_wait))

660 wake_up_interruptible(&tty­>read_wait);

661 return;

662 }

663 }

664

665 finish_erasing(tty);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1248

666 if (L_ECHO(tty)) {

667 if (tty­>read_cnt >= N_TTY_BUF_SIZE­1) {

668 put_char('\a', tty); /* beep if no space */

669 return;

670 }

671 if (c == '\n')

672 opost('\n', tty);

673 else {

674 /* Record the column of first canon char. */

675 if (tty­>canon_head == tty­>read_head)

676 tty­>canon_column = tty­>column;

677 echo_char(c, tty);

678 }

679 }

680

681 if (I_PARMRK(tty) && c == (unsigned char) '\377')

682 put_tty_queue(c, tty);

683

684 put_tty_queue(c, tty);

685 }

read_buf[]
“\n “\r 557

EOF EOL 660
minimum_to_wake

minimum_to_wake 1 n_tty_receive_char() n_tty_receive_buf()
drivers/char/n_tty.c

==================== drivers/char/n_tty.c 761 765 ====================
[console_softint()>run_task_queue()>flush_to_ldisc()>n_tty_receive_buf()]
761 if (!tty­>icanon && (tty­>read_cnt >= tty­>minimum_to_wake)) {

762 kill_fasync(&tty­>fasync, SIGIO, POLL_IN);

763 if (waitqueue_active(&tty­>read_wait))

764 wake_up_interruptible(&tty­>read_wait);

765 }

762 I/O select() I/O
tasklet bh kbd_bh() bh

bh
drivers/char/keyboard.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1249

8.9 USB

8.9.1 USB

USB Universal Serial Bus 20 90
1998 USB 1.1 USB 2.0

2.0

USB
PCI CPU

I/O USB “USB
USB USB USB

USB
HID Modem CDROM

USB USB
plug and play

daisy chain

“Zip

isochronous
“T1

1.54Mb 8000 24 frame 24
24 64Kb 125

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1250

CRC

“T1”

10 1.25

20 90

USB 90
USB

USB 90 PC USB

USB USB USB
“USB “USB USB Hub

USB 16 5
5 96 29 USB

Low Speed 1.5 HID
Full Speed 12 Ethernet

10 USB
2.0 High Speed 480

USB
USB

USB USB USB USB
USB

USB
Host Controller

HC “USB
USB

USB
USB

USB USB
USB USB

USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1251

USB
USB packet protocol

4
(1) Control 8 16 32 64

8 USB
10%

10%

(2) isochronous

USB 90%

1023
(3) Interrupt USB USB

USB

USB 90%
(4) Bulk

USB

1023
USB “frame frame

1 USB

Transaction

64 8 1023
SOF

USB SOF
USB SOF

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1252

USB
USB

USB “USB

USB
USB

USB

transfer
4

token

data
handshake

USB

4

“SETUP

USB
(1) Token

IN OUT SETUP
(2)
(3)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1253

ACK NAK STALL
(4) SOF
(5)

USB
configuration

T1 E1 32 64Kb
24 12 8

64KB 4 4
USB endpoint

USB Pipe
USB Port

USB
USB 1024

1024
USB

USB

CPU
USB USB

10%

USB CPU
USB

Intel “Universal Host Controller
Interface UHCI Compaq Microsoft National Semiconductor

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1254

“Open Host Controller Interface OHCI OHCI
UHCI

USB “USB
“HC UHCI OHCI Linux

OHCI drivers/usb/usb­ohci.c drivers/usb/usb­ohci.h
UHCI drivers/usb/usb­uhci.c

drivers/usb/usb­uhci.h drivers/usb/uhci.c drivers/usb/uhci.h
UHCI UHCI

USB Linux 2.4.0
USB 1.1 USB 2.0

USB “Firewire
IEEE IEEE1394 Linux IEEE1394 USB

USB IEEE1394
drivers/ieee1394

IEEE
IEEE1284 Linux IEEE1284 IEEE1284 USB

USB USB USB
IEEE1284 drivers/parport

8.9.2 USB USB

USB USB PCI
PCI PCI PCI PCI

USB pci_dev I/O RAM

USB pci_driver
include/linux/pci.h

==================== include/linux/pci.h 449 457 ====================
449 struct pci_driver {

450 struct list_head node;

451 char *name;

452 const struct pci_device_id *id_table; /* NULL if wants all devices */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1255

453 int (*probe)(struct pci_dev *dev, const struct pci_device_id *id); /* New device inserted */

454 void (*remove)(struct pci_dev *dev); /* Device removed (NULL if not a hot­plug capable driver)

*/

455 void (*suspend)(struct pci_dev *dev); /* Device suspended */

456 void (*resume)(struct pci_dev *dev); /* Device woken up */

457 };

PCI
PCI probe PCI

UHCI USB pci_driver uhci_pci_driver
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2458 2469 ====================
2458 static struct pci_driver uhci_pci_driver = {

2459 name: "usb­uhci",

2460 id_table: &uhci_pci_ids [0],

2461

2462 probe: uhci_pci_probe,

2463 remove: uhci_pci_remove,

2464

2465 #ifdef CONFIG_PM

2466 suspend: uhci_pci_suspend,

2467 resume: uhci_pci_resume,

2468 #endif /* PM */

2469 };

id_table pci_device_id
PCI drivers/usb/uhci.c uhci_pci_ids[]

==================== drivers/usb/uhci.c 2441 2454 ====================
2441 static const struct pci_device_id __devinitdata uhci_pci_ids [] = { {

2442

2443 /* handle any USB UHCI controller */

2444 class: ((PCI_CLASS_SERIAL_USB << 8) | 0x00),

2445 class_mask: ~0,

2446

2447 /* no matter who makes it */

2448 vendor: PCI_ANY_ID,

2449 device: PCI_ANY_ID,

2450 subvendor: PCI_ANY_ID,

2451 subdevice: PCI_ANY_ID,

2452

2453 }, { /* end: all zeroes */ }

2454 };

PCI_CLASS_SERIAL_USB 0 PCI
USB

inline pci_module_init()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1256

include/linux/pci.h

==================== include/linux/pci.h 602 629 ====================
602 /*

603 * a helper function which helps ensure correct pci_driver

604 * setup and cleanup for commonly­encountered hotplug/modular cases

605 *

606 * This MUST stay in a header, as it checks for ­DMODULE

607 */

608 static inline int pci_module_init(struct pci_driver *drv)

609 {

610 int rc = pci_register_driver (drv);

611

612 if (rc > 0)

613 return 0;

614

615 /* iff CONFIG_HOTPLUG and built into kernel, we should

616 * leave the driver around for future hotplug events.

617 * For the module case, a hotplug daemon of some sort

618 * should load a module in response to an insert event. */

619 #if defined(CONFIG_HOTPLUG) && !defined(MODULE)

620 if (rc == 0)

621 return 0;

622 #endif

623

624 /* if we get here, we need to clean up pci driver instance

625 * and return some sort of error */

626 pci_unregister_driver (drv);

627

628 return ­ENODEV;

629 }

pci_register_driver() PCI
PCI PCI

0 pci_unregister_driver() PCI

621
pci_register_driver() drivers/pci/pci.c

==================== drivers/pci/pci.c 324 336 ====================
[pci_module_init()>pci_register_driver()]
324 int

325 pci_register_driver(struct pci_driver *drv)

326 {

327 struct pci_dev *dev;

328 int count = 0;

329

330 list_add_tail(&drv­>node, &pci_drivers);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1257

331 pci_for_each_dev(dev) {

332 if (!pci_dev_driver(dev))

333 count += pci_announce_device(drv, dev);

334 }

335 return count;

336 }

USB pci_driver pci_drivers
pci_dev pci_dev_driver() PCI

drivers/pci/pci.c

==================== drivers/pci/pci.c 456 468 ====================
[pci_module_init()>pci_register_driver()>pci_dev_driver()]
456 struct pci_driver *

457 pci_dev_driver(const struct pci_dev *dev)

458 {

459 if (dev­>driver)

460 return dev­>driver;

461 else {

462 int i;

463 for(i=0; i<=PCI_ROM_RESOURCE; i++)

464 if (dev­>resource[i].flags & IORESOURCE_BUSY)

465 return &pci_compat_driver;

466 }

467 return NULL;

468 }

pci_dev
pci_dev_driver() 0 pci_dev pci_announce_device() drivers/pci/pci.c

==================== drivers/pci/pci.c 299 322 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()]
299 static int

300 pci_announce_device(struct pci_driver *drv, struct pci_dev *dev)

301 {

302 const struct pci_device_id *id;

303 int ret = 0;

304

305 if (drv­>id_table) {

306 id = pci_match_device(drv­>id_table, dev);

307 if (!id) {

308 ret = 0;

309 goto out;

310 }

311 } else

312 id = NULL;

313

314 dev_probe_lock();

315 if (drv­>probe(dev, id) >= 0) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1258

316 dev­>driver = drv;

317 ret = 1;

318 }

319 dev_probe_unlock();

320 out:

321 return ret;

322 }

PCI USB
uhci_pci_ids[] pci_match_device() drivers/pci/pci.c

==================== drivers/pci/pci.c 284 297 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>pci_match_device()]
284 const struct pci_device_id *

285 pci_match_device(const struct pci_device_id *ids, const struct pci_dev *dev)

286 {

287 while (ids­>vendor || ids­>subvendor || ids­>class_mask) {

288 if ((ids­>vendor == PCI_ANY_ID || ids­>vendor == dev­>vendor) &&

289 (ids­>device == PCI_ANY_ID || ids­>device == dev­>device) &&

290 (ids­>subvendor == PCI_ANY_ID || ids­>subvendor == dev­>subsystem_vendor) &&

291 (ids­>subdevice == PCI_ANY_ID || ids­>subdevice == dev­>subsystem_device) &&

292 !((ids­>class ^ dev­>class) & ids­>class_mask))

293 return ids;

294 ids++;

295 }

296 return NULL;

297 }

USB probe
UHCI USB uhci_pci_probe()

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2376 2406 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()]
2376 static int __devinit uhci_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)

2377 {

2378 int i;

2379

2380 /* disable legacy emulation */

2381 pci_write_config_word(dev, USBLEGSUP, 0);

2382

2383 if (pci_enable_device(dev) < 0)

2384 return ­ENODEV;

2385

2386 if (!dev­>irq) {

2387 err("found UHCI device with no IRQ assigned. check BIOS settings!");

2388 return ­ENODEV;

2389 }

2390

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1259

2391 /* Search for the IO base address.. */

2392 for (i = 0; i < 6; i++) {

2393 unsigned int io_addr = pci_resource_start(dev, i);

2394 unsigned int io_size = pci_resource_len(dev, i);

2395

2396 /* IO address? */

2397 if (!(pci_resource_flags(dev, i) & IORESOURCE_IO))

2398 continue;

2399

2400 /* Is it already in use? */

2401 if (check_region(io_addr, io_size))

2402 break;

2403

2404 pci_set_master(dev);

2405 return setup_uhci(dev, dev­>irq, io_addr, io_size);

2406 }

pci_enable_device() PCI USB
drivers/pci/pci.c arch/i386/kernel/pci­pc.c arch/i386/kernel/pci­i386.c

PCI

==================== drivers/pci/pci.c 242 259 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>pci_enable_device()]
242 /**

243 * pci_enable_device ­ Initialize device before it's used by a driver.

244 * @dev: PCI device to be initialized

245 *

246 * Initialize device before it's used by a driver. Ask low­level code

247 * to enable I/O and memory. Wake up the device if it was suspended.

248 * Beware, this function can fail.

249 */

250 int

251 pci_enable_device(struct pci_dev *dev)

252 {

253 int err;

254

255 if ((err = pcibios_enable_device(dev)) < 0)

256 return err;

257 pci_set_power_state(dev, 0);

258 return 0;

259 }

==================== arch/i386/kernel/pci­pc.c 1042 1049 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>pci_enable_device()
>pcibios_enable_device()]
1042 int pcibios_enable_device(struct pci_dev *dev)

1043 {

1044 int err;

1045

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1260

1046 if ((err = pcibios_enable_resources(dev)) < 0)

1047 return err;

1048 pcibios_enable_irq(dev);

1049 return 0;

==================== arch/i386/kernel/pci­i386.c 306 332 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>pci_enable_device()
>pcibios_enable_device()>pcibios_enable_resources()]
306 int pcibios_enable_resources(struct pci_dev *dev)

307 {

308 u16 cmd, old_cmd;

309 int idx;

310 struct resource *r;

311

312 pci_read_config_word(dev, PCI_COMMAND, &cmd);

313 old_cmd = cmd;

314 for(idx=0; idx<6; idx++) {

315 r = &dev­>resource[idx];

316 if (!r­>start && r­>end) {

317 printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n",

dev­>slot_name);

318 return ­EINVAL;

319 }

320 if (r­>flags & IORESOURCE_IO)

321 cmd |= PCI_COMMAND_IO;

322 if (r­>flags & IORESOURCE_MEM)

323 cmd |= PCI_COMMAND_MEMORY;

324 }

325 if (dev­>resource[PCI_ROM_RESOURCE].start)

326 cmd |= PCI_COMMAND_MEMORY;

327 if (cmd != old_cmd) {

328 printk("PCI: Enabling device %s (%04x ­> %04x)\n", dev­>slot_name, old_cmd, cmd);

329 pci_write_config_word(dev, PCI_COMMAND, cmd);

330 }

331 return 0;

332 }

USB
USB CPU

USB CPU
arch/i386/kernel/pci­irq.c

==================== arch/i386/kernel/pci­irq.c 613 628 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>pci_enable_device()
>pcibios_enable_device()>pcibios_enable_irq()]
613 void pcibios_enable_irq(struct pci_dev *dev)

614 {

615 u8 pin;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1261

616 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);

617 if (pin && !pcibios_lookup_irq(dev, 1) && !dev­>irq) {

618 char *msg;

619 if (io_apic_assign_pci_irqs)

620 msg = " Probably buggy MP table.";

621 else if (pci_probe & PCI_BIOS_IRQ_SCAN)

622 msg = "";

623 else

624 msg = " Please try using pci=biosirq.";

625 printk(KERN_WARNING "PCI: No IRQ known for interrupt pin %c of device %s.%s\n",

626 'A' + pin ­ 1, dev­>slot_name, msg);

627 }

628 }

USB USB USB DMA
CPU CPU USB

USB DMA
DMA USB DMA DMA CPU

PCI DMA PCI
DMA CPU PCI

PCI_COMMAND_MASTER PCI PCI
PCI DMA pci_set_master() USB

drivers/pci/pci.c

==================== drivers/pci/pci.c 508 520 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>pci_set_master()]
508 void

509 pci_set_master(struct pci_dev *dev)

510 {

511 u16 cmd;

512

513 pci_read_config_word(dev, PCI_COMMAND, &cmd);

514 if (! (cmd & PCI_COMMAND_MASTER)) {

515 DBG("PCI: Enabling bus mastering for device %s\n", dev­>slot_name);

516 cmd |= PCI_COMMAND_MASTER;

517 pci_write_config_word(dev, PCI_COMMAND, cmd);

518 }

519 pcibios_set_master(dev);

520 }

uhci_pci_probe() USB PCI PCI
USB USB setup_uhci()

drivers/usb/uhci.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1262

==================== drivers/usb/uhci.c 2327 2374 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()]
2327 /*

2328 * If we've successfully found a UHCI, now is the time to increment the

2329 * module usage count, and return success..

2330 */

2331 static int setup_uhci(struct pci_dev *dev, int irq, unsigned int io_addr, unsigned int io_size)

2332 {

2333 int retval;

2334 struct uhci *uhci;

2335 char buf[8], *bufp = buf;

2336

2337 #ifndef __sparc__

2338 sprintf(buf, "%d", irq);

2339 #else

2340 bufp = __irq_itoa(irq);

2341 #endif

2342 printk(KERN_INFO __FILE__ ": USB UHCI at I/O 0x%x, IRQ %s\n",

2343 io_addr, bufp);

2344

2345 uhci = alloc_uhci(io_addr, io_size);

2346 if (!uhci)

2347 return ­ENOMEM;

2348 dev­>driver_data = uhci;

2349

2350 request_region(uhci­>io_addr, io_size, "usb­uhci");

2351

2352 reset_hc(uhci);

2353

2354 usb_register_bus(uhci­>bus);

2355 start_hc(uhci);

2356

2357 retval = ­EBUSY;

2358 if (request_irq(irq, uhci_interrupt, SA_SHIRQ, "usb­uhci", uhci) == 0) {

2359 uhci­>irq = irq;

2360

2361 pci_write_config_word(dev, USBLEGSUP, USBLEGSUP_DEFAULT);

2362

2363 if (!uhci_start_root_hub(uhci))

2364 return 0;

2365 }

2366

2367 /* Couldn't allocate IRQ if we got here */

2368

2369 reset_hc(uhci);

2370 release_region(uhci­>io_addr, uhci­>io_size);

2371 release_uhci(uhci);

2372

2373 return retval;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1263

2374 }

dev USB pci_dev irq PCI
io_addr I/O io_size

USB USB UHCI
uhci drivers/usb/uhci.h

==================== drivers/usb/uhci.h 308 335 ====================
308 struct uhci {

309 /* Grabbed from PCI */

310 int irq;

311 unsigned int io_addr;

312 unsigned int io_size;

313

314 struct list_head uhci_list;

315

316 struct usb_bus *bus;

317

318 struct uhci_td skeltd[UHCI_NUM_SKELTD]; /* Skeleton TD's */

319 struct uhci_qh skelqh[UHCI_NUM_SKELQH]; /* Skeleton QH's */

320

321 spinlock_t framelist_lock;

322 struct uhci_framelist *fl; /* Frame list */

323 int fsbr; /* Full speed bandwidth reclamation */

324

325 spinlock_t qh_remove_lock;

326 struct list_head qh_remove_list;

327

328 spinlock_t urb_remove_lock;

329 struct list_head urb_remove_list;

330

331 struct s_nested_lock urblist_lock;

332 struct list_head urb_list;

333

334 struct virt_root_hub rh; /* private data of the virtual root hub */

335 };

fl uhci_framelist
USB drivers/usb/uhci.h

==================== drivers/usb/uhci.h 100 102 ====================
100 struct uhci_framelist {

101 __u32 frame[UHCI_NUMFRAMES];

102 } __attribute__((aligned(4096)));

USB
UHCI_NUMFRAMES 1024 1024

4K 12 0 USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1264

USB 10
0 1 1/1024 1 0x3ff 1023 0

0
uhci_td uhci_td

USB

uhci uhci_td skeltd[]
UHCI_NUM_SKELTD 10 skeltd[0] skeltd[9]

8

uhci_td
skeltd[] ”

skeleton uhci_td uhci_td USB

90%
USB 10%

USB

uhci uhci_qh skelqh[]

UHCI_NUM_SKELQH drivers/usb/uhci.h
4 USB

4
uhci CPU USB

schedule USB
uhci alloc_uhci() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2129 2182 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>alloc_uhci()]
2129 /*

2130 * Allocate a frame list, and then setup the skeleton

2131 *

2132 * The hardware doesn't really know any difference

2133 * in the queues, but the order does matter for the

2134 * protocols higher up. The order is:

2135 *

2136 * ­ any isochronous events handled before any

2137 * of the queues. We don't do that here, because

2138 * we'll create the actual TD entries on demand.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1265

2139 * ­ The first queue is the "interrupt queue".

2140 * ­ The second queue is the "control queue", split into low and high speed

2141 * ­ The third queue is "bulk data".

2142 */

2143 static struct uhci *alloc_uhci(unsigned int io_addr, unsigned int io_size)

2144 {

2145 int i, port;

2146 struct uhci *uhci;

2147 struct usb_bus *bus;

2148

2149 uhci = kmalloc(sizeof(*uhci), GFP_KERNEL);

2150 if (!uhci)

2151 return NULL;

2152

2153 memset(uhci, 0, sizeof(*uhci));

2154

2155 uhci­>irq = ­1;

2156 uhci­>io_addr = io_addr;

2157 uhci­>io_size = io_size;

2158

2159 spin_lock_init(&uhci­>qh_remove_lock);

2160 INIT_LIST_HEAD(&uhci­>qh_remove_list);

2161

2162 spin_lock_init(&uhci­>urb_remove_lock);

2163 INIT_LIST_HEAD(&uhci­>urb_remove_list);

2164

2165 nested_init(&uhci­>urblist_lock);

2166 INIT_LIST_HEAD(&uhci­>urb_list);

2167

2168 spin_lock_init(&uhci­>framelist_lock);

2169

2170 /* We need exactly one page (per UHCI specs), how convenient */

2171 /* We assume that one page is atleast 4k (1024 frames * 4 bytes) */

2172 uhci­>fl = (void *)__get_free_page(GFP_KERNEL);

2173 if (!uhci­>fl)

2174 goto au_free_uhci;

2175

2176 bus = usb_alloc_bus(&uhci_device_operations);

2177 if (!bus)

2178 goto au_free_fl;

2179

2180 uhci­>bus = bus;

2181 bus­>hcpriv = uhci;

2182

uhci qh_remove_list urb_remove_list urb_list
1024 4KB

uhci USB USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1266

uhci USB
usb_bus usb_bus uhci usb_bus

include/linux/usb.h

==================== include/linux/usb.h 561 580 ====================
561 struct usb_bus {

562 int busnum; /* Bus number (in order of reg) */

563

564 struct usb_devmap devmap; /* Device map */

565 struct usb_operations *op; /* Operations (specific to the HC) */

566 struct usb_device *root_hub; /* Root hub */

567 struct list_head bus_list;

568 void *hcpriv; /* Host Controller private data */

569

570 int bandwidth_allocated; /* on this Host Controller; */

571 /* applies to Int. and Isoc. pipes; */

572 /* measured in microseconds/frame; */

573 /* range is 0..900, where 900 = */

574 /* 90% of a 1­millisecond frame */

575 int bandwidth_int_reqs; /* number of Interrupt requesters */

576 int bandwidth_isoc_reqs; /* number of Isoc. requesters */

577

578 /* usbdevfs inode list */

579 struct list_head inodes;

580 };

USB
UHCI OHCI uhci UHCI usb_bus

“USB usb_bus hcpriv
void uhci ohci
usb_alloc_bus() usb_bus

op usb_operations
uhci_device_operations include/linux/usb.h drivers/usb/uhci.c

==================== include/linux/usb.h 550 556 ====================
550 struct usb_operations {

551 int (*allocate)(struct usb_device *);

552 int (*deallocate)(struct usb_device *);

553 int (*get_frame_number) (struct usb_device *usb_dev);

554 int (*submit_urb) (struct urb* purb);

555 int (*unlink_urb) (struct urb* purb);

556 };

==================== drivers/usb/uhci.c 1615 1621 ====================
1615 struct usb_operations uhci_device_operations = {

1616 uhci_alloc_dev,

1617 uhci_free_dev,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1267

1618 uhci_get_current_frame_number,

1619 uhci_submit_urb,

1620 uhci_unlink_urb

1621 };

USB
alloc_uhci()

==================== drivers/usb/uhci.c 2183 2237 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>alloc_uhci()]
2183 /* Initialize the root hub */

2184

2185 /* UHCI specs says devices must have 2 ports, but goes on to say */

2186 /* they may have more but give no way to determine how many they */

2187 /* have. However, according to the UHCI spec, Bit 7 is always set */

2188 /* to 1. So we try to use this to our advantage */

2189 for (port = 0; port < (io_size ­ 0x10) / 2; port++) {

2190 unsigned int portstatus;

2191

2192 portstatus = inw(io_addr + 0x10 + (port * 2));

2193 if (!(portstatus & 0x0080))

2194 break;

2195 }

2196 if (debug)

2197 info("detected %d ports", port);

2198

2199 /* This is experimental so anything less than 2 or greater than 8 is */

2200 /* something weird and we'll ignore it */

2201 if (port < 2 || port > 8) {

2202 info("port count misdetected? forcing to 2 ports");

2203 port = 2;

2204 }

2205

2206 uhci­>rh.numports = port;

2207

2208 /*

2209 * 9 Interrupt queues; link int2 to int1, int4 to int2, etc

2210 * then link int1 to control and control to bulk

2211 */

2212 for (i = 1; i < 9; i++) {

2213 struct uhci_td *td = &uhci­>skeltd[i];

2214

2215 uhci_fill_td(td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0);

2216 td­>link = virt_to_bus(&uhci­>skeltd[i ­ 1]);

2217 }

2218

2219

2220 uhci_fill_td(&uhci­>skel_int1_td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0);

2221 uhci­>skel_int1_td.link = virt_to_bus(&uhci­>skel_ls_control_qh) | UHCI_PTR_QH;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1268

2222

2223 uhci­>skel_ls_control_qh.link = virt_to_bus(&uhci­>skel_hs_control_qh) | UHCI_PTR_QH;

2224 uhci­>skel_ls_control_qh.element = UHCI_PTR_TERM;

2225

2226 uhci­>skel_hs_control_qh.link = virt_to_bus(&uhci­>skel_bulk_qh) | UHCI_PTR_QH;

2227 uhci­>skel_hs_control_qh.element = UHCI_PTR_TERM;

2228

2229 uhci­>skel_bulk_qh.link = virt_to_bus(&uhci­>skel_term_qh) | UHCI_PTR_QH;

2230 uhci­>skel_bulk_qh.element = UHCI_PTR_TERM;

2231

2232 /* This dummy TD is to work around a bug in Intel PIIX controllers */

2233 uhci_fill_td(&uhci­>skel_term_td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0);

2234 uhci­>skel_term_td.link = UHCI_PTR_TERM;

2235

2236 uhci­>skel_term_qh.link = UHCI_PTR_TERM;

2237 uhci­>skel_term_qh.element = virt_to_bus(&uhci­>skel_term_td);

USB USB UHCI I/O
16 port

2 8 bit7
1

uhci skeltd[] 8 uhci_td
“td transaction descriptor drivers/usb/uhci.h

==================== drivers/usb/uhci.h 175 190 ====================
175 struct uhci_td {

176 /* Hardware fields */

177 __u32 link;

178 __u32 status;

179 __u32 info;

180 __u32 buffer;

181

182 /* Software fields */

183 unsigned int *frameptr; /* Frame list pointer */

184 struct uhci_td *prevtd, *nexttd; /* Previous and next TD in queue */

185

186 struct usb_device *dev;

187 struct urb *urb; /* URB this TD belongs to */

188

189 struct list_head list;

190 } __attribute__((aligned(16)));

uhci_td USB 4
32 USB 4

16 USB
4 32

4 link

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1269

uhci_td buffer
info drivers/usb/uhci.c inline
uhci_fill_td() uhci_td link

==================== drivers/usb/uhci.c 165 171 ====================
165 static void inline uhci_fill_td(struct uhci_td *td, __u32 status,

166 __u32 info, __u32 buffer)

167 {

168 td­>status = status;

169 td­>info = info;

170 td­>buffer = buffer;

171 }

2212 for uhci_td skeltd[0]
8 uhci_td uhci_td status

buffer 0
skeltd[0] 2220 2221 USB

uhci­>skel_ls_control_qh skel_int1_td skel_ls_control_qh drivers/usb/uhci.h

==================== drivers/usb/uhci.h 235 251 ====================
235 #define UHCI_NUM_SKELTD 10

236 #define skel_int1_td skeltd[0]

237 #define skel_int2_td skeltd[1]

238 #define skel_int4_td skeltd[2]

239 #define skel_int8_td skeltd[3]

240 #define skel_int16_td skeltd[4]

241 #define skel_int32_td skeltd[5]

242 #define skel_int64_td skeltd[6]

243 #define skel_int128_td skeltd[7]

244 #define skel_int256_td skeltd[8]

245 #define skel_term_td skeltd[9] /* To work around PIIX UHCI bug */

246

247 #define UHCI_NUM_SKELQH 4

248 #define skel_ls_control_qh skelqh[0]

249 #define skel_hs_control_qh skelqh[1]

250 #define skel_bulk_qh skelqh[2]

251 #define skel_term_qh skelqh[3]

skel_ls_control_qh skelqh[0]
skel_int1_td skeltd[0]

skel_int2_td skeltd[1]

skeltd[] skelqh[] uhci_qh “qh queue
head) drivers/usb/uhci.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1270

==================== drivers/usb/uhci.h 106 118 ====================
106 struct uhci_qh {

107 /* Hardware fields */

108 __u32 link; /* Next queue */

109 __u32 element; /* Queue element pointer */

110

111 /* Software fields */

112 /* Can't use list_head since we want a specific order */

113 struct usb_device *dev; /* The owning device */

114

115 struct uhci_qh *prevqh, *nextqh;

116

117 struct list_head remove_list;

118 } __attribute__((aligned(16)));

USB link element

link element

uhci_td uhci_qh 16
4 0 link element 4

UHCI_PTR_TERM element 1 0 ”

1 UHCI_PTR_QH USB
skel_ls_control_qh link skel_hs_control_qh

skel_hs_control_qh skel_bulk_qh skeltd[]
skeltd[9] skel_term_td USB Intel PIIX

skelqh[] skelqh[3] skel_term_qh

1024
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2238 2286 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>alloc_uhci()]
2238

2239 /*

2240 * Fill the frame list: make all entries point to

2241 * the proper interrupt queue.

2242 *

2243 * This is probably silly, but it's a simple way to

2244 * scatter the interrupt queues in a way that gives

2245 * us a reasonable dynamic range for irq latencies.

2246 */

2247 for (i = 0; i < 1024; i++) {

2248 struct uhci_td *irq = &uhci­>skel_int1_td;

2249

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1271

2250 if (i & 1) {

2251 irq++;

2252 if (i & 2) {

2253 irq++;

2254 if (i & 4) {

2255 irq++;

2256 if (i & 8) {

2257 irq++;

2258 if (i & 16) {

2259 irq++;

2260 if (i & 32) {

2261 irq++;

2262 if (i & 64)

2263 irq++;

2264 }

2265 }

2266 }

2267 }

2268 }

2269 }

2270

2271 /* Only place we don't use the frame list routines */

2272 uhci­>fl­>frame[i] = virt_to_bus(irq);

2273 }

2274

2275 return uhci;

2276

2277 /*

2278 * error exits:

2279 */

2280 au_free_fl:

2281 free_page((unsigned long)uhci­>fl);

2282 au_free_uhci:

2283 kfree(uhci);

2284

2285 return NULL;

2286 }

1024 1024 1 uhci_td
uhci_td uhci_td

skeltd[]
skeltd[] 10 uhci_td for

skeltd[0] skel_int1_td 2248 skeltd[0]
2250

skeltd[1] skeltd[1] skeltd[1]
link skeltd[0] skeltd[0] skeltd[0] skel_int1_td

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1272

skeltd[1] skel_int2_td 3 skeltd[2] skeltd[2] 3
skel_int4_td skeltd[2] link skeltd[1] skeltd[1]

skeltd[0] 7 127 skeltd[7]
127 skel_int128_td skeltd[] uhci_td

1 2 4 128 skeltd[] uhci_td
0

USB 16
skel_int16_td skel_int8_td skeltd[4]

skeltd[3] skeltd[]
uhci_td skelqh

USB setup_uhci() 2346
reset_hc() USB USB

“hc host controller
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2087 2096 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>reset_hc()]
2087 static void reset_hc(struct uhci *uhci)

2088 {

2089 unsigned int io_addr = uhci­>io_addr;

2090

2091 /* Global reset for 50ms */

2092 outw(USBCMD_GRESET, io_addr + USBCMD);

2093 wait_ms(50);

2094 outw(0, io_addr + USBCMD);

2095 wait_ms(10);

2096 }

USB usb_bus usb_register_bus()
drivers/usb/usb.c

==================== drivers/usb/usb.c 394 416 ====================
[pci_module_init()>pci_register_driver()>pci_announee_device()>uhci_pci_probe()>setup_uhci()>usb_register_bus()]
394 /**

395 * usb_register_bus ­ registers the USB host controller with the usb core

396 * @bus: pointer to the bus to register

397 *

398 */

399 void usb_register_bus(struct usb_bus *bus)

400 {

401 int busnum;

402

403 busnum = find_next_zero_bit(busmap.busmap, USB_MAXBUS, 1);

404 if (busnum < USB_MAXBUS) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1273

405 set_bit(busnum, busmap.busmap);

406 bus­>busnum = busnum;

407 } else

408 warn("too many buses");

409

410 /* Add it to the list of buses */

411 list_add(&bus­>bus_list, &usb_bus_list);

412

413 usbdevfs_add_bus(bus);

414

415 info("new USB bus registered, assigned bus number %d", bus­>busnum);

416 }

usb_busmap busmap busmap USB
usb_bus_list

USB usb_bus
reset_hc() USB start_hc() USB

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2098 2127 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>usb_register_bus()]
2098 static void start_hc(struct uhci *uhci)

2099 {

2100 unsigned int io_addr = uhci­>io_addr;

2101 int timeout = 1000;

2102

2103 /*

2104 * Reset the HC ­ this will force us to get a

2105 * new notification of any already connected

2106 * ports due to the virtual disconnect that it

2107 * implies.

2108 */

2109 outw(USBCMD_HCRESET, io_addr + USBCMD);

2110 while (inw(io_addr + USBCMD) & USBCMD_HCRESET) {

2111 if (!­­timeout) {

2112 printk(KERN_ERR "uhci: USBCMD_HCRESET timed out!\n");

2113 break;

2114 }

2115 }

2116

2117 /* Turn on all interrupts */

2118 outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP,

2119 io_addr + USBINTR);

2120

2121 /* Start at frame 0 */

2122 outw(0, io_addr + USBFRNUM);

2123 outl(virt_to_bus(uhci­>fl), io_addr + USBFLBASEADD);

2124

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1274

2125 /* Run and mark it configured with a 64­byte max packet */

2126 outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD);

2127 }

USB 4 CPU

(1) USBINTR_TIMEOUT
(2) USBINTR_RESUME USB

Suspend

(3) USBINTR_IOC Interrupt­On­Completion
USB

(4) USBINTR_SP short­packet
0 0

USBCMD_RS 1
USB USB

USB uhci_interrupt() 2358
USB PCI USBLEGSUP

uhci_start_root_hub() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2307 2325 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()]
2307 int uhci_start_root_hub(struct uhci *uhci)

2308 {

2309 struct usb_device *dev;

2310

2311 dev = usb_alloc_dev(NULL, uhci­>bus);

2312 if (!dev)

2313 return ­1;

2314

2315 uhci­>bus­>root_hub = dev;

2316 usb_connect(dev);

2317

2318 if (usb_new_device(dev) != 0) {

2319 usb_free_dev(dev);

2320

2321 return ­1;

2322 }

2323

2324 return 0;

2325 }

USB usb_device
USB include/linux/usb.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1275

==================== include/linux/usb.h 584 624 ====================
584 struct usb_device {

585 int devnum; /* Device number on USB bus */

586 int slow; /* Slow device? */

587

588 atomic_t refcnt; /* Reference count */

589

590 unsigned int toggle[2]; /* one bit for each endpoint ([0] = IN, [1] = OUT) */

591 unsigned int halted[2]; /* endpoint halts; one bit per endpoint # & direction; */

592 /* [0] = IN, [1] = OUT */

593 int epmaxpacketin[16]; /* INput endpoint specific maximums */

594 int epmaxpacketout[16]; /* OUTput endpoint specific maximums */

595

596 struct usb_device *parent;

597 struct usb_bus *bus; /* Bus we're part of */

598

599 struct usb_device_descriptor descriptor;/* Descriptor */

600 struct usb_config_descriptor *config; /* All of the configs */

601 struct usb_config_descriptor *actconfig;/* the active configuration */

602

603 char **rawdescriptors; /* Raw descriptors for each config */

604

605 int have_langid; /* whether string_langid is valid yet */

606 int string_langid; /* language ID for strings */

607

608 void *hcpriv; /* Host Controller private data */

609

610 /* usbdevfs inode list */

611 struct list_head inodes;

612 struct list_head filelist;

613

614 /*

615 * Child devices ­ these can be either new devices

616 * (if this is a hub device), or different instances

617 * of this same device.

618 *

619 * Each instance needs its own set of data structures.

620 */

621

622 int maxchild; /* Number of ports if hub */

623 struct usb_device *children[USB_MAXCHILDREN];

624 };

USB USB 127
1 127 0

children[] usb_device
parent usb_device bus USB usb_bus

usb_device USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1276

usb_device descriptor usb_device_descriptor
include/linux/usb.h

==================== include/linux/usb.h 218 234 ====================
218 /* Device descriptor */

219 struct usb_device_descriptor {

220 __u8 bLength;

221 __u8 bDescriptorType;

222 __u16 bcdUSB;

223 __u8 bDeviceClass;

224 __u8 bDeviceSubClass;

225 __u8 bDeviceProtocol;

226 __u8 bMaxPacketSize0;

227 __u16 idVendor;

228 __u16 idProduct;

229 __u16 bcdDevice;

230 __u8 iManufacturer;

231 __u8 iProduct;

232 __u8 iSerialNumber;

233 __u8 bNumConfigurations;

234 } __attribute__ ((packed));

USB
PCI USB

PCI PCI USB USB
PCI usb_device

USB USB usb_device
usb_bus root_hub

usb_connect() USB
drivers/usb/usb.c

==================== drivers/usb/usb.c 1667 1698 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_connect()]
1667 /*

1668 * Connect a new USB device. This basically just initializes

1669 * the USB device information and sets up the topology ­ it's

1670 * up to the low­level driver to reset the port and actually

1671 * do the setup (the upper levels don't know how to do that).

1672 */

1673 void usb_connect(struct usb_device *dev)

1674 {

1675 int devnum;

1676 // FIXME needs locking for SMP!!

1677 /* why? this is called only from the hub thread,

1678 * which hopefully doesn't run on multiple CPU's simultaneously 8­)

1679 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1277

1680 dev­>descriptor.bMaxPacketSize0 = 8; /* Start off at 8 bytes */

1681 #ifndef DEVNUM_ROUND_ROBIN

1682 devnum = find_next_zero_bit(dev­>bus­>devmap.devicemap, 128, 1);

1683 #else /* round_robin alloc of devnums */

1684 /* Try to allocate the next devnum beginning at devnum_next. */

1685 devnum = find_next_zero_bit(dev­>bus­>devmap.devicemap, 128, devnum_next);

1686 if (devnum >= 128)

1687 devnum = find_next_zero_bit(dev­>bus­>devmap.devicemap, 128, 1);

1688

1689 devnum_next = devnum + 1;

1690 if (devnum_next >= 128)

1691 devnum_next = 1;

1692 #endif /* round_robin alloc of devnums */

1693

1694 if (devnum < 128) {

1695 set_bit(devnum, dev­>bus­>devmap.devicemap);

1696 dev­>devnum = devnum;

1697 }

1698 }

USB USB

USB
USB

USB USB USB
0 USB

USB 0
USB USB

USB 0

(1)
(2) usb_device_descriptor
(3)
(4)

usb_new_device() drivers/usb/usb.c

==================== drivers/usb/usb.c 2079 2133 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1278

[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()]
2079 /*

2080 * By the time we get here, the device has gotten a new device ID

2081 * and is in the default state. We need to identify the thing and

2082 * get the ball rolling..

2083 *

2084 * Returns 0 for success, != 0 for error.

2085 */

2086 int usb_new_device(struct usb_device *dev)

2087 {

2088 int err;

2089

2090 /* USB v1.1 5.5.3 */

2091 /* We read the first 8 bytes from the device descriptor to get to */

2092 /* the bMaxPacketSize0 field. Then we set the maximum packet size */

2093 /* for the control pipe, and retrieve the rest */

2094 dev­>epmaxpacketin [0] = 8;

2095 dev­>epmaxpacketout[0] = 8;

2096

2097 err = usb_set_address(dev);

2098 if (err < 0) {

2099 err("USB device not accepting new address=%d (error=%d)",

2100 dev­>devnum, err);

2101 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

2102 dev­>devnum = ­1;

2103 return 1;

2104 }

2105

2106 wait_ms(10); /* Let the SET_ADDRESS settle */

2107

2108 err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev­>descriptor, 8);

2109 if (err < 8) {

2110 if (err < 0)

2111 err("USB device not responding, giving up (error=%d)", err);

2112 else

2113 err("USB device descriptor short read (expected %i, got %i)", 8, err);

2114 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

2115 dev­>devnum = ­1;

2116 return 1;

2117 }

2118 dev­>epmaxpacketin [0] = dev­>descriptor.bMaxPacketSize0;

2119 dev­>epmaxpacketout[0] = dev­>descriptor.bMaxPacketSize0;

2120

2121 err = usb_get_device_descriptor(dev);

2122 if (err < sizeof(dev­>descriptor)) {

2123 if (err < 0)

2124 err("unable to get device descriptor (error=%d)", err);

2125 else

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1279

2126 err("USB device descriptor short read (expected %i, got %i)",

2127 sizeof(dev­>descriptor), err);

2128

2129 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

2130 dev­>devnum = ­1;

2131 return 1;

2132 }

2133

USB endpoint
USB 0

USB
pipe

8 usb_set_address()
drivers/usb/usb.c

==================== drivers/usb/usb.c 1708 1712 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_set_address()]
1708 int usb_set_address(struct usb_device *dev)

1709 {

1710 return usb_control_msg(dev, usb_snddefctrl(dev), USB_REQ_SET_ADDRESS,

1711 0, dev­>devnum, 0, NULL, 0, HZ * GET_TIMEOUT);

1712 }

usb_control_msg() USB
USB

0
“snddefctrl 0 0
USB_REQ_SET_ADDRESS dev­>devnum

3 HZ*GET_TIMEOUT HZ
GET_TIMEOUT 3

2106
usb_device_descriptor

usb_get_descriptor() drivers/usb/usb.c

==================== drivers/usb/usb.c 1714 1729 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_descriptor()]
1714 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int

size)

1715 {

1716 int i = 5;

1717 int result;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1280

1718

1719 memset(buf,0,size); // Make sure we parse really received data

1720

1721 while (i­­) {

1722 if ((result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),

1723 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,

1724 (type << 8) + index, 0, buf, size, HZ * GET_TIMEOUT)) > 0 ||

1725 result == ­EPIPE)

1726 break; /* retry if the returned length was 0; flaky device */

1727 }

1728 return result;

1729 }

“rcvctrlpipe 0
USB_REQ_GET_DESCRIPTOR

USB_DT_DEVICE
include/linux/usb.h

==================== include/linux/usb.h 44 51 ====================
44 /*

45 * Descriptor types

46 */

47 #define USB_DT_DEVICE 0x01

48 #define USB_DT_CONFIG 0x02

49 #define USB_DT_STRING 0x03

50 #define USB_DT_INTERFACE 0x04

51 #define USB_DT_ENDPOINT 0x05

8 dev­>descriptor
2118 2119

usb_get_device_descriptor() drivers/usb/usb.c

==================== drivers/usb/usb.c 1746 1757 ====================
[pci_module_init()>pci_register_driver()>pei_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_device_descriptor()]
1746 int usb_get_device_descriptor(struct usb_device *dev)

1747 {

1748 int ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev­>descriptor,

1749 sizeof(dev­>descriptor));

1750 if (ret >= 0) {

1751 le16_to_cpus(&dev­>descriptor.bcdUSB);

1752 le16_to_cpus(&dev­>descriptor.idVendor);

1753 le16_to_cpus(&dev­>descriptor.idProduct);

1754 le16_to_cpus(&dev­>descriptor.bcdDevice);

1755 }

1756 return ret;

1757 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1281

8
8 8

8
16

“little ending CPU
usb_new_device()

drivers/usb/usb.c

==================== drivers/usb/usb.c 2134 2175 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()]
2134 err = usb_get_configuration(dev);

2135 if (err < 0) {

2136 err("unable to get device %d configuration (error=%d)",

2137 dev­>devnum, err);

2138 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

2139 dev­>devnum = ­1;

2140 usb_free_dev(dev);

2141 return 1;

2142 }

2143

2144 /* we set the default configuration here */

2145 err = usb_set_configuration(dev, dev­>config[0].bConfigurationValue);

2146 if (err) {

2147 err("failed to set device %d default configuration (error=%d)",

2148 dev­>devnum, err);

2149 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

2150 dev­>devnum = ­1;

2151 return 1;

2152 }

2153

2154 dbg("new device strings: Mfr=%d, Product=%d, SerialNumber=%d",

2155 dev­>descriptor.iManufacturer, dev­>descriptor.iProduct, dev­>descriptor.iSerialNumber);

2156 #ifdef DEBUG

2157 if (dev­>descriptor.iManufacturer)

2158 usb_show_string(dev, "Manufacturer", dev­>descriptor.iManufacturer);

2159 if (dev­>descriptor.iProduct)

2160 usb_show_string(dev, "Product", dev­>descriptor.iProduct);

2161 if (dev­>descriptor.iSerialNumber)

2162 usb_show_string(dev, "SerialNumber", dev­>descriptor.iSerialNumber);

2163 #endif

2164

2165 /* now that the basic setup is over, add a /proc/bus/usb entry */

2166 usbdevfs_add_device(dev);

2167

2168 /* find drivers willing to handle this device */

2169 usb_find_drivers(dev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1282

2170

2171 /* userspace may load modules and/or configure further */

2172 call_policy ("add", dev);

2173

2174 return 0;

2175 }

usb_config_descriptor
include/linux/usb.h

==================== include/linux/usb.h 280 295 ====================
280 /* Configuration descriptor information.. */

281 struct usb_config_descriptor {

282 __u8 bLength __attribute__ ((packed));

283 __u8 bDescriptorType __attribute__ ((packed));

284 __u16 wTotalLength __attribute__ ((packed));

285 __u8 bNumInterfaces __attribute__ ((packed));

286 __u8 bConfigurationValue __attribute__ ((packed));

287 __u8 iConfiguration __attribute__ ((packed));

288 __u8 bmAttributes __attribute__ ((packed));

289 __u8 MaxPower __attribute__ ((packed));

290

291 struct usb_interface *interface;

292

293 unsigned char *extra; /* Extra descriptors */

294 int extralen;

295 };

interface 282 289
usb_get_configuration() drivers/usb/usb.c

==================== drivers/usb/usb.c 1926 2016 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_configuration()]
1926 int usb_get_configuration(struct usb_device *dev)

1927 {

1928 int result;

1929 unsigned int cfgno, length;

1930 unsigned char buffer[8];

1931 unsigned char *bigbuffer;

1932 struct usb_config_descriptor *desc =

1933 (struct usb_config_descriptor *)buffer;

1934

1935 if (dev­>descriptor.bNumConfigurations > USB_MAXCONFIG) {

1936 warn("too many configurations");

1937 return ­EINVAL;

1938 }

1939

1940 if (dev­>descriptor.bNumConfigurations < 1) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1283

1941 warn("not enough configurations");

1942 return ­EINVAL;

1943 }

1944

1945 dev­>config = (struct usb_config_descriptor *)

1946 kmalloc(dev­>descriptor.bNumConfigurations *

1947 sizeof(struct usb_config_descriptor), GFP_KERNEL);

1948 if (!dev­>config) {

1949 err("out of memory");

1950 return ­ENOMEM;

1951 }

1952 memset(dev­>config, 0, dev­>descriptor.bNumConfigurations *

1953 sizeof(struct usb_config_descriptor));

1954

1955 dev­>rawdescriptors = (char **)kmalloc(sizeof(char *) *

1956 dev­>descriptor.bNumConfigurations, GFP_KERNEL);

1957 if (!dev­>rawdescriptors) {

1958 err("out of memory");

1959 return ­ENOMEM;

1960 }

1961

1962 for (cfgno = 0; cfgno < dev­>descriptor.bNumConfigurations; cfgno++) {

1963 /* We grab the first 8 bytes so we know how long the whole */

1964 /* configuration is */

1965 result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, 8);

1966 if (result < 8) {

1967 if (result < 0)

1968 err("unable to get descriptor");

1969 else {

1970 err("config descriptor too short (expected %i, got %i)", 8, result);

1971 result = ­EINVAL;

1972 }

1973 goto err;

1974 }

1975

1976 /* Get the full buffer */

1977 length = le16_to_cpu(desc­>wTotalLength);

1978

1979 bigbuffer = kmalloc(length, GFP_KERNEL);

1980 if (!bigbuffer) {

1981 err("unable to allocate memory for configuration descriptors");

1982 result = ­ENOMEM;

1983 goto err;

1984 }

1985

1986 /* Now that we know the length, get the whole thing */

1987 result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, bigbuffer, length);

1988 if (result < 0) {

1989 err("couldn't get all of config descriptors");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1284

1990 kfree(bigbuffer);

1991 goto err;

1992 }

1993

1994 if (result < length) {

1995 err("config descriptor too short (expected %i, got %i)", length, result);

1996 result = ­EINVAL;

1997 kfree(bigbuffer);

1998 goto err;

1999 }

2000

2001 dev­>rawdescriptors[cfgno] = bigbuffer;

2002

2003 result = usb_parse_configuration(dev, &dev­>config[cfgno], bigbuffer);

2004 if (result > 0)

2005 dbg("descriptor data left");

2006 else if (result < 0) {

2007 result = ­EINVAL;

2008 goto err;

2009 }

2010 }

2011

2012 return 0;

2013 err:

2014 dev­>descriptor.bNumConfigurations = cfgno;

2015 return result;

2016 }

USB bNumConfigurations
USB_MAXCONFIG 8

usb_device config
usb_device rawdescriptors

for 1962
usb_get_descriptor() USB_DT_CONFIG 8

buffer wTotalLength
usb_get_descriptor()

rawdescriptors

usb_parse_configuration()

drivers/usb/usb.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1285

==================== drivers/usb/usb.c 1399 1488 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_configuration()>usb_parse_configuration()]
1399 int usb_parse_configuration(struct usb_device *dev, struct usb_config_descriptor *config, char

*buffer)

1400 {

1401 int i, retval, size;

1402 struct usb_descriptor_header *header;

1403

1404 memcpy(config, buffer, USB_DT_CONFIG_SIZE);

1405 le16_to_cpus(&config­>wTotalLength);

1406 size = config­>wTotalLength;

1407

1408 if (config­>bNumInterfaces > USB_MAXINTERFACES) {

1409 warn("too many interfaces");

1410 return ­1;

1411 }

1412

1413 config­>interface = (struct usb_interface *)

1414 kmalloc(config­>bNumInterfaces *

1415 sizeof(struct usb_interface), GFP_KERNEL);

1416 dbg("kmalloc IF %p, numif %i", config­>interface, config­>bNumInterfaces);

1417 if (!config­>interface) {

1418 err("out of memory");

1419 return ­1;

1420 }

1421

1422 memset(config­>interface, 0,

1423 config­>bNumInterfaces * sizeof(struct usb_interface));

1424

1425 buffer += config­>bLength;

1426 size ­= config­>bLength;

1427

1428 for (i = 0; i < config­>bNumInterfaces; i++) {

1429 int numskipped, len;

1430 char *begin;

1431

1432 /* Skip over the rest of the Class Specific or Vendor */

1433 /* Specific descriptors */

1434 begin = buffer;

1435 numskipped = 0;

1436 while (size >= sizeof(struct usb_descriptor_header)) {

1437 header = (struct usb_descriptor_header *)buffer;

1438

1439 if ((header­>bLength > size) || (header­>bLength < 2)) {

1440 err("invalid descriptor length of %d", header­>bLength);

1441 return ­1;

1442 }

1443

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1286

1444 /* If we find another descriptor which is at or below */

1445 /* us in the descriptor heirarchy then we're done */

1446 if ((header­>bDescriptorType == USB_DT_ENDPOINT) ||

1447 (header­>bDescriptorType == USB_DT_INTERFACE) ||

1448 (header­>bDescriptorType == USB_DT_CONFIG) ||

1449 (header­>bDescriptorType == USB_DT_DEVICE))

1450 break;

1451

1452 dbg("skipping descriptor 0x%X", header­>bDescriptorType);

1453 numskipped++;

1454

1455 buffer += header­>bLength;

1456 size ­= header­>bLength;

1457 }

1458 if (numskipped)

1459 dbg("skipped %d class/vendor specific endpoint descriptors", numskipped);

1460

1461 /* Copy any unknown descriptors into a storage area for */

1462 /* drivers to later parse */

1463 len = (int)(buffer ­ begin);

1464 if (!len) {

1465 config­>extra = NULL;

1466 config­>extralen = 0;

1467 } else {

1468 config­>extra = kmalloc(len, GFP_KERNEL);

1469 if (!config­>extra) {

1470 err("couldn't allocate memory for config extra descriptors");

1471 config­>extralen = 0;

1472 return ­1;

1473 }

1474

1475 memcpy(config­>extra, begin, len);

1476 config­>extralen = len;

1477 }

1478

1479 retval = usb_parse_interface(dev, config­>interface + i, buffer, size);

1480 if (retval < 0)

1481 return retval;

1482

1483 buffer += retval;

1484 size ­= retval;

1485 }

1486

1487 return size;

1488 }

config usb_config_descriptor buffer
9 usb_config_descriptor

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1287

USB_DT_CONFIG_SIZE 9 bNumInterfaces
USB

usb_interface
include/linux/usb.h

==================== include/linux/usb.h 269 278 ====================
269 struct usb_interface {

270 struct usb_interface_descriptor *altsetting;

271

272 int act_altsetting; /* active alternate setting */

273 int num_altsetting; /* number of alternate settings */

274 int max_altsetting; /* total memory allocated */

275

276 struct usb_driver *driver; /* driver */

277 void *private_data;

278 };

altsetting usb_interface_descriptor
act_altsetting

include/linux/usb.h

==================== include/linux/usb.h 251 267 ====================
251 /* Interface descriptor */

252 struct usb_interface_descriptor {

253 __u8 bLength __attribute__ ((packed));

254 __u8 bDescriptorType __attribute__ ((packed));

255 __u8 bInterfaceNumber __attribute__ ((packed));

256 __u8 bAlternateSetting __attribute__ ((packed));

257 __u8 bNumEndpoints __attribute__ ((packed));

258 __u8 bInterfaceClass __attribute__ ((packed));

259 __u8 bInterfaceSubClass __attribute__ ((packed));

260 __u8 bInterfaceProtocol __attribute__ ((packed));

261 __u8 iInterface __attribute__ ((packed));

262

263 struct usb_endpoint_descriptor *endpoint;

264

265 unsigned char *extra; /* Extra descriptors */

266 int extralen;

267 };

endpoint bInterfaceNumber bAlternateSetting

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1288

0 0

“parse
usb_interface 1413

for 1428
usb_parse_interface()

drivers/usb/usb.c

==================== drivers/usb/usb.c 1247 1347 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_configuration()>usb_parse_configuration()>usb_parse_interface()]
1247 static int usb_parse_interface(struct usb_device *dev, struct usb_interface *interface, unsigned char

*buffer, int size)

1248 {

1249 int i, len, numskipped, retval, parsed = 0;

1250 struct usb_descriptor_header *header;

1251 struct usb_interface_descriptor *ifp;

1252 unsigned char *begin;

1253

1254 interface­>act_altsetting = 0;

1255 interface­>num_altsetting = 0;

1256 interface­>max_altsetting = USB_ALTSETTINGALLOC;

1257

1258 interface­>altsetting = kmalloc(sizeof(struct usb_interface_descriptor) *

interface­>max_altsetting, GFP_KERNEL);

1259

1260 if (!interface­>altsetting) {

1261 err("couldn't kmalloc interface­>altsetting");

1262 return ­1;

1263 }

1264

1265 while (size > 0) {

1266 if (interface­>num_altsetting >= interface­>max_altsetting) {

1267 void *ptr;

1268 int oldmas;

1269

1270 oldmas = interface­>max_altsetting;

1271 interface­>max_altsetting += USB_ALTSETTINGALLOC;

1272 if (interface­>max_altsetting > USB_MAXALTSETTING) {

1273 warn("too many alternate settings (max %d)",

1274 USB_MAXALTSETTING);

1275 return ­1;

1276 }

1277

1278 ptr = interface­>altsetting;

1279 interface­>altsetting = kmalloc(sizeof(struct usb_interface_descriptor) *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1289

interface­>max_altsetting, GFP_KERNEL);

1280 if (!interface­>altsetting) {

1281 err("couldn't kmalloc interface­>altsetting");

1282 interface­>altsetting = ptr;

1283 return ­1;

1284 }

1285 memcpy(interface­>altsetting, ptr, sizeof(struct usb_interface_descriptor) * oldmas);

1286

1287 kfree(ptr);

1288 }

1289

1290 ifp = interface­>altsetting + interface­>num_altsetting;

1291 interface­>num_altsetting++;

1292

1293 memcpy(ifp, buffer, USB_DT_INTERFACE_SIZE);

1294

1295 /* Skip over the interface */

1296 buffer += ifp­>bLength;

1297 parsed += ifp­>bLength;

1298 size ­= ifp­>bLength;

1299

1300 begin = buffer;

1301 numskipped = 0;

1302

1303 /* Skip over any interface, class or vendor descriptors */

1304 while (size >= sizeof(struct usb_descriptor_header)) {

1305 header = (struct usb_descriptor_header *)buffer;

1306

1307 if (header­>bLength < 2) {

1308 err("invalid descriptor length of %d", header­>bLength);

1309 return ­1;

1310 }

1311

1312 /* If we find another descriptor which is at or below */

1313 /* us in the descriptor heirarchy then return */

1314 if ((header­>bDescriptorType == USB_DT_INTERFACE) ||

1315 (header­>bDescriptorType == USB_DT_ENDPOINT) ||

1316 (header­>bDescriptorType == USB_DT_CONFIG) ||

1317 (header­>bDescriptorType == USB_DT_DEVICE))

1318 break;

1319

1320 numskipped++;

1321

1322 buffer += header­>bLength;

1323 parsed += header­>bLength;

1324 size ­= header­>bLength;

1325 }

1326

1327 if (numskipped)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1290

1328 dbg("skipped %d class/vendor specific interface descriptors", numskipped);

1329

1330 /* Copy any unknown descriptors into a storage area for */

1331 /* drivers to later parse */

1332 len = (int)(buffer ­ begin);

1333 if (!len) {

1334 ifp­>extra = NULL;

1335 ifp­>extralen = 0;

1336 } else {

1337 ifp­>extra = kmalloc(len, GFP_KERNEL);

1338

1339 if (!ifp­>extra) {

1340 err("couldn't allocate memory for interface extra descriptors");

1341 ifp­>extralen = 0;

1342 return ­1;

1343 }

1344 memcpy(ifp­>extra, begin, len);

1345 ifp­>extralen = len;

1346 }

1347

usb_parse_configuration() usb_interface
usb_interface_descriptor 4

USB_ALTSETTINGALLOC 4 4 usb_interface_descriptor
while

4 4 1271
SB_ALTSETTINGALLOC 4

while buffer parsed

usb_descriptor_header
include/linux/usb.h

==================== include/linux/usb.h 212 216 ====================
212 /* All standard descriptors have these 2 fields in common */

213 struct usb_descriptor_header {

214 __u8 bLength;

215 __u8 bDescriptorType;

216 } __attribute__ ((packed));

USB_DT_INTERFACE USB_DT_ENDPOINT USB_DT_CONFIG
USB_DT_DEVICE 4 USB

1320 1324 1304 USB
USB dbg()

1332 1346
usb_interface_descriptor extra

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1291

USB
usb_parse_interface() drivers/usb/usb.c

==================== drivers/usb/usb.c 1348 1397 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_configuration()>usb_parse_configuration()>usb_parse_interface()]
1348 /* Did we hit an unexpected descriptor? */

1349 header = (struct usb_descriptor_header *)buffer;

1350 if ((size >= sizeof(struct usb_descriptor_header)) &&

1351 ((header­>bDescriptorType == USB_DT_CONFIG) ||

1352 (header­>bDescriptorType == USB_DT_DEVICE)))

1353 return parsed;

1354

1355 if (ifp­>bNumEndpoints > USB_MAXENDPOINTS) {

1356 warn("too many endpoints");

1357 return ­1;

1358 }

1359

1360 ifp­>endpoint = (struct usb_endpoint_descriptor *)

1361 kmalloc(ifp­>bNumEndpoints *

1362 sizeof(struct usb_endpoint_descriptor), GFP_KERNEL);

1363 if (!ifp­>endpoint) {

1364 err("out of memory");

1365 return ­1;

1366 }

1367

1368 memset(ifp­>endpoint, 0, ifp­>bNumEndpoints *

1369 sizeof(struct usb_endpoint_descriptor));

1370

1371 for (i = 0; i < ifp­>bNumEndpoints; i++) {

1372 header = (struct usb_descriptor_header *)buffer;

1373

1374 if (header­>bLength > size) {

1375 err("ran out of descriptors parsing");

1376 return ­1;

1377 }

1378

1379 retval = usb_parse_endpoint(dev, ifp­>endpoint + i, buffer, size);

1380 if (retval < 0)

1381 return retval;

1382

1383 buffer += retval;

1384 parsed += retval;

1385 size ­= retval;

1386 }

1387

1388 /* We check to see if it's an alternate to this one */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1292

1389 ifp = (struct usb_interface_descriptor *)buffer;

1390 if (size < USB_DT_INTERFACE_SIZE ||

1391 ifp­>bDescriptorType != USB_DT_INTERFACE ||

1392 !ifp­>bAlternateSetting)

1393 return parsed;

1394 }

1395

1396 return parsed;

1397 }

USB_DT_CONFIG USB_DT_DEVICE

1353
USB_DT_INTERFACE USB_DT_ENDPOINT

usb_interface_descriptor
usb_endpoint_descriptor 1360

include/linux/usb.h

==================== include/linux/usb.h 236 249 ====================
236 /* Endpoint descriptor */

237 struct usb_endpoint_descriptor {

238 __u8 bLength __attribute__ ((packed));

239 __u8 bDescriptorType __attribute__ ((packed));

240 __u8 bEndpointAddress __attribute__ ((packed));

241 __u8 bmAttributes __attribute__ ((packed));

242 __u16 wMaxPacketSize __attribute__ ((packed));

243 __u8 bInterval __attribute__ ((packed));

244 __u8 bRefresh __attribute__ ((packed));

245 __u8 bSynchAddress __attribute__ ((packed));

246

247 unsigned char *extra; /* Extra descriptors */

248 int extralen;

249 };

for
usb_descriptor_header

usb_parse_endpoint() drivers/usb/usb.c

==================== drivers/usb/usb.c 1161 1245 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_get_configuration()>usb_parse_configuration()>usb_parse_interface()>usb_parse_endpoint()]
1161 static int usb_parse_endpoint(struct usb_device *dev, struct usb_endpoint_descriptor *endpoint,

unsigned char *buffer, int size)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1293

1162 {

1163 struct usb_descriptor_header *header;

1164 unsigned char *begin;

1165 int parsed = 0, len, numskipped;

1166

1167 header = (struct usb_descriptor_header *)buffer;

1168

1169 /* Everything should be fine being passed into here, but we sanity */

1170 /* check JIC */

1171 if (header­>bLength > size) {

1172 err("ran out of descriptors parsing");

1173 return ­1;

1174 }

1175

1176 if (header­>bDescriptorType != USB_DT_ENDPOINT) {

1177 warn("unexpected descriptor 0x%X, expecting endpoint descriptor, type 0x%X",

1178 endpoint­>bDescriptorType, USB_DT_ENDPOINT);

1179 return parsed;

1180 }

1181

1182 if (header­>bLength == USB_DT_ENDPOINT_AUDIO_SIZE)

1183 memcpy(endpoint, buffer, USB_DT_ENDPOINT_AUDIO_SIZE);

1184 else

1185 memcpy(endpoint, buffer, USB_DT_ENDPOINT_SIZE);

1186

1187 le16_to_cpus(&endpoint­>wMaxPacketSize);

1188

1189 buffer += header­>bLength;

1190 size ­= header­>bLength;

1191 parsed += header­>bLength;

1192

1193 /* Skip over the rest of the Class Specific or Vendor Specific */

1194 /* descriptors */

1195 begin = buffer;

1196 numskipped = 0;

1197 while (size >= sizeof(struct usb_descriptor_header)) {

1198 header = (struct usb_descriptor_header *)buffer;

1199

1200 if (header­>bLength < 2) {

1201 err("invalid descriptor length of %d", header­>bLength);

1202 return ­1;

1203 }

1204

1205 /* If we find another descriptor which is at or below us */

1206 /* in the descriptor heirarchy then we're done */

1207 if ((header­>bDescriptorType == USB_DT_ENDPOINT) ||

1208 (header­>bDescriptorType == USB_DT_INTERFACE) ||

1209 (header­>bDescriptorType == USB_DT_CONFIG) ||

1210 (header­>bDescriptorType == USB_DT_DEVICE))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1294

1211 break;

1212

1213 dbg("skipping descriptor 0x%X",

1214 header­>bDescriptorType);

1215 numskipped++;

1216

1217 buffer += header­>bLength;

1218 size ­= header­>bLength;

1219 parsed += header­>bLength;

1220 }

1221 if (numskipped)

1222 dbg("skipped %d class/vendor specific endpoint descriptors", numskipped);

1223

1224 /* Copy any unknown descriptors into a storage area for drivers */

1225 /* to later parse */

1226 len = (int)(buffer ­ begin);

1227 if (!len) {

1228 endpoint­>extra = NULL;

1229 endpoint­>extralen = 0;

1230 return parsed;

1231 }

1232

1233 endpoint­>extra = kmalloc(len, GFP_KERNEL);

1234

1235 if (!endpoint­>extra) {

1236 err("couldn't allocate memory for endpoint extra descriptors");

1237 endpoint­>extralen = 0;

1238 return parsed;

1239 }

1240

1241 memcpy(endpoint­>extra, begin, len);

1242 endpoint­>extralen = len;

1243

1244 return parsed;

1245 }

USB_DT_ENDPOINT
7 9

7 9 usb_endpoint_descriptor buffer
parsed size

dbg()

usb_parse_interface()

while 1265

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1295

usb_parse_configuration() usb_get_configuration()
usb_new_device()

2135 usb_set_configuration() 0
drivers/usb/usb.c

==================== drivers/usb/usb.c 1884 1910 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_set_configuration()]
1884 int usb_set_configuration(struct usb_device *dev, int configuration)

1885 {

1886 int i, ret;

1887 struct usb_config_descriptor *cp = NULL;

1888

1889 for (i=0; i<dev­>descriptor.bNumConfigurations; i++) {

1890 if (dev­>config[i].bConfigurationValue == configuration) {

1891 cp = &dev­>config[i];

1892 break;

1893 }

1894 }

1895 if (!cp) {

1896 warn("selecting invalid configuration %d", configuration);

1897 return ­EINVAL;

1898 }

1899

1900 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),

1901 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, NULL, 0, HZ * SET_TIMEOUT)) < 0)

1902 return ret;

1903

1904 dev­>actconfig = cp;

1905 dev­>toggle[0] = 0;

1906 dev­>toggle[1] = 0;

1907 usb_set_maxpacket(dev);

1908

1909 return 0;

1910 }

PCI USB USB
USB

USB
USB USB

USB USB
USB USB

USB USB USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1296

USB USB
USB USB

USB
USB USB

USB
usb_find_drivers() USB

drivers/usb/usb.c

==================== drivers/usb/usb.c 833 866 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_find_drivers()]
833 /*

834 * This entrypoint gets called for each new device.

835 *

836 * All interfaces are scanned for matching drivers.

837 */

838 static void usb_find_drivers(struct usb_device *dev)

839 {

840 unsigned ifnum;

841 unsigned rejected = 0;

842 unsigned claimed = 0;

843

844 for (ifnum = 0; ifnum < dev­>actconfig­>bNumInterfaces; ifnum++) {

845 /* if this interface hasn't already been claimed */

846 if (!usb_interface_claimed(dev­>actconfig­>interface + ifnum)) {

847 if (usb_find_interface_driver(dev, ifnum))

848 rejected++;

849 else

850 claimed++;

851 }

852 }

853

854 if (rejected)

855 dbg("unhandled interfaces on device");

856

857 if (!claimed) {

858 warn("USB device %d (vend/prod 0x%x/0x%x) is not claimed by any active driver.",

859 dev­>devnum,

860 dev­>descriptor.idVendor,

861 dev­>descriptor.idProduct);

862 #ifdef DEBUG

863 usb_show_device(dev);

864 #endif

865 }

866 }

USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1297

usb_find_interface_driver()

==================== drivers/usb/usb.c 623 692 ====================
[pci_module_init()>pci_register_driver()>pci_announce_device()>uhci_pci_probe()>setup_uhci()>uhci_start_root_hub()
>usb_new_device()>usb_find_drivers()>usb_find_interface_driver()]
623 /*

624 * This entrypoint gets called for each new device.

625 *

626 * We now walk the list of registered USB drivers,

627 * looking for one that will accept this interface.

628 *

629 * "New Style" drivers use a table describing the devices and interfaces

630 * they handle. Those tables are available to user mode tools deciding

631 * whether to load driver modules for a new device.

632 *

633 * The probe return value is changed to be a private pointer. This way

634 * the drivers don't have to dig around in our structures to set the

635 * private pointer if they only need one interface.

636 *

637 * Returns: 0 if a driver accepted the interface, ­1 otherwise

638 */

639 static int usb_find_interface_driver(struct usb_device *dev, unsigned ifnum)

640 {

641 struct list_head *tmp;

642 struct usb_interface *interface;

643 void *private;

644 const struct usb_device_id *id;

645 struct usb_driver *driver;

646 int i;

647

648 if ((!dev) || (ifnum >= dev­>actconfig­>bNumInterfaces)) {

649 err("bad find_interface_driver params");

650 return ­1;

651 }

652

653 interface = dev­>actconfig­>interface + ifnum;

654

655 if (usb_interface_claimed(interface))

656 return ­1;

657

658 private = NULL;

659 for (tmp = usb_driver_list.next; tmp != &usb_driver_list;) {

660

661 driver = list_entry(tmp, struct usb_driver, driver_list);

662 tmp = tmp­>next;

663

664 down(&driver­>serialize);

665 id = driver­>id_table;

666 /* new style driver? */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1298

667 if (id) {

668 for (i = 0; i < interface­>num_altsetting; i++) {

669 interface­>act_altsetting = i;

670 id = usb_match_id(dev, interface, id);

671 if (id) {

672 private = driver­>probe(dev,ifnum,id);

673 if (private != NULL)

674 break;

675 }

676 }

677 /* if driver not bound, leave defaults unchanged */

678 if (private == NULL)

679 interface­>act_altsetting = 0;

680 }

681 else /* "old style" driver */

682 private = driver­>probe(dev, ifnum, NULL);

683

684 up(&driver­>serialize);

685 if (private) {

686 usb_driver_claim_interface(driver, interface, private);

687 return 0;

688 }

689 }

690

691 return ­1;

692 }

usb_match_id()
probe

USB
USB usb_new_device() call_policy()

call_policy()
“/sbin/hotplug usb

/sbin/hotplug USB
call_policy() USB

USB usb_init() drivers/usb/usb.c

==================== drivers/usb/usb.c 2243 2250 ====================
2243 static int __init usb_init(void)

2244 {

2245 usb_major_init();

2246 usbdevfs_init();

2247 usb_hub_init();

2248

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1299

2249 return 0;

2250 }

usb_major_init()
drivers/usb/usb.c

==================== drivers/usb/usb.c 2208 2218 ====================
[usb_init()>usb_major_init()]
2208 int usb_major_init(void)

2209 {

2210 if (devfs_register_chrdev(USB_MAJOR, "usb", &usb_fops)) {

2211 err("unable to get major %d for usb devices", USB_MAJOR);

2212 return ­EBUSY;

2213 }

2214

2215 usb_devfs_handle = devfs_mk_dir(NULL, "usb", NULL);

2216

2217 return 0;

2218 }

2246 usbdevfs_init() devfs
devfs usb_init() usb_hub_init()

drivers/usb/hub.c

==================== drivers/usb/hub.c 786 808 ====================
[usb_init()>usb_hub_init()]
786 int usb_hub_init(void)

787 {

788 int pid;

789

790 if (usb_register(&hub_driver) < 0) {

791 err("Unable to register USB hub driver");

792 return ­1;

793 }

794

795 pid = kernel_thread(usb_hub_thread, NULL,

796 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);

797 if (pid >= 0) {

798 khubd_pid = pid;

799

800 return 0;

801 }

802

803 /* Fall through if kernel_thread failed */

804 usb_deregister(&hub_driver);

805 err("failed to start usb_hub_thread");

806

807 return ­1;

808 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1300

usb_register() USB USB usb_driver
USB usb_driver hub_driver drivers/usb/hub.c

==================== drivers/usb/hub.c 775 781 ====================
775 static struct usb_driver hub_driver = {

776 name: "hub",

777 probe: hub_probe,

778 ioctl: hub_ioctl,

779 disconnect: hub_disconnect,

780 id_table: hub_id_table,

781 };

USB usb_register()
USB USB_MAJOR USB

usb_driver usb_minors[]
usb_driver hub_driver

USB 0 USB
usb_driver_list usb_driver driver_list

USB usb_device
probe

USB hub_driver probe
hub_probe() drivers/usb/hub.c

==================== drivers/usb/hub.c 238 320 ====================
[usb_init()>usb_hub_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>hub_probe()]
238 static void *hub_probe(struct usb_device *dev, unsigned int i,

239 const struct usb_device_id *id)

240

241 {

242 struct usb_interface_descriptor *interface;

243 struct usb_endpoint_descriptor *endpoint;

244 struct usb_hub *hub;

245 unsigned long flags;

246

247 interface = &dev­>actconfig­>interface[i].altsetting[0];

248

249 /* Some hubs have a subclass of 1, which AFAICT according to the */

250 /* specs is not defined, but it works */

251 if ((interface­>bInterfaceSubClass != 0) &&

252 (interface­>bInterfaceSubClass != 1)) {

253 err("invalid subclass (%d) for USB hub device #%d",

254 interface­>bInterfaceSubClass, dev­>devnum);

255 return NULL;

256 }

257

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1301

258 /* Multiple endpoints? What kind of mutant ninja­hub is this? */

259 if (interface­>bNumEndpoints != 1) {

260 err("invalid bNumEndpoints (%d) for USB hub device #%d",

261 interface­>bNumEndpoints, dev­>devnum);

262 return NULL;

263 }

264

265 endpoint = &interface­>endpoint[0];

266

267 /* Output endpoint? Curiousier and curiousier.. */

268 if (!(endpoint­>bEndpointAddress & USB_DIR_IN)) {

269 err("Device #%d is hub class, but has output endpoint?",

270 dev­>devnum);

271 return NULL;

272 }

273

274 /* If it's not an interrupt endpoint, we'd better punt! */

275 if ((endpoint­>bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {

276 err("Device #%d is hub class, but has endpoint other than interrupt?",

277 dev­>devnum);

278 return NULL;

279 }

280

281 /* We found a hub */

282 info("USB hub found");

283

284 hub = kmalloc(sizeof(*hub), GFP_KERNEL);

285 if (!hub) {

286 err("couldn't kmalloc hub struct");

287 return NULL;

288 }

289

290 memset(hub, 0, sizeof(*hub));

291

292 INIT_LIST_HEAD(&hub­>event_list);

293 hub­>dev = dev;

294

295 /* Record the new hub's existence */

296 spin_lock_irqsave(&hub_event_lock, flags);

297 INIT_LIST_HEAD(&hub­>hub_list);

298 list_add(&hub­>hub_list, &hub_list);

299 spin_unlock_irqrestore(&hub_event_lock, flags);

300

301 if (usb_hub_configure(hub, endpoint) >= 0)

302 return hub;

303

304 err("hub configuration failed for device #%d", dev­>devnum);

305

306 /* free hub, but first clean up its list. */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1302

307 spin_lock_irqsave(&hub_event_lock, flags);

308

309 /* Delete it and then reset it */

310 list_del(&hub­>event_list);

311 INIT_LIST_HEAD(&hub­>event_list);

312 list_del(&hub­>hub_list);

313 INIT_LIST_HEAD(&hub­>hub_list);

314

315 spin_unlock_irqrestore(&hub_event_lock, flags);

316

317 kfree(hub);

318

319 return NULL;

320 }

dev usb_device i
probe id

usb_device_id
probe

interface
USB hub_probe()

USB 0 1
251 279

USB usb_device USB
USB

usb_hub drivers/usb/hub.h

==================== drivers/usb/hub.h 93 111 ====================
93 struct usb_hub {

94 struct usb_device *dev;

95

96 struct urb *urb; /* Interrupt polling pipe */

97

98 char buffer[(USB_MAXCHILDREN + 1 + 7) / 8]; /* add 1 bit for hub status change */

99 /* and add 7 bits to round up to byte boundary */

100 int error;

101 int nerrors;

102

103 struct list_head hub_list;

104

105 struct list_head event_list;

106

107 /* Number of ports on the hub */

108 int nports;

109

110 struct usb_hub_descriptor *descriptor;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1303

111 };

buffer[] USB
nports descriptor

usb_hub_descriptor

==================== drivers/usb/hub.h 77 89 ====================
77 /* Hub descriptor */

78 struct usb_hub_descriptor {

79 __u8 bLength;

80 __u8 bDescriptorType;

81 __u8 bNbrPorts;

82 __u16 wHubCharacteristics;

83 __u8 bPwrOn2PwrGood;

84 __u8 bHubContrCurrent;

85

86 /* DeviceRemovable and PortPwrCtrlMask want to be variable­length

87 bitmaps that hold max 256 entries, but for now they're ignored */

88 __u8 bitmap[0];

89 } __attribute__ ((packed));

USB
usb_hub

usb_hub_configure() drivers/usb/hub.c

==================== drivers/usb/hub.c 125 236 ====================
[usb_init()>usb_hub_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>hub_probe()]>usb_hub_configure()]
125 static int usb_hub_configure(struct usb_hub *hub, struct usb_endpoint_descriptor *endpoint)

126 {

127 struct usb_device *dev = hub­>dev;

128 struct usb_hub_status hubstatus;

129 char portstr[USB_MAXCHILDREN + 1];

130 unsigned int pipe;

131 int i, maxp, ret;

132

133 hub­>descriptor = kmalloc(HUB_DESCRIPTOR_MAX_SIZE, GFP_KERNEL);

134 if (!hub­>descriptor) {

135 err("Unable to kmalloc %d bytes for hub descriptor", HUB_DESCRIPTOR_MAX_SIZE);

136 return ­1;

137 }

138

139 /* Request the entire hub descriptor. */

140 ret = usb_get_hub_descriptor(dev, hub­>descriptor, HUB_DESCRIPTOR_MAX_SIZE);

141 /* <hub­>descriptor> is large enough for a hub with 127 ports;

142 * the hub can/will return fewer bytes here. */

143 if (ret < 0) {

144 err("Unable to get hub descriptor (err = %d)", ret);

145 kfree(hub­>descriptor);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1304

146 return ­1;

147 }

148

149 hub­>nports = dev­>maxchild = hub­>descriptor­>bNbrPorts;

150 info("%d port%s detected", hub­>nports, (hub­>nports == 1) ? "" : "s");

151

152 if (hub­>descriptor­>wHubCharacteristics & HUB_CHAR_COMPOUND)

153 dbg("part of a compound device");

154 else

155 dbg("standalone hub");

156

157 switch (hub­>descriptor­>wHubCharacteristics & HUB_CHAR_LPSM) {

158 case 0x00:

159 dbg("ganged power switching");

160 break;

161 case 0x01:

162 dbg("individual port power switching");

163 break;

164 case 0x02:

165 case 0x03:

166 dbg("unknown reserved power switching mode");

167 break;

168 }

169

170 switch (hub­>descriptor­>wHubCharacteristics & HUB_CHAR_OCPM) {

171 case 0x00:

172 dbg("global over­current protection");

173 break;

174 case 0x08:

175 dbg("individual port over­current protection");

176 break;

177 case 0x10:

178 case 0x18:

179 dbg("no over­current protection");

180 break;

181 }

182

183 dbg("power on to power good time: %dms", hub­>descriptor­>bPwrOn2PwrGood * 2);

184 dbg("hub controller current requirement: %dmA", hub­>descriptor­>bHubContrCurrent);

185

186 for (i = 0; i < dev­>maxchild; i++)

187 portstr[i] = hub­>descriptor­>bitmap[((i + 1) / 8)] & (1 << ((i + 1) % 8)) ? 'F' : 'R';

188 portstr[dev­>maxchild] = 0;

189

190 dbg("port removable status: %s", portstr);

191

192 ret = usb_get_hub_status(dev, &hubstatus);

193 if (ret < 0) {

194 err("Unable to get hub status (err = %d)", ret);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1305

195 kfree(hub­>descriptor);

196 return ­1;

197 }

198

199 le16_to_cpus(&hubstatus.wHubStatus);

200

201 dbg("local power source is %s",

202 (hubstatus.wHubStatus & HUB_STATUS_LOCAL_POWER) ? "lost (inactive)" : "good");

203

204 dbg("%sover­current condition exists",

205 (hubstatus.wHubStatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");

206

207 /* Start the interrupt endpoint */

208 pipe = usb_rcvintpipe(dev, endpoint­>bEndpointAddress);

209 maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

210

211 if (maxp > sizeof(hub­>buffer))

212 maxp = sizeof(hub­>buffer);

213

214 hub­>urb = usb_alloc_urb(0);

215 if (!hub­>urb) {

216 err("couldn't allocate interrupt urb");

217 kfree(hub­>descriptor);

218 return ­1;

219 }

220

221 FILL_INT_URB(hub­>urb, dev, pipe, hub­>buffer, maxp, hub_irq,

222 hub, endpoint­>bInterval);

223 ret = usb_submit_urb(hub­>urb);

224 if (ret) {

225 err("usb_submit_urb failed (%d)", ret);

226 kfree(hub­>descriptor);

227 return ­1;

228 }

229

230 /* Wake up khubd */

231 wake_up(&khubd_wait);

232

233 usb_hub_power_on(hub);

234

235 return 0;

236 }

usb_hub_descriptor usb_get_hub_descriptor()
drivers/usb/hub.c

==================== drivers/usb/hub.c 41 46 ====================
[usb_init()>usb_hub_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>hub_probe()>usb_hub_configure()>usb_get_hub_descriptor()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1306

41 static int usb_get_hub_descriptor(struct usb_device *dev, void *data, int size)

42 {

43 return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),

44 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB,

45 USB_DT_HUB << 8, 0, data, size, HZ);

46 }

USB
USB

usb_get_hub_status()
drivers/usb/hub.c

==================== drivers/usb/hub.c 66 71 ====================
[usb_init()>usb_hub_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>hub_probe()>usb_hub_configure()>usb_get_hub_status()]
66 static int usb_get_hub_status(struct usb_device *dev, void *data)

67 {

68 return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),

69 USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_HUB, 0, 0,

70 data, sizeof(struct usb_hub_status), HZ);

71 }

USB ”

USB

usb_alloc_urb() “USB usb
FILL_INT_URB()

hub­>buffer usb_hub hub
”hub_irq() usb_submit_urb()

urb uhci_td skeltd[]
USB

usb_register() CPU usb_hub_init()

“PCI PCI USB
PCI USB

USB

PCI ”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1307

PCI USB
USB

USB USB

USB
khubd USB

USB USB
CPU USB
urb

hub_irq() drivers/usb/hub.c

==================== drivers/usb/hub.c 80 110 ====================
80 static void hub_irq(struct urb *urb)

81 {

82 struct usb_hub *hub = (struct usb_hub *)urb­>context;

83 unsigned long flags;

84

85 /* Cause a hub reset after 10 consecutive errors */

86 if (urb­>status) {

87 if (urb­>status == ­ENOENT)

88 return;

89

90 dbg("nonzero status in irq %d", urb­>status);

91

92 if ((++hub­>nerrors < 10) || hub­>error)

93 return;

94

95 hub­>error = urb­>status;

96 }

97

98 hub­>nerrors = 0;

99

100 /* Something happened, let khubd figure it out */

101 if (waitqueue_active(&khubd_wait)) {

102 /* Add the hub to the event queue */

103 spin_lock_irqsave(&hub_event_lock, flags);

104 if (list_empty(&hub­>event_list)) {

105 list_add(&hub­>event_list, &hub_event_list);

106 wake_up(&khubd_wait);

107 }

108 spin_unlock_irqrestore(&hub_event_lock, flags);

109 }

110 }

urb usb_hub urb­>status 0
NAK

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1308

USB TD_CTRL_ACTIVE 0 CPU
khubd usb_hub event_list khubd

hub_event_list khubd
khubd usb_hub_init() 795 kernel_thread() usb_hub_thread()

drivers/usb/hub.c

==================== drivers/usb/hub.c 742 765 ====================
742 static int usb_hub_thread(void *__hub)

743 {

744 lock_kernel();

745

746 /*

747 * This thread doesn't need any user­level access,

748 * so get rid of all our resources

749 */

750

751 daemonize();

752

753 /* Setup a nice name */

754 strcpy(current­>comm, "khubd");

755

756 /* Send me a signal to get me die (for debugging) */

757 do {

758 usb_hub_events();

759 interruptible_sleep_on(&khubd_wait);

760 } while (!signal_pending(current));

761

762 dbg("usb_hub_thread exiting");

763

764 up_and_exit(&khubd_exited, 0);

765 }

do­while
usb_hub_events()

usb_hub_events() drivers/usb/hub.c

==================== drivers/usb/hub.c 622 740 ====================
[usb_hub_thread()>usb_hub_events()]
622 static void usb_hub_events(void)

623 {

624 unsigned long flags;

625 struct list_head *tmp;

626 struct usb_device *dev;

627 struct usb_hub *hub;

628 struct usb_hub_status hubsts;

629 unsigned short hubstatus, hubchange;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1309

630 int i, ret;

631

632 /*

633 * We restart the list everytime to avoid a deadlock with

634 * deleting hubs downstream from this one. This should be

635 * safe since we delete the hub from the event list.

636 * Not the most efficient, but avoids deadlocks.

637 */

638 while (1) {

639 spin_lock_irqsave(&hub_event_lock, flags);

640

641 if (list_empty(&hub_event_list))

642 goto he_unlock;

643

644 /* Grab the next entry from the beginning of the list */

645 tmp = hub_event_list.next;

646

647 hub = list_entry(tmp, struct usb_hub, event_list);

648 dev = hub­>dev;

649

650 list_del(tmp);

651 INIT_LIST_HEAD(tmp);

652

653 spin_unlock_irqrestore(&hub_event_lock, flags);

654

655 if (hub­>error) {

656 dbg("resetting hub %d for error %d", dev­>devnum, hub­>error);

657

658 if (usb_hub_reset(hub)) {

659 err("error resetting hub %d ­ disconnecting", dev­>devnum);

660 usb_hub_disconnect(dev);

661 continue;

662 }

663

664 hub­>nerrors = 0;

665 hub­>error = 0;

666 }

667

668 for (i = 0; i < hub­>nports; i++) {

669 struct usb_port_status portsts;

670 unsigned short portstatus, portchange;

671

672 ret = usb_get_port_status(dev, i + 1, &portsts);

673 if (ret < 0) {

674 err("get_port_status failed (err = %d)", ret);

675 continue;

676 }

677

678 portstatus = le16_to_cpu(portsts.wPortStatus);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1310

679 portchange = le16_to_cpu(portsts.wPortChange);

680

681 if (portchange & USB_PORT_STAT_C_CONNECTION) {

682 dbg("port %d connection change", i + 1);

683

684 usb_hub_port_connect_change(dev, i, &portsts);

685 } else if (portchange & USB_PORT_STAT_C_ENABLE) {

686 dbg("port %d enable change, status %x", i + 1, portstatus);

687 usb_clear_port_feature(dev, i + 1, USB_PORT_FEAT_C_ENABLE);

688

689 /*

690 * EM interference sometimes causes bad shielded USB devices to

691 * be shutdown by the hub, this hack enables them again.

692 * Works at least with mouse driver.

693 */

694 if (!(portstatus & USB_PORT_STAT_ENABLE) &&

695 (portstatus & USB_PORT_STAT_CONNECTION) && (dev­>children[i])) {

696 err("already running port %i disabled by hub (EMI?), re­enabling...",

697 i + 1);

698 usb_hub_port_connect_change(dev, i, &portsts);

699 }

700 }

701

702 if (portchange & USB_PORT_STAT_C_SUSPEND) {

703 dbg("port %d suspend change", i + 1);

704 usb_clear_port_feature(dev, i + 1, USB_PORT_FEAT_C_SUSPEND);

705 }

706

707 if (portchange & USB_PORT_STAT_C_OVERCURRENT) {

708 err("port %d over­current change", i + 1);

709 usb_clear_port_feature(dev, i + 1, USB_PORT_FEAT_C_OVER_CURRENT);

710 usb_hub_power_on(hub);

711 }

712

713 if (portchange & USB_PORT_STAT_C_RESET) {

714 dbg("port %d reset change", i + 1);

715 usb_clear_port_feature(dev, i + 1, USB_PORT_FEAT_C_RESET);

716 }

717 } /* end for i */

718

719 /* deal with hub status changes */

720 if (usb_get_hub_status(dev, &hubsts) < 0)

721 err("get_hub_status failed");

722 else {

723 hubstatus = le16_to_cpup(&hubsts.wHubStatus);

724 hubchange = le16_to_cpup(&hubsts.wHubChange);

725 if (hubchange & HUB_CHANGE_LOCAL_POWER) {

726 dbg("hub power change");

727 usb_clear_hub_feature(dev, C_HUB_LOCAL_POWER);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1311

728 }

729 if (hubchange & HUB_CHANGE_OVERCURRENT) {

730 dbg("hub overcurrent change");

731 wait_ms(500); /* Cool down */

732 usb_clear_hub_feature(dev, C_HUB_OVER_CURRENT);

733 usb_hub_power_on(hub);

734 }

735 }

736 } /* end while (1) */

737

738 he_unlock:

739 spin_unlock_irqrestore(&hub_event_lock, flags);

740 }

while khubd hub_event_list usb_hub
hub­>error 0 10 usb_hub_reset()
reset usb_hub_disconnect()

for

usb_get_port_status() drivers/usb/hub.c

==================== drivers/usb/hub.c 73 78 ====================
[usb_hub_thread()>usb_hub_events()>usb_get_port_status()]
73 static int usb_get_port_status(struct usb_device *dev, int port, void *data)

74 {

75 return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),

76 USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, 0, port,

77 data, sizeof(struct usb_hub_status), HZ);

78 }

usb_hub_port_connect_change() drivers/usb/hub.c

==================== drivers/usb/hub.c 519 620 ====================
[usb_hub_thread()>usb_hub_events()>usb_hub_port_connect_change()]
519 static void usb_hub_port_connect_change(struct usb_device *hub, int port,

520 struct usb_port_status *portsts)

521 {

522 struct usb_device *dev;

523 unsigned short portstatus, portchange;

524 unsigned int delay = HUB_SHORT_RESET_TIME;

525 int i;

526 char *portstr, *tempstr;

527

528 portstatus = le16_to_cpu(portsts­>wPortStatus);

529 portchange = le16_to_cpu(portsts­>wPortChange);

530 dbg("port %d, portstatus %x, change %x, %s", port + 1, portstatus,

531 portchange, portstatus & (1 << USB_PORT_FEAT_LOWSPEED) ? "1.5 Mb/s" : "12 Mb/s");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1312

532

533 /* Clear the connection change status */

534 usb_clear_port_feature(hub, port + 1, USB_PORT_FEAT_C_CONNECTION);

535

536 /* Disconnect any existing devices under this port */

537 if (hub­>children[port])

538 usb_disconnect(&hub­>children[port]);

539

540 /* Return now if nothing is connected */

541 if (!(portstatus & USB_PORT_STAT_CONNECTION)) {

542 if (portstatus & USB_PORT_STAT_ENABLE)

543 usb_hub_port_disable(hub, port);

544

545 return;

546 }

547

548 down(&usb_address0_sem);

549

550 tempstr = kmalloc(1024, GFP_KERNEL);

551 portstr = kmalloc(1024, GFP_KERNEL);

552

553 for (i = 0; i < HUB_PROBE_TRIES; i++) {

554 struct usb_device *pdev, *cdev;

555

556 /* Allocate a new device struct */

557 dev = usb_alloc_dev(hub, hub­>bus);

558 if (!dev) {

559 err("couldn't allocate usb_device");

560 break;

561 }

562

563 hub­>children[port] = dev;

564

565 /* Reset the device */

566 if (usb_hub_port_reset(hub, port, dev, delay)) {

567 usb_free_dev(dev);

568 break;

569 }

570

571 /* Find a new device ID for it */

572 usb_connect(dev);

573

574 /* Create a readable topology string */

575 cdev = dev;

576 pdev = dev­>parent;

577 if (portstr && tempstr) {

578 portstr[0] = 0;

579 while (pdev) {

580 int port;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1313

581

582 for (port = 0; port < pdev­>maxchild; port++)

583 if (pdev­>children[port] == cdev)

584 break;

585

586 strcpy(tempstr, portstr);

587 if (!strlen(tempstr))

588 sprintf(portstr, "%d", port + 1);

589 else

590 sprintf(portstr, "%d/%s", port + 1, tempstr);

591

592 cdev = pdev;

593 pdev = pdev­>parent;

594 }

595 info("USB new device connect on bus%d/%s, assigned device number %d",

596 dev­>bus­>busnum, portstr, dev­>devnum);

597 } else

598 info("USB new device connect on bus%d, assigned device number %d",

599 dev­>bus­>busnum, dev­>devnum);

600

601 /* Run it through the hoops (find a driver, etc) */

602 if (!usb_new_device(dev))

603 goto done;

604

605 /* Free the configuration if there was an error */

606 usb_free_dev(dev);

607

608 /* Switch to a long reset time */

609 delay = HUB_LONG_RESET_TIME;

610 }

611

612 hub­>children[port] = NULL;

613 usb_hub_port_disable(hub, port);

614 done:

615 up(&usb_address0_sem);

616 if (portstr)

617 kfree(portstr);

618 if (tempstr)

619 kfree(tempstr);

620 }

16
drivers/usb/hub.h

==================== drivers/usb/hub.h 40 54 ====================
40 /* wPortStatus bits */

41 #define USB_PORT_STAT_CONNECTION 0x0001

42 #define USB_PORT_STAT_ENABLE 0x0002

43 #define USB_PORT_STAT_SUSPEND 0x0004

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1314

44 #define USB_PORT_STAT_OVERCURRENT 0x0008

45 #define USB_PORT_STAT_RESET 0x0010

46 #define USB_PORT_STAT_POWER 0x0100

47 #define USB_PORT_STAT_LOW_SPEED 0x0200

48

49 /* wPortChange bits */

50 #define USB_PORT_STAT_C_CONNECTION 0x0001

51 #define USB_PORT_STAT_C_ENABLE 0x0002

52 #define USB_PORT_STAT_C_SUSPEND 0x0004

53 #define USB_PORT_STAT_C_OVERCURRENT 0x0008

54 #define USB_PORT_STAT_C_RESET 0x0010

usb_clear_port_feature()
drivers/usb/hub.c

==================== drivers/usb/hub.c 54 58 ====================
[usb_hub_thread()>usb_hub_events()>usb_hub_port_connect_change()>usb_clear_port_feature()]
54 static int usb_clear_port_feature(struct usb_device *dev, int port, int feature)

55 {

56 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),

57 USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port, NULL, 0, HZ);

58 }

usb_device children[port] 0 usb_disconnect()
drivers/usb/usb.c

==================== drivers/usb/usb.c 1619 1665 ====================
[usb_hub_thread()>usb_hub_events()>usb_hub_port_connect_change()>usb_disconnect()]
1619 /*

1620 * Something got disconnected. Get rid of it, and all of its children.

1621 */

1622 void usb_disconnect(struct usb_device **pdev)

1623 {

1624 struct usb_device * dev = *pdev;

1625 int i;

1626

1627 if (!dev)

1628 return;

1629

1630 *pdev = NULL;

1631

1632 info("USB disconnect on device %d", dev­>devnum);

1633

1634 if (dev­>actconfig) {

1635 for (i = 0; i < dev­>actconfig­>bNumInterfaces; i++) {

1636 struct usb_interface *interface = &dev­>actconfig­>interface[i];

1637 struct usb_driver *driver = interface­>driver;

1638 if (driver) {

1639 down(&driver­>serialize);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1315

1640 driver­>disconnect(dev, interface­>private_data);

1641 up(&driver­>serialize);

1642 usb_driver_release_interface(driver, interface);

1643 }

1644 }

1645 }

1646

1647 /* Free up all the children.. */

1648 for (i = 0; i < USB_MAXCHILDREN; i++) {

1649 struct usb_device **child = dev­>children + i;

1650 if (*child)

1651 usb_disconnect(child);

1652 }

1653

1654 /* Let policy agent unload modules etc */

1655 call_policy ("remove", dev);

1656

1657 /* Free the device number and remove the /proc/bus/usb entry */

1658 if (dev­>devnum > 0) {

1659 clear_bit(dev­>devnum, &dev­>bus­>devmap.devicemap);

1660 usbdevfs_remove_device(dev);

1661 }

1662

1663 /* Free up the device itself */

1664 usb_free_dev(dev);

1665 }

hub­>children[port] 0 537
hub­>children[port] 0

hub­>children[port] 0

541 542
usb_hub_port_disable() 545

CPU 548 USB
usb_alloc_dev() usb_hub_port_reset() usb_connect() usb_new_device()

usb_new_device()
usb_new_device() usb_find_drivers()

probe probe
khubd usb_hub_events()

usb_new_device() usb_find_drivers()
probe

probe

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1316

usb_hub_events()
720 735

8.9.3 USB

USB
USB usb_driver USB

USB usb_driver hub_driver
include/linux/usb.h

==================== include/linux/usb.h 384 413 ====================
384 struct usb_driver {

385 const char *name;

386

387 void *(*probe)(

388 struct usb_device *dev, /* the device */

389 unsigned intf, /* what interface */

390 const struct usb_device_id *id /* from id_table */

391);

392 void (*disconnect)(struct usb_device *, void *);

393

394 struct list_head driver_list;

395

396 struct file_operations *fops;

397 int minor;

398

399 struct semaphore serialize;

400

401 /* ioctl ­­ userspace apps can talk to drivers through usbdevfs */

402 int (*ioctl)(struct usb_device *dev, unsigned int code, void *buf);

403

404 /* support for "new­style" USB hotplugging

405 * binding policy can be driven from user mode too

406 */

407 const struct usb_device_id *id_table;

408

409 /* suspend before the bus suspends;

410 * disconnect or resume when the bus resumes */

411 // void (*suspend)(struct usb_device *dev);

412 // void (*resume)(struct usb_device *dev);

413 };

usb_driver scanner_driver drivers/usb/scanner.c

==================== drivers/usb/scanner.c 953 963 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1317

953 static struct

954 usb_driver scanner_driver = {

955 name: "usbscanner",

956 probe: probe_scanner,

957 disconnect: disconnect_scanner,

958 fops: &usb_scanner_fops,

959 minor: SCN_BASE_MNR,

960 id_table: NULL, /* This would be scanner_device_ids, but we

961 need to check every USB device, in case

962 we match a user defined vendor/product ID. */

963 };

probe disconnect probe_scanner()
disconnect_scanner()

fops file_operations usb_scanner_fops drivers/usb/scanner.c

==================== drivers/usb/scanner.c 942 951 ====================
942 static struct

943 file_operations usb_scanner_fops = {

944 read: read_scanner,

945 write: write_scanner,

946 #ifdef SCN_IOCTL

947 ioctl: ioctl_scanner,

948 #endif /* SCN_IOCTL */

949 open: open_scanner,

950 release: close_scanner,

951 };

scanner_driver minor
SCN_BASE_MNR drivers/usb/scanner.h

==================== drivers/usb/scanner.h 84 85 ====================
84 #define SCN_MAX_MNR 16 /* We're allocated 16 minors */

85 #define SCN_BASE_MNR 48 /* USB Scanners start at minor 48 */

48 16
USB

drivers/usb/scanner.c usb_scanner_init()

==================== drivers/usb/scanner.c 971 981 ====================
971 int __init

972 usb_scanner_init (void)

973 {

974 if (usb_register(&scanner_driver) < 0)

975 return ­1;

976

977 info("USB Scanner support registered.");

978 return 0;

979 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1318

980

981 module_init(usb_scanner_init);

usb_register() drivers/usb/usb.c

==================== drivers/usb/usb.c 85 105 ====================
[usb_scanner_init()>usb_register()]
85 int usb_register(struct usb_driver *new_driver)

86 {

87 if (new_driver­>fops != NULL) {

88 if (usb_minors[new_driver­>minor/16]) {

89 err("error registering %s driver", new_driver­>name);

90 return ­EINVAL;

91 }

92 usb_minors[new_driver­>minor/16] = new_driver;

93 }

94

95 info("registered new driver %s", new_driver­>name);

96

97 init_MUTEX(&new_driver­>serialize);

98

99 /* Add it to the list of known drivers */

100 list_add_tail(&new_driver­>driver_list, &usb_driver_list);

101

102 usb_scan_devices();

103

104 return 0;

105 }

USB usb_driver usb_minors[] 16
usb_driver 16 usb_driver

USB
4 4

16 USB 16
devfs

USB usb_driver serialize

USB usb_bus usb_bus_list usb_driver
usb_driver_list USB usb_driver

usb_driver usb_driver_list
usb_scan_devices() USB USB

usb_scan_devices() drivers/usb/usb.c

==================== drivers/usb/usb.c 107 127 ====================
[usb_scanner_init()>usb_register()>usb_scan_devices()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1319

107 /**

108 * usb_scan_devices ­ scans all unclaimed USB interfaces

109 *

110 * Goes through all unclaimed USB interfaces, and offers them to all

111 * registered USB drivers through the 'probe' function.

112 * This will automatically be called after usb_register is called.

113 * It is called by some of the USB subsystems after one of their subdrivers

114 * are registered.

115 */

116 void usb_scan_devices(void)

117 {

118 struct list_head *tmp;

119

120 tmp = usb_bus_list.next;

121 while (tmp != &usb_bus_list) {

122 struct usb_bus *bus = list_entry(tmp,struct usb_bus, bus_list);

123

124 tmp = tmp­>next;

125 usb_check_support(bus­>root_hub);

126 }

127 }

usb_bus_list usb_bus USB
usb_check_support() drivers/usb/usb.c

==================== drivers/usb/usb.c 434 458 ====================
[usb_scanner_init()>usb_register()>usb_scan_devices()>usb_check_support()]
434 /*

435 * This function is for doing a depth­first search for devices which

436 * have support, for dynamic loading of driver modules.

437 */

438 static void usb_check_support(struct usb_device *dev)

439 {

440 int i;

441

442 if (!dev) {

443 err("null device being checked!!!");

444 return;

445 }

446

447 for (i=0; i<USB_MAXCHILDREN; i++)

448 if (dev­>children[i])

449 usb_check_support(dev­>children[i]);

450

451 if (!dev­>actconfig)

452 return;

453

454 /* now we check this device */

455 if (dev­>devnum > 0)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1320

456 for (i = 0; i < dev­>actconfig­>bNumInterfaces; i++)

457 usb_find_interface_driver(dev, i);

458 }

USB USB USB
usb_device USB

USB USB
USB_MAXCHILDREN 16 USB USB USB

usb_check_support()

USB usb_device
devnum actconfig usb_config_descriptor

bNumInterfaces USB
interface usb_interface

bNumInterfaces
endpoint

USB ”

0 0

bNumEndpoints endpoint usb_endpoint_descriptor
usb_endpoint_descriptor

USB usb_bus usb_device
usb_config_descriptor usb_interface usb_endpoint_descriptor

USB USB
USB USB

claim
usb_find_interface_driver() usb_interface

drivers/usb/usb.c

==================== drivers/usb/usb.c 623 692 ====================
[usb_scanner_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()]
623 /*

624 * This entrypoint gets called for each new device.

625 *

626 * We now walk the list of registered USB drivers,

627 * looking for one that will accept this interface.

628 *

629 * "New Style" drivers use a table describing the devices and interfaces

630 * they handle. Those tables are available to user mode tools deciding

631 * whether to load driver modules for a new device.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1321

632 *

633 * The probe return value is changed to be a private pointer. This way

634 * the drivers don't have to dig around in our structures to set the

635 * private pointer if they only need one interface.

636 *

637 * Returns: 0 if a driver accepted the interface, ­1 otherwise

638 */

639 static int usb_find_interface_driver(struct usb_device *dev, unsigned ifnum)

640 {

641 struct list_head *tmp;

642 struct usb_interface *interface;

643 void *private;

644 const struct usb_device_id *id;

645 struct usb_driver *driver;

646 int i;

647

648 if ((!dev) || (ifnum >= dev­>actconfig­>bNumInterfaces)) {

649 err("bad find_interface_driver params");

650 return ­1;

651 }

652

653 interface = dev­>actconfig­>interface + ifnum;

654

655 if (usb_interface_claimed(interface))

656 return ­1;

657

658 private = NULL;

659 for (tmp = usb_driver_list.next; tmp != &usb_driver_list;) {

660

661 driver = list_entry(tmp, struct usb_driver, driver_list);

662 tmp = tmp­>next;

663

664 down(&driver­>serialize);

665 id = driver­>id_table;

666 /* new style driver? */

667 if (id) {

668 for (i = 0; i < interface­>num_altsetting; i++) {

669 interface­>act_altsetting = i;

670 id = usb_match_id(dev, interface, id);

671 if (id) {

672 private = driver­>probe(dev,ifnum,id);

673 if (private != NULL)

674 break;

675 }

676 }

677 /* if driver not bound, leave defaults unchanged */

678 if (private == NULL)

679 interface­>act_altsetting = 0;

680 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1322

681 else /* "old style" driver */

682 private = driver­>probe(dev, ifnum, NULL);

683

684 up(&driver­>serialize);

685 if (private) {

686 usb_driver_claim_interface(driver, interface, private);

687 return 0;

688 }

689 }

690

691 return ­1;

692 }

dev USB usb_device
interface[] usb_interface driver

usb_driver usb_driver_list
usb_driver usb_match_id() id

drivers/usb/usb.c

==================== drivers/usb/usb.c 505 621 ====================
[usb_scanner_init()>usb_register()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>usb_match_id()]
505 /* usb_match_id searches an array of usb_device_id's and returns

506 the first one that matches the device and interface.

507

508 Parameters:

509 "id" is an array of usb_device_id's is terminated by an entry

510 containing all zeroes.

511

512 "dev" and "interface" are the device and interface for which

513 a match is sought.

514

515 If no match is found or if the "id" pointer is NULL, then

516 usb_match_id returns NULL.

517

518

519 What constitutes a match:

520

521 A zero in any element of a usb_device_id entry is a wildcard

522 (i.e., that field always matches). For there to be a match,

523 *every* nonzero element of the usb_device_id must match the

524 provided device and interface in. The comparison is for equality,

525 except for one pair of fields: usb_match_id.bcdDevice_{lo,hi} define

526 an inclusive range that dev­>descriptor.bcdDevice must be in.

527

528 If interface­>altsettings does not exist (i.e., there are no

529 interfaces defined), then bInterface{Class,SubClass,Protocol}

530 only match if they are all zeroes.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1323

531

532

533 What constitutes a good "usb_device_id"?

534

535 The match algorithm is very simple, so that intelligence in

536 driver selection must come from smart driver id records.

537 Unless you have good reasons to use another selection policy,

538 provide match elements only in related groups:

539

540 * device specifiers (vendor and product IDs; and maybe

541 a revision range for that product);

542 * generic device specs (class/subclass/protocol);

543 * interface specs (class/subclass/protocol).

544

545 Within those groups, work from least specific to most specific.

546 For example, don't give a product version range without vendor

547 and product IDs.

548

549 "driver_info" is not considered by the kernel matching algorithm,

550 but you can create a wildcard "matches anything" usb_device_id

551 as your driver's "modules.usbmap" entry if you provide only an

552 id with a nonzero "driver_info" field.

553 */

554

555 const struct usb_device_id *

556 usb_match_id(struct usb_device *dev, struct usb_interface *interface,

557 const struct usb_device_id *id)

558 {

559 struct usb_interface_descriptor *intf = 0;

560

561 /* proc_connectinfo in devio.c may call us with id == NULL. */

562 if (id == NULL)

563 return NULL;

564

565 /* It is important to check that id­>driver_info is nonzero,

566 since an entry that is all zeroes except for a nonzero

567 id­>driver_info is the way to create an entry that

568 indicates that the driver want to examine every

569 device and interface. */

570 for (; id­>idVendor || id­>bDeviceClass || id­>bInterfaceClass ||

571 id­>driver_info; id++) {

572

573 if ((id­>match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&

574 id­>idVendor != dev­>descriptor.idVendor)

575 continue;

576

577 if ((id­>match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&

578 id­>idProduct != dev­>descriptor.idProduct)

579 continue;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1324

580

581 /* No need to test id­>bcdDevice_lo != 0, since 0 is never

582 greater than any unsigned number. */

583 if ((id­>match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&

584 (id­>bcdDevice_lo > dev­>descriptor.bcdDevice))

585 continue;

586

587 if ((id­>match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&

588 (id­>bcdDevice_hi < dev­>descriptor.bcdDevice))

589 continue;

590

591 if ((id­>match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&

592 (id­>bDeviceClass != dev­>descriptor.bDeviceClass))

593 continue;

594

595 if ((id­>match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&

596 (id­>bDeviceSubClass!= dev­>descriptor.bDeviceSubClass))

597 continue;

598

599 if ((id­>match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&

600 (id­>bDeviceProtocol != dev­>descriptor.bDeviceProtocol))

601 continue;

602

603 intf = &interface­>altsetting [interface­>act_altsetting];

604

605 if ((id­>match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&

606 (id­>bInterfaceClass != intf­>bInterfaceClass))

607 continue;

608

609 if ((id­>match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&

610 (id­>bInterfaceSubClass != intf­>bInterfaceSubClass))

611 continue;

612

613 if ((id­>match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&

614 (id­>bInterfaceProtocol != intf­>bInterfaceProtocol))

615 continue;

616

617 return id;

618 }

619

620 return NULL;

621 }

usb_driver id
id usb_device_id include/linux/usb.h

==================== include/linux/usb.h 347 382 ====================
347 struct usb_device_id {

348 /* This bitmask is used to determine which of the following fields

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1325

349 * are to be used for matching.

350 */

351 __u16 match_flags;

352

353 /*

354 * vendor/product codes are checked, if vendor is nonzero

355 * Range is for device revision (bcdDevice), inclusive;

356 * zero values here mean range isn't considered

357 */

358 __u16 idVendor;

359 __u16 idProduct;

360 __u16 bcdDevice_lo, bcdDevice_hi;

361

362 /*

363 * if device class != 0, these can be match criteria;

364 * but only if this bDeviceClass value is nonzero

365 */

366 __u8 bDeviceClass;

367 __u8 bDeviceSubClass;

368 __u8 bDeviceProtocol;

369

370 /*

371 * if interface class != 0, these can be match criteria;

372 * but only if this bInterfaceClass value is nonzero

373 */

374 __u8 bInterfaceClass;

375 __u8 bInterfaceSubClass;

376 __u8 bInterfaceProtocol;

377

378 /*

379 * for driver's use; not involved in driver matching.

380 */

381 unsigned long driver_info;

382 };

usb_device_id
match_flags

usb_match_id() 0
probe

probe probe_scanner() drivers/usb/scanner.c

==================== drivers/usb/scanner.c 626 703 ====================
[usb_scanner_init()>usb_registcr()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>probe_scanner()]
626 static void *

627 probe_scanner(struct usb_device *dev, unsigned int ifnum,

628 const struct usb_device_id *id)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1326

629 {

630 struct scn_usb_data *scn;

631 struct usb_interface_descriptor *interface;

632 struct usb_endpoint_descriptor *endpoint;

633

634 int ep_cnt;

635 int ix;

636

637 kdev_t scn_minor;

638

639 char valid_device = 0;

640 char have_bulk_in, have_bulk_out, have_intr;

641

642 if (vendor != ­1 && product != ­1) {

643 info("probe_scanner: User specified USB scanner ­­ Vendor:Product ­ %x:%x", vendor, product);

644 }

645

646 dbg("probe_scanner: USB dev address:%p", dev);

647 dbg("probe_scanner: ifnum:%u", ifnum);

648

649 /*

650 * 1. Check Vendor/Product

651 * 2. Determine/Assign Bulk Endpoints

652 * 3. Determine/Assign Intr Endpoint

653 */

654

655 /*

656 * There doesn't seem to be an imaging class defined in the USB

657 * Spec. (yet). If there is, HP isn't following it and it doesn't

658 * look like anybody else is either. Therefore, we have to test the

659 * Vendor and Product ID's to see what we have. Also, other scanners

660 * may be able to use this driver by specifying both vendor and

661 * product ID's as options to the scanner module in conf.modules.

662 *

663 * NOTE: Just because a product is supported here does not mean that

664 * applications exist that support the product. It's in the hopes

665 * that this will allow developers a means to produce applications

666 * that will support USB products.

667 *

668 * Until we detect a device which is pleasing, we silently punt.

669 */

670

671 for (ix = 0; ix < sizeof (scanner_device_ids) / sizeof (struct usb_device_id); ix++) {

672 if ((dev­>descriptor.idVendor == scanner_device_ids [ix].idVendor) &&

673 (dev­>descriptor.idProduct == scanner_device_ids [ix].idProduct)) {

674 valid_device = 1;

675 break;

676 }

677 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1327

678 if (dev­>descriptor.idVendor == vendor && /* User specified */

679 dev­>descriptor.idProduct == product) { /* User specified */

680 valid_device = 1;

681 }

682

683 if (!valid_device)

684 return NULL; /* We didn't find anything pleasing */

685

686 /*

687 * After this point we can be a little noisy about what we are trying to

688 * configure.

689 */

690

691 if (dev­>descriptor.bNumConfigurations != 1) {

692 info("probe_scanner: Only one device configuration is supported.");

693 return NULL;

694 }

695

696 if (dev­>config[0].bNumInterfaces != 1) {

697 info("probe_scanner: Only one device interface is supported.");

698 return NULL;

699 }

700

701 interface = dev­>config[0].interface[ifnum].altsetting;

702 endpoint = interface[ifnum].endpoint;

703

id scanner_device_ids interface
usb_interface_descriptor endpoint

bNumEndpoints
usb_endpoint_descriptor

probe_scanner() drivers/usb/scanner.c

==================== drivers/usb/scanner.c 704 769 ====================
[usb_scanner_init()>usb_registcr()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>probe_scanner()]
704 /*

705 * Start checking for two bulk endpoints OR two bulk endpoints *and* one

706 * interrupt endpoint. If we have an interrupt endpoint go ahead and

707 * setup the handler. FIXME: This is a future enhancement...

708 */

709

710 dbg("probe_scanner: Number of Endpoints:%d", (int) interface­>bNumEndpoints);

711

712 if ((interface­>bNumEndpoints != 2) && (interface­>bNumEndpoints != 3)) {

713 info("probe_scanner: Only two or three endpoints supported.");

714 return NULL;

715 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1328

716

717 ep_cnt = have_bulk_in = have_bulk_out = have_intr = 0;

718

719 while (ep_cnt < interface­>bNumEndpoints) {

720

721 if (!have_bulk_in && IS_EP_BULK_IN(endpoint[ep_cnt])) {

722 ep_cnt++;

723 have_bulk_in = ep_cnt;

724 dbg("probe_scanner: bulk_in_ep:%d", have_bulk_in);

725 continue;

726 }

727

728 if (!have_bulk_out && IS_EP_BULK_OUT(endpoint[ep_cnt])) {

729 ep_cnt++;

730 have_bulk_out = ep_cnt;

731 dbg("probe_scanner: bulk_out_ep:%d", have_bulk_out);

732 continue;

733 }

734

735 if (!have_intr && IS_EP_INTR(endpoint[ep_cnt])) {

736 ep_cnt++;

737 have_intr = ep_cnt;

738 dbg("probe_scanner: intr_ep:%d", have_intr);

739 continue;

740 }

741 info("probe_scanner: Undetected endpoint. Notify the maintainer.");

742 return NULL; /* Shouldn't ever get here unless we have something weird */

743 }

744

745

746 /*

747 * Perform a quick check to make sure that everything worked as it

748 * should have.

749 */

750

751 switch(interface­>bNumEndpoints) {

752 case 2:

753 if (!have_bulk_in || !have_bulk_out) {

754 info("probe_scanner: Two bulk endpoints required.");

755 return NULL;

756 }

757 break;

758 case 3:

759 if (!have_bulk_in || !have_bulk_out || !have_intr) {

760 info("probe_scanner: Two bulk endpoints and one interrupt endpoint required.");

761 return NULL;

762 }

763 break;

764 default:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1329

765 info("probe_scanner: Endpoint determination failed. Notify the maintainer.");

766 return NULL;

767 }

768

769

drivers/usb/scanner.h

==================== drivers/usb/scanner.h 59 62 ====================
59 #define IS_EP_BULK(ep) ((ep).bmAttributes == USB_ENDPOINT_XFER_BULK ? 1 : 0)

60 #define IS_EP_BULK_IN(ep) (IS_EP_BULK(ep) && ((ep).bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==

USB_DIR_IN)

61 #define IS_EP_BULK_OUT(ep) (IS_EP_BULK(ep) && ((ep).bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==

USB_DIR_OUT)

62 #define IS_EP_INTR(ep) ((ep).bmAttributes == USB_ENDPOINT_XFER_INT ? 1 : 0)

4

include/linux/usb.h

==================== include/linux/usb.h 72 79 ====================
72 #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */

73 #define USB_ENDPOINT_DIR_MASK 0x80

74

75 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */

76 #define USB_ENDPOINT_XFER_CONTROL 0

77 #define USB_ENDPOINT_XFER_ISOC 1

78 #define USB_ENDPOINT_XFER_BULK 2

79 #define USB_ENDPOINT_XFER_INT 3

scn_usb_data drivers/usb/scanner.h

==================== drivers/usb/scanner.h 87 99 ====================
87 struct scn_usb_data {

88 struct usb_device *scn_dev;

89 struct urb scn_irq;

90 unsigned int ifnum; /* Interface number of the USB device */

91 kdev_t scn_minor; /* Scanner minor ­ used in disconnect() */

92 unsigned char button; /* Front panel buffer */

93 char isopen; /* Not zero if the device is open */

94 char present; /* Not zero if device is present */

95 char *obuf, *ibuf; /* transfer buffers */

96 char bulk_in_ep, bulk_out_ep, intr_ep; /* Endpoint assignments */

97 wait_queue_head_t rd_wait_q; /* read timeouts */

98 struct semaphore gen_lock; /* lock to prevent concurrent reads or writes */

99 };

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1330

obuf ibuf

==================== drivers/usb/scanner.c 770 796 ====================
[usb_scanner_init()>usb_registcr()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>probe_scanner()]
770 /*

771 * Determine a minor number and initialize the structure associated

772 * with it. The problem with this is that we are counting on the fact

773 * that the user will sequentially add device nodes for the scanner

774 * devices. */

775

776 for (scn_minor = 0; scn_minor < SCN_MAX_MNR; scn_minor++) {

777 if (!p_scn_table[scn_minor])

778 break;

779 }

780

781 /* Check to make sure that the last slot isn't already taken */

782 if (p_scn_table[scn_minor]) {

783 err("probe_scanner: No more minor devices remaining.");

784 return NULL;

785 }

786

787 dbg("probe_scanner: Allocated minor:%d", scn_minor);

788

789 if (!(scn = kmalloc (sizeof (struct scn_usb_data), GFP_KERNEL))) {

790 err("probe_scanner: Out of memory.");

791 return NULL;

792 }

793 memset (scn, 0, sizeof(struct scn_usb_data));

794 dbg ("probe_scanner(%d): Address of scn:%p", scn_minor, scn);

795

796

drivers/usb/scanner.c

==================== drivers/usb/scanner.c 797 841 ====================
[usb_scanner_init()>usb_registcr()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>probe_scanner()]
797 /* Ok, if we detected an interrupt EP, setup a handler for it */

798 if (have_intr) {

799 dbg("probe_scanner(%d): Configuring IRQ handler for intr EP:%d", scn_minor, have_intr);

800 FILL_INT_URB(&scn­>scn_irq, dev,

801 usb_rcvintpipe(dev, have_intr),

802 &scn­>button, 1, irq_scanner, scn,

803 // endpoint[(int)have_intr].bInterval);

804 250);

805

806 if (usb_submit_urb(&scn­>scn_irq)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1331

807 err("probe_scanner(%d): Unable to allocate INT URB.", scn_minor);

808 kfree(scn);

809 return NULL;

810 }

811 }

812

813

814 /* Ok, now initialize all the relevant values */

815 if (!(scn­>obuf = (char *)kmalloc(OBUF_SIZE, GFP_KERNEL))) {

816 err("probe_scanner(%d): Not enough memory for the output buffer.", scn_minor);

817 kfree(scn);

818 return NULL;

819 }

820 dbg("probe_scanner(%d): obuf address:%p", scn_minor, scn­>obuf);

821

822 if (!(scn­>ibuf = (char *)kmalloc(IBUF_SIZE, GFP_KERNEL))) {

823 err("probe_scanner(%d): Not enough memory for the input buffer.", scn_minor);

824 kfree(scn­>obuf);

825 kfree(scn);

826 return NULL;

827 }

828 dbg("probe_scanner(%d): ibuf address:%p", scn_minor, scn­>ibuf);

829

830 scn­>bulk_in_ep = have_bulk_in;

831 scn­>bulk_out_ep = have_bulk_out;

832 scn­>intr_ep = have_intr;

833 scn­>present = 1;

834 scn­>scn_dev = dev;

835 scn­>scn_minor = scn_minor;

836 scn­>isopen = 0;

837

838 init_MUTEX(&(scn­>gen_lock));

839

840 return p_scn_table[scn_minor] = scn;

841 }

probe_scanner()
usb_interface_descriptor scn_usb_data

usb_find_interface_driver() usb_driver_claim_interface()
drivers/usb/usb.c

==================== drivers/usb/usb.c 461 477 ====================
[usb_scanner_init()>usb_registcr()>usb_scan_devices()>usb_check_support()>usb_find_interface_driver()
>usb_driver_claim_interface()]
461 /*

462 * This is intended to be used by usb device drivers that need to

463 * claim more than one interface on a device at once when probing

464 * (audio and acm are good examples). No device driver should have

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1332

465 * to mess with the internal usb_interface or usb_device structure

466 * members.

467 */

468 void usb_driver_claim_interface(struct usb_driver *driver, struct usb_interface *iface, void* priv)

469 {

470 if (!iface || !driver)

471 return;

472

473 dbg("%s driver claimed interface %p", driver­>name, iface);

474

475 iface­>driver = driver;

476 iface­>private_data = priv;

477 } /* usb_driver_claim_interface() */

usb_interface_descriptor usb_driver
usb_scan_devices()

USB
4 p_scn_table[] scn_usb_data

8.9.4 USB

open() USB
USB_MAJOR
CPU USB file_operations usb_fops open

usb_open() drivers/usb/usb.c

==================== drivers/usb/usb.c 2177 2201 ====================
2177 static int usb_open(struct inode * inode, struct file * file)

2178 {

2179 int minor = MINOR(inode­>i_rdev);

2180 struct usb_driver *c = usb_minors[minor/16];

2181 int err = ­ENODEV;

2182 struct file_operations *old_fops, *new_fops = NULL;

2183

2184 /*

2185 * No load­on­demand? Randy, could you ACK that it's really not

2186 * supposed to be done? ­­ AV

2187 */

2188 if (!c || !(new_fops = fops_get(c­>fops)))

2189 return err;

2190 old_fops = file­>f_op;

2191 file­>f_op = new_fops;

2192 /* Curiouser and curiouser... NULL ­>open() as "no device" ? */

2193 if (file­>f_op­>open)

2194 err = file­>f_op­>open(inode,file);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1333

2195 if (err) {

2196 fops_put(file­>f_op);

2197 file­>f_op = fops_get(old_fops);

2198 }

2199 fops_put(old_fops);

2200 return err;

2201 }

usb_minors[] usb_driver
file f_op file_operations 2188 fops_get()

include/linux/fs.h

==================== include/linux/fs.h 860 863 ====================
860 #define fops_get(fops) \

861 (((fops) && (fops)­>owner) \

862 ? (try_inc_mod_count((fops)­>owner) ? (fops) : NULL) \

863 : (fops))

file_operations usb_scanner_fops open open_scanner()
drivers/usb/scanner.c

==================== drivers/usb/scanner.c 345 402 ====================
[usb_open()>open_scanner()]
345 static int

346 open_scanner(struct inode * inode, struct file * file)

347 {

348 struct scn_usb_data *scn;

349 struct usb_device *dev;

350

351 kdev_t scn_minor;

352

353 int err=0;

354

355 lock_kernel();

356

357 scn_minor = USB_SCN_MINOR(inode);

358

359 dbg("open_scanner: scn_minor:%d", scn_minor);

360

361 if (!p_scn_table[scn_minor]) {

362 err("open_scanner(%d): Unable to access minor data", scn_minor);

363 err = ­ENODEV;

364 goto out_error;

365 }

366

367 scn = p_scn_table[scn_minor];

368

369 dev = scn­>scn_dev;

370

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1334

371 if (!dev) {

372 err("open_scanner(%d): Scanner device not present", scn_minor);

373 err = ­ENODEV;

374 goto out_error;

375 }

376

377 if (!scn­>present) {

378 err("open_scanner(%d): Scanner is not present", scn_minor);

379 err = ­ENODEV;

380 goto out_error;

381 }

382

383 if (scn­>isopen) {

384 err("open_scanner(%d): Scanner device is already open", scn_minor);

385 err = ­EBUSY;

386 goto out_error;

387 }

388

389 init_waitqueue_head(&scn­>rd_wait_q);

390

391 scn­>isopen = 1;

392

393 file­>private_data = scn; /* Used by the read and write metheds */

394

395 MOD_INC_USE_COUNT;

396

397 out_error:

398

399 unlock_kernel();

400

401 return err;

402 }

p_scn_table[] probe_scanner()

USB

USB

USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1335

control path data path

bulk ”

isochronous

Escape USB

USB

SCN_IOCTL
ioctl() read() write()

read() write() ioctl()
ioctl() ioctl_scanner()

drivers/usb/scanner.c

==================== drivers/usb/scanner.c 863 940 ====================
863 #ifdef SCN_IOCTL

864 static int

865 ioctl_scanner(struct inode *inode, struct file *file,

866 unsigned int cmd, unsigned long arg)

867 {

868 struct usb_device *dev;

869

870 int result;

871

872 kdev_t scn_minor;

873

874 scn_minor = USB_SCN_MINOR(inode);

875

876 if (!p_scn_table[scn_minor]) {

877 err("ioctl_scanner(%d): invalid scn_minor", scn_minor);

878 return ­ENODEV;

879 }

880

881 dev = p_scn_table[scn_minor]­>scn_dev;

882

883 switch (cmd)

884 {

885 case PV8630_IOCTL_INREQUEST :

886 {

887 struct {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1336

888 __u8 data;

889 __u8 request;

890 __u16 value;

891 __u16 index;

892 } args;

893

894 if (copy_from_user(&args, (void *)arg, sizeof(args)))

895 return ­EFAULT;

896

897 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),

898 args.request, USB_TYPE_VENDOR|

899 USB_RECIP_DEVICE|USB_DIR_IN,

900 args.value, args.index, &args.data,

901 1, HZ*5);

902

903 dbg("ioctl_scanner(%d): inreq: args.data:%x args.value:%x args.index:%x args.request:%x\n",

scn_minor, args.data, args.value, args.index, args.request);

904

905 if (copy_to_user((void *)arg, &args, sizeof(args)))

906 return ­EFAULT;

907

908 dbg("ioctl_scanner(%d): inreq: result:%d\n", scn_minor, result);

909

910 return result;

911 }

912 case PV8630_IOCTL_OUTREQUEST :

913 {

914 struct {

915 __u8 request;

916 __u16 value;

917 __u16 index;

918 } args;

919

920 if (copy_from_user(&args, (void *)arg, sizeof(args)))

921 return ­EFAULT;

922

923 dbg("ioctl_scanner(%d): outreq: args.value:%x args.index:%x args.request:%x\n", scn_minor,

args.value, args.index, args.request);

924

925 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),

926 args.request, USB_TYPE_VENDOR|

927 USB_RECIP_DEVICE|USB_DIR_OUT,

928 args.value, args.index, NULL,

929 0, HZ*5);

930

931 dbg("ioctl_scanner(%d): outreq: result:%d\n", scn_minor, result);

932

933 return result;

934 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1337

935 default:

936 return ­ENOIOCTLCMD;

937 }

938 return 0;

939 }

940 #endif /* SCN_IOCTL */

ioctl() PV8630_IOCTL_INREQUEST
PV8630_IOCTL_OUTREQUEST

usb_control_msg() 897 925
usb_rcvctrlpipe(dev, 0) usb_sndctrlpipe(dev, 0)

5 USB_DIR_IN USB_DIR_OUT
include/linux/usb.h

==================== include/linux/usb.h 700 700 ====================
700 #define PIPE_CONTROL 2

==================== include/linux/usb.h 745 746 ====================
745 #define usb_sndctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))

746 #define usb_rcvctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) |

USB_DIR_IN)

__create_pipe() inline include/linux/usb.h

==================== include/linux/usb.h 734 737 ====================
734 static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint)

735 {

736 return (dev­>devnum << 8) | (endpoint << 15) | (dev­>slow << 26);

737 }

32 token
7 4 bit26

bit7 1
USB_DIR_OUT USB DIR_IN include/linux/usb.h

==================== include/linux/usb.h 38 42 ====================
38 /*

39 * USB directions

40 */

41 #define USB_DIR_OUT 0

42 #define USB_DIR_IN 0x80

==================== include/linux/usb.h 747 752 ====================
747 #define usb_sndisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))

748 #define usb_rcvisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) |

USB_DIR_IN)

749 #define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1338

750 #define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)

751 #define usb_sndintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))

752 #define usb_rcvintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) |

USB_DIR_IN)

==================== include/linux/usb.h 698 701 ====================
698 #define PIPE_ISOCHRONOUS 0

699 #define PIPE_INTERRUPT 1

700 #define PIPE_CONTROL 2

701 #define PIPE_BULK 3

4 USB_RECIP_DEVICE include/linux/usb.h

==================== include/linux/usb.h 21 36 ====================
21 /*

22 * USB types

23 */

24 #define USB_TYPE_STANDARD (0x00 << 5)

25 #define USB_TYPE_CLASS (0x01 << 5)

26 #define USB_TYPE_VENDOR (0x02 << 5)

27 #define USB_TYPE_RESERVED (0x03 << 5)

28

29 /*

30 * USB recipients

31 */

32 #define USB_RECIP_MASK 0x1f

33 #define USB_RECIP_DEVICE 0x00

34 #define USB_RECIP_INTERFACE 0x01

35 #define USB_RECIP_ENDPOINT 0x02

36 #define USB_RECIP_OTHER 0x03

USB_RECIP_DEVICE
USB_TYPE_VENDOR
USB usb_control_msg()

4 0 USB_DIR_IN USB_TYPE_STANDARD USB_RECIP_DEVICE
0 USB_DIR_OUT 0

usb_control_msg()
USB

drivers/usb/usb.c

==================== drivers/usb/usb.c 1065 1108 ====================
[ioctl_scanner()>usb_control_msg()]
1065 /**

1066 * usb_control_msg ­ Builds a control urb, sends it off and waits for completion

1067 * @dev: pointer to the usb device to send the message to

1068 * @pipe: endpoint "pipe" to send the message to

1069 * @request: USB message request value

1070 * @requesttype: USB message request type value

1071 * @value: USB message value

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1339

1072 * @index: USB message index value

1073 * @data: pointer to the data to send

1074 * @size: length in bytes of the data to send

1075 * @timeout: time to wait for the message to complete before timing out (if 0 the wait is forever)

1076 *

1077 * This function sends a simple control message to a specified endpoint

1078 * and waits for the message to complete, or timeout.

1079 *

1080 * If successful, it returns 0, othwise a negative error number.

1081 *

1082 * Don't use this function from within an interrupt context, like a

1083 * bottom half handler. If you need a asyncronous message, or need to send

1084 * a message from within interrupt context, use usb_submit_urb()

1085 */

1086 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,

1087 __u16 value, __u16 index, void *data, __u16 size, int timeout)

1088 {

1089 devrequest *dr = kmalloc(sizeof(devrequest), GFP_KERNEL);

1090 int ret;

1091

1092 if (!dr)

1093 return ­ENOMEM;

1094

1095 dr­>requesttype = requesttype;

1096 dr­>request = request;

1097 dr­>value = cpu_to_le16p(&value);

1098 dr­>index = cpu_to_le16p(&index);

1099 dr­>length = cpu_to_le16p(&size);

1100

1101 //dbg("usb_control_msg");

1102

1103 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);

1104

1105 kfree(dr);

1106

1107 return ret;

1108 }

dev usb_device pipe 32 32

requesttype 8
5

index request
value data

size
timeout usb_control_msg()

usb_internal_control_msg()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1340

USB
devrequest include/linux/usb.h

==================== include/linux/usb.h 151 157 ====================
151 typedef struct {

152 __u8 requesttype;

153 __u8 request;

154 __u16 value;

155 __u16 index;

156 __u16 length;

157 } devrequest __attribute__ ((packed));

SETUP

usb_internal_control_msg() drivers/usb/usb.c

==================== drivers/usb/usb.c 1042 1063 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()]
1042 // returns status (negative) or length (positive)

1043 int usb_internal_control_msg(struct usb_device *usb_dev, unsigned int pipe,

1044 devrequest *cmd, void *data, int len, int timeout)

1045 {

1046 urb_t *urb;

1047 int retv;

1048 int length;

1049

1050 urb = usb_alloc_urb(0);

1051 if (!urb)

1052 return ­ENOMEM;

1053

1054 FILL_CONTROL_URB(urb, usb_dev, pipe, (unsigned char*)cmd, data, len, /* build urb */

1055 (usb_complete_t)usb_api_blocking_completion,0);

1056

1057 retv = usb_start_wait_urb(urb, timeout, &length);

1058 if (retv < 0)

1059 return retv;

1060 else

1061 return length;

1062

1063 }

USB “USB usb
usb usb

include/linux/usb.h

==================== include/linux/usb.h 440 466 ====================
440 typedef struct urb

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1341

441 {

442 spinlock_t lock; // lock for the URB

443 void *hcpriv; // private data for host controller

444 struct list_head urb_list; // list pointer to all active urbs

445 struct urb *next; // pointer to next URB

446 struct usb_device *dev; // pointer to associated USB device

447 unsigned int pipe; // pipe information

448 int status; // returned status

449 unsigned int transfer_flags; // USB_DISABLE_SPD | USB_ISO_ASAP | etc.

450 void *transfer_buffer; // associated data buffer

451 int transfer_buffer_length; // data buffer length

452 int actual_length; // actual data buffer length

453 int bandwidth; // bandwidth for this transfer request (INT or ISO)

454 unsigned char *setup_packet; // setup packet (control only)

455 //

456 int start_frame; // start frame (iso/irq only)

457 int number_of_packets; // number of packets in this request (iso)

458 int interval; // polling interval (irq only)

459 int error_count; // number of errors in this transfer (iso only)

460 int timeout; // timeout (in jiffies)

461 //

462 void *context; // context for completion routine

463 usb_complete_t complete; // pointer to completion routine

464 //

465 iso_packet_descriptor_t iso_frame_desc[0];

466 } urb_t, *purb_t;

FILL_CONTROL_URB()

==================== include/linux/usb.h 468 478 ====================
468 #define FILL_CONTROL_URB(a,aa,b,c,d,e,f,g) \

469 do {\

470 spin_lock_init(&(a)­>lock);\

471 (a)­>dev=aa;\

472 (a)­>pipe=b;\

473 (a)­>setup_packet=c;\

474 (a)­>transfer_buffer=d;\

475 (a)­>transfer_buffer_length=e;\

476 (a)­>complete=f;\

477 (a)­>context=g;\

478 } while (0)

FILL_CONTROL_URB() urb­>dev usb_dev urb­>pipe
0 urb­>setup_packet devrequest urb­>transfer_buffer

data urb­>complete usb_api_blocking_completion() urb­>context 0
urb usb_start_wait_urb() urb

drivers/usb/usb.c

==================== drivers/usb/usb.c 995 1039 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1342

[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()]
995 // Starts urb and waits for completion or timeout

996 static int usb_start_wait_urb(urb_t *urb, int timeout, int* actual_length)

997 {

998 DECLARE_WAITQUEUE(wait, current);

999 DECLARE_WAIT_QUEUE_HEAD(wqh);

1000 api_wrapper_data awd;

1001 int status;

1002

1003 awd.wakeup = &wqh;

1004 init_waitqueue_head(&wqh);

1005 current­>state = TASK_INTERRUPTIBLE;

1006 add_wait_queue(&wqh, &wait);

1007 urb­>context = &awd;

1008 status = usb_submit_urb(urb);

1009 if (status) {

1010 // something went wrong

1011 usb_free_urb(urb);

1012 current­>state = TASK_RUNNING;

1013 remove_wait_queue(&wqh, &wait);

1014 return status;

1015 }

1016

1017 if (urb­>status == ­EINPROGRESS) {

1018 while (timeout && urb­>status == ­EINPROGRESS)

1019 status = timeout = schedule_timeout(timeout);

1020 } else

1021 status = 1;

1022

1023 current­>state = TASK_RUNNING;

1024 remove_wait_queue(&wqh, &wait);

1025

1026 if (!status) {

1027 // timeout

1028 printk("usb_control/bulk_msg: timeout\n");

1029 usb_unlink_urb(urb); // remove urb safely

1030 status = ­ETIMEDOUT;

1031 } else

1032 status = urb­>status;

1033

1034 if (actual_length)

1035 *actual_length = urb­>actual_length;

1036

1037 usb_free_urb(urb);

1038 return status;

1039 }

4
task wait_queue_t api_wrapper_data

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1343

awd include/linux/usb.h

==================== include/linux/usb.h 540 546 ====================
540 typedef struct

541 {

542 wait_queue_head_t *wakeup;

543

544 void* stuff;

545 /* more to follow */

546 } api_wrapper_data;

awd.wakeup urb context awd urb
urb

usb_submit_urb() drivers/usb/usb.c

==================== drivers/usb/usb.c 955 961 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()]
955 int usb_submit_urb(urb_t *urb)

956 {

957 if (urb && urb­>dev)

958 return urb­>dev­>bus­>op­>submit_urb(urb);

959 else

960 return ­ENODEV;

961 }

submit
UHCI OHCI UHCI USB usb_bus

usb_operations op drivers/usb/uhci.c uhci_device_operations

==================== drivers/usb/uhci.c 1615 1621 ====================
1615 struct usb_operations uhci_device_operations = {

1616 uhci_alloc_dev,

1617 uhci_free_dev,

1618 uhci_get_current_frame_number,

1619 uhci_submit_urb,

1620 uhci_unlink_urb

1621 };

UHCI submit_urb uhci_submit_urb()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1291 1377 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()]
1291 static int uhci_submit_urb(struct urb *urb)

1292 {

1293 int ret = ­EINVAL;

1294 struct uhci *uhci;

1295 unsigned long flags;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1344

1296 struct urb *u;

1297 int bustime;

1298

1299 if (!urb)

1300 return ­EINVAL;

1301

1302 if (!urb­>dev || !urb­>dev­>bus || !urb­>dev­>bus­>hcpriv)

1303 return ­ENODEV;

1304

1305 uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1306

1307 /* Short circuit the virtual root hub */

1308 if (usb_pipedevice(urb­>pipe) == uhci­>rh.devnum)

1309 return rh_submit_urb(urb);

1310

1311 u = uhci_find_urb_ep(uhci, urb);

1312 if (u && !(urb­>transfer_flags & USB_QUEUE_BULK))

1313 return ­ENXIO;

1314

1315 usb_inc_dev_use(urb­>dev);

1316 spin_lock_irqsave(&urb­>lock, flags);

1317

1318 if (!uhci_alloc_urb_priv(urb)) {

1319 spin_unlock_irqrestore(&urb­>lock, flags);

1320 usb_dec_dev_use(urb­>dev);

1321

1322 return ­ENOMEM;

1323 }

1324

1325 switch (usb_pipetype(urb­>pipe)) {

1326 case PIPE_CONTROL:

1327 ret = uhci_submit_control(urb);

1328 break;

1329 case PIPE_INTERRUPT:

1330 if (urb­>bandwidth == 0) { /* not yet checked/allocated */

1331 bustime = usb_check_bandwidth(urb­>dev, urb);

1332 if (bustime < 0)

1333 ret = bustime;

1334 else {

1335 ret = uhci_submit_interrupt(urb);

1336 if (ret == ­EINPROGRESS)

1337 usb_claim_bandwidth(urb­>dev, urb, bustime, 0);

1338 }

1339 } else /* bandwidth is already set */

1340 ret = uhci_submit_interrupt(urb);

1341 break;

1342 case PIPE_BULK:

1343 ret = uhci_submit_bulk(urb, u);

1344 break;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1345

1345 case PIPE_ISOCHRONOUS:

1346 if (urb­>bandwidth == 0) { /* not yet checked/allocated */

1347 if (urb­>number_of_packets <= 0) {

1348 ret = ­EINVAL;

1349 break;

1350 }

1351 bustime = usb_check_bandwidth(urb­>dev, urb);

1352 if (bustime < 0) {

1353 ret = bustime;

1354 break;

1355 }

1356

1357 ret = uhci_submit_isochronous(urb);

1358 if (ret == ­EINPROGRESS)

1359 usb_claim_bandwidth(urb­>dev, urb, bustime, 1);

1360 } else /* bandwidth is already set */

1361 ret = uhci_submit_isochronous(urb);

1362 break;

1363 }

1364

1365 urb­>status = ret;

1366

1367 spin_unlock_irqrestore(&urb­>lock, flags);

1368

1369 if (ret == ­EINPROGRESS)

1370 ret = 0;

1371 else {

1372 uhci_unlink_generic(urb);

1373 usb_dec_dev_use(urb­>dev);

1374 }

1375

1376 return ret;

1377 }

UHCI USB usb_bus hcpriv uhci
uhci rh

CPU
USB rh_submit_urb()

drivers/usb/uhci.c
USB USB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1346

uhci_find_urb_ep()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1263 1289 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_find_urb_ep()]
1263 static struct urb *uhci_find_urb_ep(struct uhci *uhci, struct urb *urb)

1264 {

1265 struct list_head *tmp, *head = &uhci­>urb_list;

1266 unsigned long flags;

1267 struct urb *u = NULL;

1268

1269 if (usb_pipeisoc(urb­>pipe))

1270 return NULL;

1271

1272 nested_lock(&uhci­>urblist_lock, flags);

1273 tmp = head­>next;

1274 while (tmp != head) {

1275 u = list_entry(tmp, struct urb, urb_list);

1276

1277 tmp = tmp­>next;

1278

1279 if (u­>dev == urb­>dev &&

1280 u­>pipe == urb­>pipe)

1281 goto found;

1282 }

1283 u = NULL;

1284

1285 found:

1286 nested_unlock(&uhci­>urblist_lock, flags);

1287

1288 return u;

1289 }

1269 0
usb_pipeisoc() include/linux/usb.h usb_pipeint()
usb_pipecontrol() usb_pipebulk()

==================== include/linux/usb.h 716 719 ====================
716 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)

717 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)

718 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)

719 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)

nested_lock() nested_unlock() drivers/usb/uhci.h

==================== drivers/usb/uhci.h 21 35 ====================
21 #define nested_lock(snl, flags) \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1347

22 if ((snl)­>uniq == current) { \

23 (snl)­>count++; \

24 flags = 0; /* No warnings */ \

25 } else { \

26 spin_lock_irqsave(&(snl)­>lock, flags); \

27 (snl)­>count++; \

28 (snl)­>uniq = current; \

29 }

30

31 #define nested_unlock(snl, flags) \

32 if (!­­(snl)­>count) { \

33 (snl)­>uniq = NULL; \

34 spin_unlock_irqrestore(&(snl)­>lock, flags); \

35 }

urb_list urb
NULL

urb urb_priv
drivers/usb/uhci.h

==================== drivers/usb/uhci.h 337 354 ====================
337 struct urb_priv {

338 struct urb *urb;

339

340 struct uhci_qh *qh; /* QH for this URB */

341

342 int fsbr : 1; /* URB turned on FSBR */

343 int fsbr_timeout : 1; /* URB timed out on FSBR */

344 int queued : 1; /* QH was queued (not linked in) */

345 int short_control_packet : 1; /* If we get a short packet during */

346 /* a control transfer, retrigger */

347 /* the status phase */

348

349 unsigned long inserttime; /* In jiffies */

350

351 struct list_head list;

352

353 struct list_head urb_queue_list; /* URB's linked together */

354 };

uhci_alloc_urb_priv() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 480 499 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1348

>uhci_submit_urb()>uhci_alloc_urb_priv()]
480 struct urb_priv *uhci_alloc_urb_priv(struct urb *urb)

481 {

482 struct urb_priv *urbp;

483

484 urbp = kmem_cache_alloc(uhci_up_cachep, in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL);

485 if (!urbp)

486 return NULL;

487

488 memset((void *)urbp, 0, sizeof(*urbp));

489

490 urbp­>inserttime = jiffies;

491 urbp­>urb = urb;

492

493 INIT_LIST_HEAD(&urbp­>list);

494 INIT_LIST_HEAD(&urbp­>urb_queue_list);

495

496 urb­>hcpriv = urbp;

497

498 return urbp;

499 }

1325
usb_control_msg()

uhci_submit_control() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 633 741 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()]
633 /*

634 * Control transfers

635 */

636 static int uhci_submit_control(struct urb *urb)

637 {

638 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

639 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

640 struct uhci_td *td;

641 struct uhci_qh *qh;

642 unsigned long destination, status;

643 int maxsze = usb_maxpacket(urb­>dev, urb­>pipe, usb_pipeout(urb­>pipe));

644 int len = urb­>transfer_buffer_length;

645 unsigned char *data = urb­>transfer_buffer;

646

647 /* The "pipe" thing contains the destination in bits 8­­18 */

648 destination = (urb­>pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;

649

650 /* 3 errors */

651 status = (urb­>pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | (3 << 27);

652

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1349

653 /*

654 * Build the TD for the control request

655 */

656 td = uhci_alloc_td(urb­>dev);

657 if (!td)

658 return ­ENOMEM;

659

660 uhci_add_td_to_urb(urb, td);

661 uhci_fill_td(td, status, destination | (7 << 21),

662 virt_to_bus(urb­>setup_packet));

663

664 /*

665 * If direction is "send", change the frame from SETUP (0x2D)

666 * to OUT (0xE1). Else change it from SETUP to IN (0x69).

667 */

668 destination ^= (USB_PID_SETUP ^ usb_packetid(urb­>pipe));

669

670 if (!(urb­>transfer_flags & USB_DISABLE_SPD))

671 status |= TD_CTRL_SPD;

672

673 /*

674 * Build the DATA TD's

675 */

676 while (len > 0) {

677 int pktsze = len;

678

679 if (pktsze > maxsze)

680 pktsze = maxsze;

681

682 td = uhci_alloc_td(urb­>dev);

683 if (!td)

684 return ­ENOMEM;

685

686 /* Alternate Data0/1 (start with Data1) */

687 destination ^= 1 << TD_TOKEN_TOGGLE;

688

689 uhci_add_td_to_urb(urb, td);

690 uhci_fill_td(td, status, destination | ((pktsze ­ 1) << 21),

691 virt_to_bus(data));

692

693 data += pktsze;

694 len ­= pktsze;

695 }

696

697 /*

698 * Build the final TD for control status

699 */

700 td = uhci_alloc_td(urb­>dev);

701 if (!td)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1350

702 return ­ENOMEM;

703

704 /*

705 * It's IN if the pipe is an output pipe or we're not expecting

706 * data back.

707 */

708 destination &= ~TD_PID;

709 if (usb_pipeout(urb­>pipe) || !urb­>transfer_buffer_length)

710 destination |= USB_PID_IN;

711 else

712 destination |= USB_PID_OUT;

713

714 destination |= 1 << TD_TOKEN_TOGGLE; /* End in Data1 */

715

716 status &= ~TD_CTRL_SPD;

717

718 uhci_add_td_to_urb(urb, td);

719 uhci_fill_td(td, status | TD_CTRL_IOC,

720 destination | (UHCI_NULL_DATA_SIZE << 21), 0);

721

722 qh = uhci_alloc_qh(urb­>dev);

723 if (!qh)

724 return ­ENOMEM;

725

726 /* Low speed or small transfers gets a different queue and treatment */

727 if (urb­>pipe & TD_CTRL_LS) {

728 uhci_insert_tds_in_qh(qh, urb, 0);

729 uhci_insert_qh(uhci, &uhci­>skel_ls_control_qh, qh);

730 } else {

731 uhci_insert_tds_in_qh(qh, urb, 1);

732 uhci_insert_qh(uhci, &uhci­>skel_hs_control_qh, qh);

733 uhci_inc_fsbr(uhci, urb);

734 }

735

736 urbp­>qh = qh;

737

738 uhci_add_urb_list(uhci, urb);

739

740 return ­EINPROGRESS;

741 }

USB
SETUP SETUP

DATA
DATA DATA
SETUP DATA

USB uhci_td

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1351

uhci_td uhci_td 4
32 USB 4

(1) link 28 4 0 uhci_td
uhci_qh 4 bit0 1 bit1

1 uhci_qh uhci_td bit2 1
0

(2) status TD_CTRL_ACTIVE
1 0

651 3 USB
1 0

(3) info token
(4) buffer

8 ”PID SETUP
PID USB_PID_SETUP include/linux/usb.h

==================== include/linux/usb.h 81 100 ====================
81 /*

82 * USB Packet IDs (PIDs)

83 */

84 #define USB_PID_UNDEF_0 0xf0

85 #define USB_PID_OUT 0xe1

86 #define USB_PID_ACK 0xd2

87 #define USB_PID_DATA0 0xc3

88 #define USB_PID_PING 0xb4 /* USB 2.0 */

89 #define USB_PID_SOF 0xa5

90 #define USB_PID_NYET 0x96 /* USB 2.0 */

91 #define USB_PID_DATA2 0x87 /* USB 2.0 */

92 #define USB_PID_SPLIT 0x78 /* USB 2.0 */

93 #define USB_PID_IN 0x69

94 #define USB_PID_NAK 0x5a

95 #define USB_PID_DATA1 0x4b

96 #define USB_PID_PREAMBLE 0x3c /* Token mode */

97 #define USB_PID_ERR 0x3c /* USB 2.0: handshake mode */

98 #define USB_PID_SETUP 0x2d

99 #define USB_PID_STALL 0x1e

100 #define USB_PID_MDATA 0x0f /* USB 2.0 */

USB USB 2.0
SETUP uhci_td 656 destination

status 32 token
SETUP PID USB_PID_SETUP

SETUP 8 7+1
SETUP devrequest

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1352

urb­>setup_packet
TD_CTRL_ACTIVE

1 USB
0 uhci_td

uhci_td TD_CTRL_ACTIVE 0
uhci_td uhci_add_td_to_urb() urb_priv

660 inline uhci_fill_td() uhci_td
USB 4 urb­>setup_packet

buffer USB DMA
uhci_add_td_to_urb() urb

urb_priv drivers/usb/uhci.c

==================== drivers/usb/uhci.c 501 508 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()>uhci_add_td_to_urb()]
501 static void uhci_add_td_to_urb(struct urb *urb, struct uhci_td *td)

502 {

503 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

504

505 td­>urb = urb;

506

507 list_add_tail(&td­>list, &urbp­>list);

508 }

SETUP USB
token USB

SETUP devrequest SETUP

USB
SETUP ACK

DATA
USB_PID_SETUP USB_PID_IN USB_PID_OUT destination
USB_PID_SETUP USB_PID_IN USB_PID_OUT

usb_packetid() include/linux/usb.h

include/linux/usb.h
706 #define usb_packetid(pipe) (((pipe) & USB_DIR_IN) ? USB_PID_IN : USB_PID_OUT)

SETUP DATA DATA
DATA

TD_TOKEN_TOGGLE
687 0 1 DATA DATA DATA0

DATA1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1353

status
USB_PID_IN

USB_PID_IN USB_PID_OUT 1
714 720

719 TD_CTRL_IOC 1 CPU

urb
USB USB

USB CPU
CPU

USB
DMA

uhci_td
list CPU uhci_td

link uhci_add_td_to_urb() uhci_td list
uhci_td link

uhci_qh
uhci_alloc_qh() uhci_qh drivers/usb/uhci.c

==================== drivers/usb/uhci.c 302 321 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()>uhci_alloc_qh()]
302 static struct uhci_qh *uhci_alloc_qh(struct usb_device *dev)

303 {

304 struct uhci_qh *qh;

305

306 qh = kmem_cache_alloc(uhci_qh_cachep, in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL);

307 if (!qh)

308 return NULL;

309

310 qh­>element = UHCI_PTR_TERM;

311 qh­>link = UHCI_PTR_TERM;

312

313 qh­>dev = dev;

314 qh­>prevqh = qh­>nextqh = NULL;

315

316 INIT_LIST_HEAD(&qh­>remove_list);

317

318 usb_inc_dev_use(dev);

319

320 return qh;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1354

321 }

uhci

uhci_insert_tds_in_qh() uhci_td uhci_qh
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 302 321 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()>uhci_insert_tds_in_qh()]
252 /*

253 * Inserts a td into qh list at the top.

254 */

255 static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, int breadth)

256 {

257 struct list_head *tmp, *head;

258 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

259 struct uhci_td *td, *prevtd;

260

261 if (!urbp)

262 return;

263

264 head = &urbp­>list;

265 tmp = head­>next;

266 if (head == tmp)

267 return;

268

269 td = list_entry(tmp, struct uhci_td, list);

270

271 /* Add the first TD to the QH element pointer */

272 qh­>element = virt_to_bus(td) | (breadth ? 0 : UHCI_PTR_DEPTH);

273

274 prevtd = td;

275

276 /* Then link the rest of the TD's */

277 tmp = tmp­>next;

278 while (tmp != head) {

279 td = list_entry(tmp, struct uhci_td, list);

280

281 tmp = tmp­>next;

282

283 prevtd­>link = virt_to_bus(td) | (breadth ? 0 : UHCI_PTR_DEPTH);

284

285 prevtd = td;

286 }

287

288 prevtd­>link = UHCI_PTR_TERM;

289 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1355

uhci_qh link
element uhci_td
element uhci_td uhci_td link

uhci_td uhci_qh uhci_td 16
4 drivers/usb/usb­uhci.h

==================== drivers/usb/usb­uhci.h 72 75 ====================
72 #define UHCI_PTR_BITS 0x000F

73 #define UHCI_PTR_TERM 0x0001

74 #define UHCI_PTR_QH 0x0002

75 #define UHCI_PTR_DEPTH 0x0004

UHCI_PTR_DEPTH 4 bit2 1 USB
breadth

0 breadth 1 uhci_td
link UHCI_PTR_TERM 0 “T 1

UHCI_PTR_QH uhci_qh uhci_td
uhci_qh uhci_td

USB uhci_insert_qh() USB
uhci­>skel_hs_control_qh drivers/usb/uhci.c

==================== drivers/usb/uhci.c 331 348 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()>uhci_insert_qh()]
331 static void uhci_insert_qh(struct uhci *uhci, struct uhci_qh *skelqh, struct uhci_qh *qh)

332 {

333 unsigned long flags;

334

335 spin_lock_irqsave(&uhci­>framelist_lock, flags);

336

337 /* Fix the linked list pointers */

338 qh­>nextqh = skelqh­>nextqh;

339 qh­>prevqh = skelqh;

340 if (skelqh­>nextqh)

341 skelqh­>nextqh­>prevqh = qh;

342 skelqh­>nextqh = qh;

343

344 qh­>link = skelqh­>link;

345 skelqh­>link = virt_to_bus(qh) | UHCI_PTR_QH;

346

347 spin_unlock_irqrestore(&uhci­>framelist_lock, flags);

348 }

skelqh USB
skelqh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1356

skeleton USB
qh

uhci_qh USB
nextqh prevqh link

USB
uhci_submit_control()

uhci_inc_fsbr() uhci skel_term_qh skelqh[3] link uhci­>skel_hs_control_qh
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 563 580 ====================
[ioctl_scanner()>usb_control_msg()>usb_internal_control_msg()>usb_start_wait_urb()>usb_submit_urb()
>uhci_submit_urb()>uhci_submit_control()>uhci_inc_fsbr()]
563 static void uhci_inc_fsbr(struct uhci *uhci, struct urb *urb)

564 {

565 unsigned long flags;

566 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

567

568 if (!urbp)

569 return;

570

571 spin_lock_irqsave(&uhci­>framelist_lock, flags);

572

573 if ((!(urb­>transfer_flags & USB_NO_FSBR)) && (!urbp­>fsbr)) {

574 urbp­>fsbr = 1;

575 if (!uhci­>fsbr++)

576 uhci­>skel_term_qh.link = virt_to_bus(&uhci­>skel_hs_control_qh) | UHCI_PTR_QH;

577 }

578

579 spin_unlock_irqrestore(&uhci­>framelist_lock, flags);

580 }

skel_term_qh USB skel_term_qh

USB
alloc_uhci()

2229 uhci skel_bulk_qh link
uhci­>skel_term_qh

skel_term_qh USB
skel_term_qh

skel_hs_control_qh

“fsbr Full Speed Bandwidth Reclamation
FSBR fsbr 1 uhci

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1357

fsbr 1 0 skel_term_qh
skel_hs_control_qh

uhci_add_urb_list() urb uhci urb_list
uhci_submit_control() CPU uhci_submit_urb() usb_submit_urb()

usb_start_wait_urb() 1019
USB

90%

USB

uhci_qh
USB

USB element

USB element
USB

1

TD_CTRL_ACTIVE 0

USB TD_CTRL_ACTIVE
0

NAK SETUP
CRC

TD_CTRL_ACTIVE 0 1
USB

USB

TD_CTRL_IOC 1 USB
CPU UHCI USB

uhci_interrupt() drivers/usb/uhci.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1358

==================== drivers/usb/uhci.c 2023 2085 ====================
2023 static void uhci_interrupt(int irq, void *__uhci, struct pt_regs *regs)

2024 {

2025 struct uhci *uhci = __uhci;

2026 unsigned int io_addr = uhci­>io_addr;

2027 unsigned short status;

2028 unsigned long flags;

2029 struct list_head *tmp, *head;

2030

2031 /*

2032 * Read the interrupt status, and write it back to clear the

2033 * interrupt cause

2034 */

2035 status = inw(io_addr + USBSTS);

2036 if (!status) /* shared interrupt, not mine */

2037 return;

2038 outw(status, io_addr + USBSTS);

2039

2040 if (status & ~(USBSTS_USBINT | USBSTS_ERROR)) {

2041 if (status & USBSTS_RD)

2042 printk(KERN_INFO "uhci: resume detected, not implemented\n");

2043 if (status & USBSTS_HSE)

2044 printk(KERN_ERR "uhci: host system error, PCI problems?\n");

2045 if (status & USBSTS_HCPE)

2046 printk(KERN_ERR "uhci: host controller process error. something bad happened\n");

2047 if (status & USBSTS_HCH) {

2048 printk(KERN_ERR "uhci: host controller halted. very bad\n");

2049 /* FIXME: Reset the controller, fix the offending TD */

2050 }

2051 }

2052

2053 uhci_free_pending_qhs(uhci);

2054

2055 spin_lock(&uhci­>urb_remove_lock);

2056 head = &uhci­>urb_remove_list;

2057 tmp = head­>next;

2058 while (tmp != head) {

2059 struct urb *urb = list_entry(tmp, struct urb, urb_list);

2060

2061 tmp = tmp­>next;

2062

2063 list_del(&urb­>urb_list);

2064

2065 if (urb­>complete)

2066 urb­>complete(urb);

2067 }

2068 spin_unlock(&uhci­>urb_remove_lock);

2069

2070 uhci_clear_next_interrupt(uhci);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1359

2071

2072 /* Walk the list of pending TD's to see which ones completed */

2073 nested_lock(&uhci­>urblist_lock, flags);

2074 head = &uhci­>urb_list;

2075 tmp = head­>next;

2076 while (tmp != head) {

2077 struct urb *urb = list_entry(tmp, struct urb, urb_list);

2078

2079 tmp = tmp­>next;

2080

2081 /* Checks the status and does all of the magic necessary */

2082 uhci_transfer_result(urb);

2083 }

2084 nested_unlock(&uhci­>urblist_lock, flags);

2085 }

USB
2053 2069

USB TD_CTRL_IOC 1
CPU

USB
skel_term_td TD_CTRL_IOC 1

uhci_clear_next_interrupt() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 135 143 ====================
[uhci_interrupt()>uhci_clear_next_interrupt()]
135 void uhci_clear_next_interrupt(struct uhci *uhci)

136 {

137 unsigned long flags;

138

139 spin_lock_irqsave(&uhci­>framelist_lock, flags);

140 uhci­>skel_term_td.status &= ~TD_CTRL_IOC;

141 spin_unlock_irqrestore(&uhci­>framelist_lock, flags);

142 }

143

USB
USB urb urb_priv

urb USB urb_list
urb uhci_transfer_result()

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1379 1478 ====================
[uhci_interrupt()>uhci_transfer_result()]
1379 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1360

1380 * Return the result of a transfer

1381 *

1382 * Must be called with urblist_lock acquired

1383 */

1384 static void uhci_transfer_result(struct urb *urb)

1385 {

1386 struct usb_device *dev = urb­>dev;

1387 struct urb *turb;

1388 int proceed = 0, is_ring = 0;

1389 int ret = ­EINVAL;

1390 unsigned long flags;

1391

1392 spin_lock_irqsave(&urb­>lock, flags);

1393

1394 switch (usb_pipetype(urb­>pipe)) {

1395 case PIPE_CONTROL:

1396 ret = uhci_result_control(urb);

1397 break;

1398 case PIPE_INTERRUPT:

1399 ret = uhci_result_interrupt(urb);

1400 break;

1401 case PIPE_BULK:

1402 ret = uhci_result_bulk(urb);

1403 break;

1404 case PIPE_ISOCHRONOUS:

1405 ret = uhci_result_isochronous(urb);

1406 break;

1407 }

1408

1409 urb­>status = ret;

1410

1411 spin_unlock_irqrestore(&urb­>lock, flags);

1412

1413 if (ret == ­EINPROGRESS)

1414 return;

1415

1416 switch (usb_pipetype(urb­>pipe)) {

1417 case PIPE_CONTROL:

1418 case PIPE_BULK:

1419 case PIPE_ISOCHRONOUS:

1420 /* Release bandwidth for Interrupt or Isoc. transfers */

1421 /* Spinlock needed ? */

1422 if (urb­>bandwidth)

1423 usb_release_bandwidth(urb­>dev, urb, 1);

1424 uhci_unlink_generic(urb);

1425 break;

1426 case PIPE_INTERRUPT:

1427 /* Interrupts are an exception */

1428 if (urb­>interval) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1361

1429 urb­>complete(urb);

1430 uhci_reset_interrupt(urb);

1431 return;

1432 }

1433

1434 /* Release bandwidth for Interrupt or Isoc. transfers */

1435 /* Spinlock needed ? */

1436 if (urb­>bandwidth)

1437 usb_release_bandwidth(urb­>dev, urb, 0);

1438 uhci_unlink_generic(urb);

1439 break;

1440 }

1441

1442 if (urb­>next) {

1443 turb = urb­>next;

1444 do {

1445 if (turb­>status != ­EINPROGRESS) {

1446 proceed = 1;

1447 break;

1448 }

1449

1450 turb = turb­>next;

1451 } while (turb && turb != urb && turb != urb­>next);

1452

1453 if (turb == urb || turb == urb­>next)

1454 is_ring = 1;

1455 }

1456

1457 if (urb­>complete && !proceed) {

1458 urb­>complete(urb);

1459 if (!proceed && is_ring)

1460 uhci_submit_urb(urb);

1461 }

1462

1463 if (proceed && urb­>next) {

1464 turb = urb­>next;

1465 do {

1466 if (turb­>status != ­EINPROGRESS &&

1467 uhci_submit_urb(turb) != 0)

1468

1469 turb = turb­>next;

1470 } while (turb && turb != urb­>next);

1471

1472 if (urb­>complete)

1473 urb­>complete(urb);

1474 }

1475

1476 /* We decrement the usage count after we're done with everything */

1477 usb_dec_dev_use(dev);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1362

1478 }

urb urb_1ist urb
uhci_result_control() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 745 822 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_result_control()]
745 static int uhci_result_control(struct urb *urb)

746 {

747 struct list_head *tmp, *head;

748 struct urb_priv *urbp = urb­>hcpriv;

749 struct uhci_td *td;

750 unsigned int status;

751 int ret = 0;

752

753 if (!urbp)

754 return ­EINVAL;

755

756 head = &urbp­>list;

757 if (head­>next == head)

758 return ­EINVAL;

759

760 if (urbp­>short_control_packet) {

761 tmp = head­>prev;

762 goto status_phase;

763 }

764

765 tmp = head­>next;

766 td = list_entry(tmp, struct uhci_td, list);

767

768 /* The first TD is the SETUP phase, check the status, but skip */

769 /* the count */

770 status = uhci_status_bits(td­>status);

771 if (status & TD_CTRL_ACTIVE)

772 return ­EINPROGRESS;

773

774 if (status)

775 goto td_error;

776

777 urb­>actual_length = 0;

778

779 /* The rest of the TD's (but the last) are data */

780 tmp = tmp­>next;

781 while (tmp != head && tmp­>next != head) {

782 td = list_entry(tmp, struct uhci_td, list);

783

784 tmp = tmp­>next;

785

786 if (urbp­>fsbr_timeout && (td­>status & TD_CTRL_IOC) &&

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1363

787 !(td­>status & TD_CTRL_ACTIVE)) {

788 uhci_inc_fsbr(urb­>dev­>bus­>hcpriv, urb);

789 urbp­>fsbr_timeout = 0;

790 td­>status &= ~TD_CTRL_IOC;

791 }

792

793 status = uhci_status_bits(td­>status);

794 if (status & TD_CTRL_ACTIVE)

795 return ­EINPROGRESS;

796

797 urb­>actual_length += uhci_actual_length(td­>status);

798

799 if (status)

800 goto td_error;

801

802 /* Check to see if we received a short packet */

803 if (uhci_actual_length(td­>status) < uhci_expected_length(td­>info)) {

804 if (urb­>transfer_flags & USB_DISABLE_SPD) {

805 ret = ­EREMOTEIO;

806 goto err;

807 }

808

809 if (uhci_packetid(td­>info) == USB_PID_IN)

810 return usb_control_retrigger_status(urb);

811 else

812 return 0;

813 }

814 }

815

816 status_phase:

817 td = list_entry(tmp, struct uhci_td, list);

818

819 /* Control status phase */

820 status = uhci_status_bits(td­>status);

821

822 #ifdef I_HAVE_BUGGY_APC_BACKUPS

==================== drivers/usb/uhci.c 830 857 ====================
830 #endif

831

832 if (status & TD_CTRL_ACTIVE)

833 return ­EINPROGRESS;

834

835 if (status)

836 goto td_error;

837

838 return 0;

839

840 td_error:

841 ret = uhci_map_status(status, uhci_packetout(td­>info));

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1364

842 if (ret == ­EPIPE)

843 /* endpoint has stalled ­ mark it halted */

844 usb_endpoint_halt(urb­>dev, uhci_endpoint(td­>info),

845 uhci_packetout(td­>info));

846

847 err:

848 if (debug && ret != ­EPIPE) {

849 /* Some debugging code */

850 dbg("uhci_result_control() failed with status %x", status);

851

852 /* Print the chain for debugging purposes */

853 uhci_show_urb_queue(urb);

854 }

855

856 return ret;

857 }

757
urbp­>short_control_packet 1

762
USB

SETUP
TD_CTRL_ACTIVE 1 3

­EINPROGRESS 772 TD_CTRL_ACTIVE
0 SETUP 0

775
while 786

rh_int_timer_do()
fsbr_timeout 1

uhci_inc_fsbr() FSBR
TD_CTRL_ACTIVE 1

­EINPROGRESS
803

USB_DISABLE_SPD 1 “SPD “short packet detect ”

­EREMOTEIO
usb_control_retrigger_status() USB

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 859 901 ====================
[ubci_interrupt()>uhci_transfer_result()>uhci_result_control()>usb_control_retrigger_status()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1365

859 static int usb_control_retrigger_status(struct urb *urb)

860 {

861 struct list_head *tmp, *head;

862 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

863 struct uhci *uhci = urb­>dev­>bus­>hcpriv;

864

865 urbp­>short_control_packet = 1;

866

867 /* Create a new QH to avoid pointer overwriting problems */

868 uhci_remove_qh(uhci, urbp­>qh);

869

870 /* Delete all of the TD's except for the status TD at the end */

871 head = &urbp­>list;

872 tmp = head­>next;

873 while (tmp != head && tmp­>next != head) {

874 struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

875

876 tmp = tmp­>next;

877

878 uhci_remove_td_from_urb(urb, td);

879

880 uhci_remove_td(uhci, td);

881

882 uhci_free_td(td);

883 }

884

885 urbp­>qh = uhci_alloc_qh(urb­>dev);

886 if (!urbp­>qh) {

887 err("unable to allocate new QH for control retrigger");

888 return ­ENOMEM;

889 }

890

891 /* One TD, who cares about Breadth first? */

892 uhci_insert_tds_in_qh(urbp­>qh, urb, 0);

893

894 /* Low speed or small transfers gets a different queue and treatment */

895 if (urb­>pipe & TD_CTRL_LS)

896 uhci_insert_qh(uhci, &uhci­>skel_ls_control_qh, urbp­>qh);

897 else

898 uhci_insert_qh(uhci, &uhci­>skel_hs_control_qh, urbp­>qh);

899

900 return ­EINPROGRESS;

901 }

865 urbp­>short_control_packet 1

uhci_result_control() 0
uhci_transfer_result() drivers/usb/uhci.c 1396 uhci_result_control()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1366

­EINPROGRESS
4

90% urb bandwidth
bus

usb_release_bandwidth() uhci_unlink_generic()
urb drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1480 1504 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_unlink_generic()]
1480 static int uhci_unlink_generic(struct urb *urb)

1481 {

1482 struct urb_priv *urbp = urb­>hcpriv;

1483 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1484

1485 if (!urbp)

1486 return ­EINVAL;

1487

1488 uhci_dec_fsbr(uhci, urb); /* Safe since it checks */

1489

1490 uhci_remove_urb_list(uhci, urb);

1491

1492 if (urbp­>qh)

1493 /* The interrupt loop will reclaim the QH's */

1494 uhci_remove_qh(uhci, urbp­>qh);

1495

1496 if (!list_empty(&urbp­>urb_queue_list))

1497 uhci_delete_queued_urb(uhci, urb);

1498

1499 uhci_destroy_urb_priv(urb);

1500

1501 urb­>dev = NULL;

1502

1503 return 0;

1504 }

FSBR
uhci_dec_fsbr()

uhci_remove_urb_list() usb uhci

uhci_remove_qh() uhci_qh USB
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 350 383 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_unlink_generic()>uhci_remove_qh()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1367

350 static void uhci_remove_qh(struct uhci *uhci, struct uhci_qh *qh)

351 {

352 unsigned long flags;

353 int delayed;

354

355 /* If the QH isn't queued, then we don't need to delay unlink it */

356 delayed = (qh­>prevqh || qh­>nextqh);

357

358 spin_lock_irqsave(&uhci­>framelist_lock, flags);

359 if (qh­>prevqh) {

360 qh­>prevqh­>nextqh = qh­>nextqh;

361 qh­>prevqh­>link = qh­>link;

362 }

363 if (qh­>nextqh)

364 qh­>nextqh­>prevqh = qh­>prevqh;

365 qh­>prevqh = qh­>nextqh = NULL;

366 qh­>element = qh­>link = UHCI_PTR_TERM;

367 spin_unlock_irqrestore(&uhci­>framelist_lock, flags);

368

369 if (delayed) {

370 spin_lock_irqsave(&uhci­>qh_remove_lock, flags);

371

372 /* Check to see if the remove list is empty */

373 /* Set the IOC bit to force an interrupt so we can remove the QH */

374 if (list_empty(&uhci­>qh_remove_list))

375 uhci_set_next_interrupt(uhci);

376

377 /* Add it */

378 list_add(&qh­>remove_list, &uhci­>qh_remove_list);

379

380 spin_unlock_irqrestore(&uhci­>qh_remove_lock, flags);

381 } else

382 uhci_free_qh(qh);

383 }

USB CPU
USB

qh_remove_list USB
uhci_free_pending_qhs() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 2002 2021 ====================
[uhci_interrupt()>uhci_free_pending_qhs()]
2002 void uhci_free_pending_qhs(struct uhci *uhci)

2003 {

2004 struct list_head *tmp, *head;

2005 unsigned long flags;

2006

2007 /* Free any pending QH's */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1368

2008 spin_lock_irqsave(&uhci­>qh_remove_lock, flags);

2009 head = &uhci­>qh_remove_list;

2010 tmp = head­>next;

2011 while (tmp != head) {

2012 struct uhci_qh *qh = list_entry(tmp, struct uhci_qh, remove_list);

2013

2014 tmp = tmp­>next;

2015

2016 list_del(&qh­>remove_list);

2017

2018 uhci_free_qh(qh);

2019 }

2020 spin_unlock_irqrestore(&uhci­>qh_remove_lock, flags);

2021 }

uhci_unlink_generic() urb_priv urb_queue_list
uhci_delete_queued_urb()

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 438 478 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_unlink_generic()>uhci_delete_queued_urb()]
438 static void uhci_delete_queued_urb(struct uhci *uhci, struct urb *urb)

439 {

440 struct urb_priv *urbp, *nurbp;

441 unsigned long flags;

442

443 urbp = urb­>hcpriv;

444

445 spin_lock_irqsave(&uhci_append_urb_lock, flags);

446

447 nurbp = list_entry(urbp­>urb_queue_list.next, struct urb_priv,

448 urb_queue_list);

449

450 if (!urbp­>queued) {

451 /* We're the head, so just insert the QH for the next URB */

452 uhci_insert_qh(uhci, &uhci­>skel_bulk_qh, nurbp­>qh);

453 nurbp­>queued = 0;

454 } else {

455 struct urb_priv *purbp;

456 struct uhci_td *ptd;

457

458 /* We're somewhere in the middle (or end). A bit trickier */

459 /* than the head scenario */

460 purbp = list_entry(urbp­>urb_queue_list.prev, struct urb_priv,

461 urb_queue_list);

462

463 ptd = list_entry(purbp­>list.prev, struct uhci_td, list);

464 if (nurbp­>queued)

465 /* Close the gap between the two */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1369

466 ptd­>link = virt_to_bus(list_entry(nurbp­>list.next,

467 struct uhci_td, list));

468 else

469 /* The next URB happens to be the beggining, so */

470 /* we're the last, end the chain */

471 ptd­>link = UHCI_PTR_TERM;

472

473 }

474

475 list_del(&urbp­>urb_queue_list);

476

477 spin_unlock_irqrestore(&uhci_append_urb_lock, flags);

478 }

uhci_destroy_urb_priv() urb_priv uhci_td
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 523 561 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_unlink_generic()>uhci_destroy_urb_priv()]
523 static void uhci_destroy_urb_priv(struct urb *urb)

524 {

525 struct list_head *tmp, *head;

526 struct urb_priv *urbp;

527 struct uhci *uhci;

528 struct uhci_td *td;

529 unsigned long flags;

530

531 spin_lock_irqsave(&urb­>lock, flags);

532

533 urbp = (struct urb_priv *)urb­>hcpriv;

534 if (!urbp)

535 goto unlock;

536

537 if (!urb­>dev || !urb­>dev­>bus || !urb­>dev­>bus­>hcpriv)

538 goto unlock;

539

540 uhci = urb­>dev­>bus­>hcpriv;

541

542 head = &urbp­>list;

543 tmp = head­>next;

544 while (tmp != head) {

545 td = list_entry(tmp, struct uhci_td, list);

546

547 tmp = tmp­>next;

548

549 uhci_remove_td_from_urb(urb, td);

550

551 uhci_remove_td(uhci, td);

552

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1370

553 uhci_free_td(td);

554 }

555

556 urb­>hcpriv = NULL;

557 kmem_cache_free(uhci_up_cachep, urbp);

558

559 unlock:

560 spin_unlock_irqrestore(&urb­>lock, flags);

561 }

uhci_transfer_result() drivers/usb/uhci.c 1425 1442
1474

USB
urb next

next
1/2 1/2

next 0 proceed
is_ring 0

urb complete
usb_internal_control_msg() usb_api_blocking_completion()

drivers/usb/usb.c

==================== drivers/usb/usb.c 978 989 ====================
[uhci_interrupt()>uhci_transfer_result()>usb_api_blocking_completion()]
978 static void usb_api_blocking_completion(urb_t *urb)

979 {

980 api_wrapper_data *awd = (api_wrapper_data *)urb­>context;

981

982 if (waitqueue_active(awd­>wakeup))

983 wake_up(awd­>wakeup);

984 #if 0

985 else

986 dbg("(blocking_completion): waitqueue empty!");

987 // even occurs if urb was unlinked by timeout...

988 #endif

989 }

usb_start_wait_urb()
usb_control_msg() schedule_timeout() drivers/usb/usb.c 1019

urb

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1371

urb 1029
urb usb_start_wait_urb() status actual_length

usb_internal_control_msg() usb_control_msg() ioctl_scanner()
ioctl()

write() read()
write() read()

read() read_scanner() drivers/usb/scanner.c

==================== drivers/usb/scanner.c 518 624 ====================
518 static ssize_t

519 read_scanner(struct file * file, char * buffer,

520 size_t count, loff_t *ppos)

521 {

522 struct scn_usb_data *scn;

523 struct usb_device *dev;

524

525 ssize_t bytes_read; /* Overall count of bytes_read */

526 ssize_t ret;

527

528 kdev_t scn_minor;

529

530 int partial; /* Number of bytes successfully read */

531 int this_read; /* Max number of bytes to read */

532 int result;

533 int rd_expire = RD_EXPIRE;

534

535 char *ibuf;

536

537 scn = file­>private_data;

538

539 scn_minor = scn­>scn_minor;

540

541 ibuf = scn­>ibuf;

542

543 dev = scn­>scn_dev;

544

545 bytes_read = 0;

546 ret = 0;

547

548 file­>f_dentry­>d_inode­>i_atime = CURRENT_TIME; /* Update the

549 atime of

550 the device

551 node */

552 down(&(scn­>gen_lock));

553

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1372

554 while (count > 0) {

555 if (signal_pending(current)) {

556 ret = ­EINTR;

557 break;

558 }

559

560 this_read = (count >= IBUF_SIZE) ? IBUF_SIZE : count;

561

562 result = usb_bulk_msg(dev, usb_rcvbulkpipe(dev, scn­>bulk_in_ep), ibuf, this_read, &partial,

RD_NAK_TIMEOUT);

563 dbg("read stats(%d): result:%d this_read:%d partial:%d count:%d", scn_minor, result,

this_read, partial, count);

564

565 /*

566 * Scanners are sometimes inheriently slow since they are mechanical

567 * in nature. USB bulk reads tend to timeout while the scanner is

568 * positioning, resetting, warming up the lamp, etc if the timeout is

569 * set too low. A very long timeout parameter for bulk reads was used

570 * to overcome this limitation, but this sometimes resulted in folks

571 * having to wait for the timeout to expire after pressing Ctrl­C from

572 * an application. The user was sometimes left with the impression

573 * that something had hung or crashed when in fact the USB read was

574 * just waiting on data. So, the below code retains the same long

575 * timeout period, but splits it up into smaller parts so that

576 * Ctrl­C's are acted upon in a reasonable amount of time.

577 */

578

579 if (result == USB_ST_TIMEOUT && !partial) { /* Timeout

580 and no

581 data */

582 if (­­rd_expire <= 0) {

583 warn("read_scanner(%d): excessive NAK's received", scn_minor);

584 ret = ­ETIME;

585 break;

586 } else {

587 interruptible_sleep_on_timeout(&scn­>rd_wait_q, RD_NAK_TIMEOUT);

588 continue;

589 }

590 } else if ((result < 0) && (result != USB_ST_DATAUNDERRUN)) {

591 warn("read_scanner(%d): funky result:%d. Please notify the maintainer.", scn_minor,

(int)result);

592 ret = ­EIO;

593 break;

594 }

595

596 #ifdef RD_DATA_DUMP

597 if (partial) {

598 unsigned char cnt, cnt_max;

599 cnt_max = (partial > 24) ? 24 : partial;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1373

600 printk(KERN_DEBUG "dump(%d): ", scn_minor);

601 for (cnt=0; cnt < cnt_max; cnt++) {

602 printk("%X ", ibuf[cnt]);

603 }

604 printk("\n");

605 }

606 #endif

607

608 if (partial) { /* Data returned */

609 if (copy_to_user(buffer, ibuf, partial)) {

610 ret = ­EFAULT;

611 break;

612 }

613 count ­= this_read; /* Compensate for short reads */

614 bytes_read += partial; /* Keep tally of what actually was read */

615 buffer += partial;

616 } else {

617 ret = 0;

618 break;

619 }

620 }

621 up(&(scn­>gen_lock));

622

623 return ret ? ret : bytes_read;

624 }

usb_bulk_msg()
USB 0

USB

token PID PID
include/linux/usb.h

==================== include/linux/usb.h 749 750 ====================
749 #define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))

750 #define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)

usb_bulk_msg() drivers/usb/usb.c

==================== drivers/usb/usb.c 1111 1147 ====================
[read_scanner()>usb_bulk_msg()]
1111 /**

1112 * usb_bulk_msg ­ Builds a bulk urb, sends it off and waits for completion

1113 * @usb_dev: pointer to the usb device to send the message to

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1374

1114 * @pipe: endpoint "pipe" to send the message to

1115 * @data: pointer to the data to send

1116 * @len: length in bytes of the data to send

1117 * @actual_length: pointer to a location to put the actual length transfered in bytes

1118 * @timeout: time to wait for the message to complete before timing out (if 0 the wait is forever)

1119 *

1120 * This function sends a simple bulk message to a specified endpoint

1121 * and waits for the message to complete, or timeout.

1122 *

1123 * If successful, it returns 0, othwise a negative error number.

1124 * The number of actual bytes transferred will be plaed in the

1125 * actual_timeout paramater.

1126 *

1127 * Don't use this function from within an interrupt context, like a

1128 * bottom half handler. If you need a asyncronous message, or need to

1129 * send a message from within interrupt context, use usb_submit_urb()

1130 */

1131 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,

1132 void *data, int len, int *actual_length, int timeout)

1133 {

1134 urb_t *urb;

1135

1136 if (len < 0)

1137 return ­EINVAL;

1138

1139 urb=usb_alloc_urb(0);

1140 if (!urb)

1141 return ­ENOMEM;

1142

1143 FILL_BULK_URB(urb,usb_dev,pipe,(unsigned char*)data,len, /* build urb */

1144 (usb_complete_t)usb_api_blocking_completion,0);

1145

1146 return usb_start_wait_urb(urb,timeout,actual_length);

1147 }

usb_control_msg() usb_internal_control_msg()
urb FILL_BULK_URB FILL_CONTROL_URB
include/linux/usb.h

==================== include/linux/usb.h 480 489 ====================
480 #define FILL_BULK_URB(a,aa,b,c,d,e,f) \

481 do {\

482 spin_lock_init(&(a)­>lock);\

483 (a)­>dev=aa;\

484 (a)­>pipe=b;\

485 (a)­>transfer_buffer=c;\

486 (a)­>transfer_buffer_length=d;\

487 (a)­>complete=e;\

488 (a)­>context=f;\

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1375

489 } while (0)

uhci_submit_urb()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1342 1344 ====================
[read_scanner()>usb_bulk_msg()>usb_start_wait_urb()>usb_submit_urb()>uhci_submit_urb()]
1342 case PIPE_BULK:

1343 ret = uhci_submit_bulk(urb, u);

1344 break;

uhci_submit_bulk() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1039 1115 ====================
[read_scanner()>usb_bulk_msg()>usb_start_wait_urb()>usb_submit_urb()>uhci_submit_urb()>uhci_submit_bulk()]
1039 static int uhci_submit_bulk(struct urb *urb, struct urb *eurb)

1040 {

1041 struct uhci_td *td;

1042 struct uhci_qh *qh;

1043 unsigned long destination, status;

1044 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1045 int maxsze = usb_maxpacket(urb­>dev, urb­>pipe, usb_pipeout(urb­>pipe));

1046 int len = urb­>transfer_buffer_length;

1047 unsigned char *data = urb­>transfer_buffer;

1048 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

1049

1050 if (len < 0)

1051 return ­EINVAL;

1052

1053 /* Can't have low speed bulk transfers */

1054 if (urb­>pipe & TD_CTRL_LS)

1055 return ­EINVAL;

1056

1057 /* The "pipe" thing contains the destination in bits 8­­18 */

1058 destination = (urb­>pipe & PIPE_DEVEP_MASK) | usb_packetid(urb­>pipe);

1059

1060 /* 3 errors */

1061 status = TD_CTRL_ACTIVE | (3 << TD_CTRL_C_ERR_SHIFT);

1062

1063 if (!(urb­>transfer_flags & USB_DISABLE_SPD))

1064 status |= TD_CTRL_SPD;

1065

1066 /*

1067 * Build the DATA TD's

1068 */

1069 do { /* Allow zero length packets */

1070 int pktsze = len;

1071

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1376

1072 if (pktsze > maxsze)

1073 pktsze = maxsze;

1074

1075 td = uhci_alloc_td(urb­>dev);

1076 if (!td)

1077 return ­ENOMEM;

1078

1079 uhci_add_td_to_urb(urb, td);

1080 uhci_fill_td(td, status, destination | ((pktsze ­ 1) << 21) |

1081 (usb_gettoggle(urb­>dev, usb_pipeendpoint(urb­>pipe),

1082 usb_pipeout(urb­>pipe)) << TD_TOKEN_TOGGLE),

1083 virt_to_bus(data));

1084

1085 data += pktsze;

1086 len ­= maxsze;

1087

1088 if (len <= 0)

1089 td­>status |= TD_CTRL_IOC;

1090

1091 usb_dotoggle(urb­>dev, usb_pipeendpoint(urb­>pipe),

1092 usb_pipeout(urb­>pipe));

1093 } while (len > 0);

1094

1095 qh = uhci_alloc_qh(urb­>dev);

1096 if (!qh)

1097 return ­ENOMEM;

1098

1099 urbp­>qh = qh;

1100

1101 /* Always assume depth first */

1102 uhci_insert_tds_in_qh(qh, urb, 1);

1103

1104 if (urb­>transfer_flags & USB_QUEUE_BULK && eurb) {

1105 urbp­>queued = 1;

1106 uhci_append_queued_urb(uhci, eurb, urb);

1107 } else

1108 uhci_insert_qh(uhci, &uhci­>skel_bulk_qh, qh);

1109

1110 uhci_add_urb_list(uhci, urb);

1111

1112 uhci_inc_fsbr(uhci, urb);

1113

1114 return ­EINPROGRESS;

1115 }

uhci_submit_control()
1

1054 ­EINVAL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1377

SETUP
uhci_insert_tds_in_qh() breadth

1 1101 “Always assume depth first
1106 uhci_submit_control() eurb 0

usb_start_wait_urb() USB
CPU USB uhci_interrupt()

uhci_transfer_result() uhci_result_bulk() uhci_result_control()
uhci_transfer_result() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1401 1403 ====================
[uhci_interrupt()>uhci_transfer_result()]

.

1401 case PIPE_BULK:

1402 ret = uhci_result_bulk(urb);

1403 break;

.

uhci_result_bulk() drivers/usb/uhci.c
uhci_result_interrupt()

==================== drivers/usb/uhci.c 1117 1118 ====================
1117 /* We can use the result interrupt since they're identical */

1118 #define uhci_result_bulk uhci_result_interrupt

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 940 1012 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_result_interrupt()]
940 static int uhci_result_interrupt(struct urb *urb)

941 {

942 struct list_head *tmp, *head;

943 struct urb_priv *urbp = urb­>hcpriv;

944 struct uhci_td *td;

945 unsigned int status;

946 int ret = 0;

947

948 if (!urbp)

949 return ­EINVAL;

950

951 urb­>actual_length = 0;

952

953 head = &urbp­>list;

954 tmp = head­>next;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1378

955 while (tmp != head) {

956 td = list_entry(tmp, struct uhci_td, list);

957

958 tmp = tmp­>next;

959

960 if (urbp­>fsbr_timeout && (td­>status & TD_CTRL_IOC) &&

961 !(td­>status & TD_CTRL_ACTIVE)) {

962 uhci_inc_fsbr(urb­>dev­>bus­>hcpriv, urb);

963 urbp­>fsbr_timeout = 0;

964 td­>status &= ~TD_CTRL_IOC;

965 }

966

967 status = uhci_status_bits(td­>status);

968 if (status & TD_CTRL_ACTIVE)

969 return ­EINPROGRESS;

970

971 urb­>actual_length += uhci_actual_length(td­>status);

972

973 if (status)

974 goto td_error;

975

976 if (uhci_actual_length(td­>status) < uhci_expected_length(td­>info)) {

977 usb_settoggle(urb­>dev, uhci_endpoint(td­>info),

978 uhci_packetout(td­>info),

979 uhci_toggle(td­>info) ^ 1);

980

981 if (urb­>transfer_flags & USB_DISABLE_SPD) {

982 ret = ­EREMOTEIO;

983 goto err;

984 } else

985 return 0;

986 }

987 }

988

989 return 0;

990

991 td_error:

992 ret = uhci_map_status(status, uhci_packetout(td­>info));

993 if (ret == ­EPIPE)

994 /* endpoint has stalled ­ mark it halted */

995 usb_endpoint_halt(urb­>dev, uhci_endpoint(td­>info),

996 uhci_packetout(td­>info));

997

998 err:

999 if (debug && ret != ­EPIPE) {

1000 /* Some debugging code */

1001 dbg("uhci_result_interrupt/bulk() failed with status %x",

1002 status);

1003

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1379

1004 /* Print the chain for debugging purposes */

1005 if (urbp­>qh)

1006 uhci_show_urb_queue(urb);

1007 else

1008 uhci_show_td(td);

1009 }

1010

1011 return ret;

1012 }

uhci_result_control()

USB IN token
NAK USB NAK

TD_CTRL_ACTIVE 0 element

IN OUT
USB

USB USB
USB

127 USB

rh_int_timer_do() USB
urb_list

read_scanner()
579 587 588

rd_expire
USB USB
usb_hub_configure()

urb usb_submit_urb()
drivers/usb/hub.c 214 223

UHCI usb_submit_urb() uhci_submit_urb()
uhci_submit_urb()

drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1329 1341 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()]

.

1329 case PIPE_INTERRUPT:

1330 if (urb­>bandwidth == 0) { /* not yet checked/allocated */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1380

1331 bustime = usb_check_bandwidth(urb­>dev, urb);

1332 if (bustime < 0)

1333 ret = bustime;

1334 else {

1335 ret = uhci_submit_interrupt(urb);

1336 if (ret == ­EINPROGRESS)

1337 usb_claim_bandwidth(urb­>dev, urb, bustime, 0);

1338 }

1339 } else /* bandwidth is already set */

1340 ret = uhci_submit_interrupt(urb);

1341 break;

.

usb_check_bandwidth()
drivers/usb/usb.c

==================== drivers/usb/usb.c 256 305 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()>usb_check_bandwidth()]
256 /*

257 * usb_check_bandwidth():

258 *

259 * old_alloc is from host_controller­>bandwidth_allocated in microseconds;

260 * bustime is from calc_bus_time(), but converted to microseconds.

261 *

262 * returns <bustime in us> if successful,

263 * or USB_ST_BANDWIDTH_ERROR if bandwidth request fails.

264 *

265 * FIXME:

266 * This initial implementation does not use Endpoint.bInterval

267 * in managing bandwidth allocation.

268 * It probably needs to be expanded to use Endpoint.bInterval.

269 * This can be done as a later enhancement (correction).

270 * This will also probably require some kind of

271 * frame allocation tracking...meaning, for example,

272 * that if multiple drivers request interrupts every 10 USB frames,

273 * they don't all have to be allocated at

274 * frame numbers N, N+10, N+20, etc. Some of them could be at

275 * N+11, N+21, N+31, etc., and others at

276 * N+12, N+22, N+32, etc.

277 * However, this first cut at USB bandwidth allocation does not

278 * contain any frame allocation tracking.

279 */

280 int usb_check_bandwidth (struct usb_device *dev, struct urb *urb)

281 {

282 int new_alloc;

283 int old_alloc = dev­>bus­>bandwidth_allocated;

284 unsigned int pipe = urb­>pipe;

285 long bustime;

286

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1381

287 bustime = usb_calc_bus_time (usb_pipeslow(pipe), usb_pipein(pipe),

288 usb_pipeisoc(pipe), usb_maxpacket(dev, pipe, usb_pipeout(pipe)));

289 if (usb_pipeisoc(pipe))

290 bustime = NS_TO_US(bustime) / urb­>number_of_packets;

291 else

292 bustime = NS_TO_US(bustime);

293

294 new_alloc = old_alloc + (int)bustime;

295 /* what new total allocated bus time would be */

296

297 if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC)

298 dbg("usb­check­bandwidth %sFAILED: was %u, would be %u, bustime = %ld us",

299 usb_bandwidth_option ? "" : "would have ",

300 old_alloc, new_alloc, bustime);

301

302 if (!usb_bandwidth_option) /* don't enforce it */

303 return (bustime);

304 return (new_alloc <= FRAME_TIME_MAX_USECS_ALLOC) ? bustime : USB_ST_BANDWIDTH_ERROR;

305 }

usb_calc_bus_time()
drivers/usb/usb.c

==================== drivers/usb/usb.c 219 254 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()>usb_check_bandwidth()>usb_calc_bus_time()]
219 /*

220 * usb_calc_bus_time:

221 *

222 * returns (approximate) USB bus time in nanoseconds for a USB transaction.

223 */

224 static long usb_calc_bus_time (int low_speed, int input_dir, int isoc, int bytecount)

225 {

226 unsigned long tmp;

227

228 if (low_speed) /* no isoc. here */

229 {

230 if (input_dir)

231 {

232 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;

233 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);

234 }

235 else

236 {

237 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;

238 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);

239 }

240 }

241

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1382

242 /* for full­speed: */

243

244 if (!isoc) /* Input or Output */

245 {

246 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;

247 return (9107L + BW_HOST_DELAY + tmp);

248 } /* end not Isoc */

249

250 /* for isoc: */

251

252 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;

253 return (((input_dir) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);

254 }

USB USB
1.1

usb_check_bandwidth() NS_TO_US

include/linux/usb.h
FRAME_TIME_MAX_USECS_ALLOC

==================== include/linux/usb.h 795 796 ====================
795 #define FRAME_TIME_USECS 1000L

796 #define FRAME_TIME_MAX_USECS_ALLOC (90L * FRAME_TIME_USECS / 100L)

1000 90
USB

12Mb 1.5MB 1024 1.5KB
1023

512
uhci_submit_urb()

uhci_submit_interrupt() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 906 938 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()>uhci_submit_interrupt()]
906 static int uhci_submit_interrupt(struct urb *urb)

907 {

908 struct uhci_td *td;

909 unsigned long destination, status;

910 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

911

912 if (urb­>transfer_buffer_length > usb_maxpacket(urb­>dev, urb­>pipe, usb_pipeout(urb­>pipe)))

913 return ­EINVAL;

914

915 /* The "pipe" thing contains the destination in bits 8­­18 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1383

916 destination = (urb­>pipe & PIPE_DEVEP_MASK) | usb_packetid(urb­>pipe);

917

918 status = (urb­>pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | TD_CTRL_IOC;

919

920 td = uhci_alloc_td(urb­>dev);

921 if (!td)

922 return ­ENOMEM;

923

924 destination |= (usb_gettoggle(urb­>dev, usb_pipeendpoint(urb­>pipe), usb_pipeout(urb­>pipe)) <<

TD_TOKEN_TOGGLE);

925 destination |= ((urb­>transfer_buffer_length ­ 1) << 21);

926

927 usb_dotoggle(urb­>dev, usb_pipeendpoint(urb­>pipe), usb_pipeout(urb­>pipe));

928

929 uhci_add_td_to_urb(urb, td);

930 uhci_fill_td(td, status, destination,

931 virt_to_bus(urb­>transfer_buffer));

932

933 uhci_insert_td(uhci, &uhci­>skeltd[__interval_to_skel(urb­>interval)], td);

934

935 uhci_add_urb_list(uhci, urb);

936

937 return ­EINPROGRESS;

938 }

uhci_submit_bulk()

skeltd[]

__interval_to_skel() drivers/usb/uhci.h

==================== drivers/usb/uhci.h 253 289 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()>uhci_submit_interrupt()>__interval_to_skel()]
253 /*

254 * Search tree for determining where <interval> fits in the

255 * skelqh[] skeleton.

256 *

257 * An interrupt request should be placed into the slowest skelqh[]

258 * which meets the interval/period/frequency requirement.

259 * An interrupt request is allowed to be faster than <interval> but not slower.

260 *

261 * For a given <interval>, this function returns the appropriate/matching

262 * skelqh[] index value.

263 *

264 * NOTE: For UHCI, we don't really need int256_qh since the maximum interval

265 * is 255 ms. However, we do need an int1_qh since 1 is a valid interval

266 * and we should meet that frequency when requested to do so.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1384

267 * This will require some change(s) to the UHCI skeleton.

268 */

269 static inline int __interval_to_skel(int interval)

270 {

271 if (interval < 16) {

272 if (interval < 4) {

273 if (interval < 2)

274 return 0; /* int1 for 0­1 ms */

275 return 1; /* int2 for 2­3 ms */

276 }

277 if (interval < 8)

278 return 2; /* int4 for 4­7 ms */

279 return 3; /* int8 for 8­15 ms */

280 }

281 if (interval < 64) {

282 if (interval < 32)

283 return 4; /* int16 for 16­31 ms */

284 return 5; /* int32 for 32­63 ms */

285 }

286 if (interval < 128)

287 return 6; /* int64 for 64­127 ms */

288 return 7; /* int128 for 128­255 ms (Max.) */

289 }

usb_claim_bandwidth()
drivers/usb/usb.c

==================== drivers/usb/usb.c 307 322 ====================
[usb_hub_configure()>usb_submit_urb()>uhci_submit_urb()>uhci_submit_interrupt()>usb_claim_bandwidth()]
307 void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc)

308 {

309 dev­>bus­>bandwidth_allocated += bustime;

310 if (isoc)

311 dev­>bus­>bandwidth_isoc_reqs++;

312 else

313 dev­>bus­>bandwidth_int_reqs++;

314 urb­>bandwidth = bustime;

315

316 #ifdef USB_BANDWIDTH_MESSAGES

317 dbg("bandwidth alloc increased by %d to %d for %d requesters",

318 bustime,

319 dev­>bus­>bandwidth_allocated,

320 dev­>bus­>bandwidth_int_reqs + dev­>bus­>bandwidth_isoc_reqs);

321 #endif

322 }

uhci_transfer_result()
uhci_result_bulk() uhci_resuit_interrupt()

USB ”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1385

USB

USB

uhci_transfer_result() uhci_result_interrupt()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1416 1419 ====================
[uhci_interrupt()>uhci_transfer_result()]
1416 switch (usb_pipetype(urb­>pipe)) {

1417 case PIPE_CONTROL:

1418 case PIPE_BULK:

1419 case PIPE_ISOCHRONOUS:

.

==================== drivers/usb/uhci.c 1425 1440 ====================
1425 break;

1426 case PIPE_INTERRUPT:

1427 /* Interrupts are an exception */

1428 if (urb­>interval) {

1429 urb­>complete(urb);

1430 uhci_reset_interrupt(urb);

1431 return;

1432 }

1433

1434 /* Release bandwidth for Interrupt or Isoc. transfers */

1435 /* Spinlock needed ? */

1436 if (urb­>bandwidth)

1437 usb_release_bandwidth(urb­>dev, urb, 0);

1438 uhci_unlink_generic(urb);

1439 break;

1440 }

usb interval 0
0 interval 0

1436 1439 interval 0 usb_release_bandwidth()
uhci_unlink_generic() 1422 1424

interval
0 interval 0 complete

uhci_reset_interrupt() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1425 1440 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_reset_interrupt()]
1014 static void uhci_reset_interrupt(struct urb *urb)

1015 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1386

1016 struct list_head *tmp;

1017 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

1018 struct uhci_td *td;

1019

1020 if (!urbp)

1021 return;

1022

1023 tmp = urbp­>list.next;

1024 td = list_entry(tmp, struct uhci_td, list);

1025 if (!td)

1026 return;

1027

1028 td­>status = (td­>status & 0x2F000000) | TD_CTRL_ACTIVE | TD_CTRL_IOC;

1029 td­>info &= ~(1 << TD_TOKEN_TOGGLE);

1030 td­>info |= (usb_gettoggle(urb­>dev, usb_pipeendpoint(urb­>pipe), usb_pipeout(urb­>pipe)) <<

TD_TOKEN_TOGGLE);

1031 usb_dotoggle(urb­>dev, usb_pipeendpoint(urb­>pipe), usb_pipeout(urb­>pipe));

1032

1033 urb­>status = ­EINPROGRESS;

1034 }

TD_CTRL_ACTIVE TD_CTRL_IOC 1 tocken
USB

TD_CTRL_ACTIVE TD_CTRL_IOC 0
USB TD_CTRL_ACTIVE

1 interval 0 1431
interval 0 ”

USB

uhci_submit_urb() uhci_submit_isochronous() uhci_transfer_result()
uhci_result_isochronous()

“iso isochronous

uhci_submit_urb() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1345 1362 ====================
[usb_submit_urb()>uhci_submit_urb()]
1345 case PIPE_ISOCHRONOUS:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1387

1346 if (urb­>bandwidth == 0) { /* not yet checked/allocated */

1347 if (urb­>number_of_packets <= 0) {

1348 ret = ­EINVAL;

1349 break;

1350 }

1351 bustime = usb_check_bandwidth(urb­>dev, urb);

1352 if (bustime < 0) {

1353 ret = bustime;

1354 break;

1355 }

1356

1357 ret = uhci_submit_isochronous(urb);

1358 if (ret == ­EINPROGRESS)

1359 usb_claim_bandwidth(urb­>dev, urb, bustime, 1);

1360 } else /* bandwidth is already set */

1361 ret = uhci_submit_isochronous(urb);

1362 break;

uhci_submit_interrupt()
uhci_submit_isochronous() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1184 1215 ====================
[usb_submit_urb()>uhci_submit_urb()>uhci_submit_isochronous()]
1184 static int uhci_submit_isochronous(struct urb *urb)

1185 {

1186 struct uhci_td *td;

1187 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1188 int i, ret, framenum;

1189 int status, destination;

1190

1191 status = TD_CTRL_ACTIVE | TD_CTRL_IOS;

1192 destination = (urb­>pipe & PIPE_DEVEP_MASK) | usb_packetid(urb­>pipe);

1193

1194 ret = isochronous_find_start(urb);

1195 if (ret)

1196 return ret;

1197

1198 framenum = urb­>start_frame;

1199 for (i = 0; i < urb­>number_of_packets; i++, framenum++) {

1200 if (!urb­>iso_frame_desc[i].length)

1201 continue;

1202

1203 td = uhci_alloc_td(urb­>dev);

1204 if (!td)

1205 return ­ENOMEM;

1206

1207 uhci_add_td_to_urb(urb, td);

1208 uhci_fill_td(td, status, destination | ((urb­>iso_frame_desc[i].length ­ 1) << 21),

1209 virt_to_bus(urb­>transfer_buffer + urb­>iso_frame_desc[i].offset));

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1388

1210

1211 if (i + 1 >= urb­>number_of_packets)

1212 td­>status |= TD_CTRL_IOC;

1213

1214 uhci_insert_td_frame_list(uhci, td, framenum);

1215 }

TD_CTRL_IOC
1 1211 1212

USB

usb iso_frame_desc[]
“frame

“frame_desc
usb_submit_urb()

usb_check_bandwidth()

isochronous_find_start() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1158 1182 ====================
[usb_submit_urb()>uhci_submit_urb()>uhci_submit_isochronous()>isochronous_find_start()]
1158 static int isochronous_find_start(struct urb *urb)

1159 {

1160 int limits;

1161 unsigned int start = 0, end = 0;

1162

1163 if (urb­>number_of_packets > 900) /* 900? Why? */

1164 return ­EFBIG;

1165

1166 limits = isochronous_find_limits(urb, &start, &end);

1167

1168 if (urb­>transfer_flags & USB_ISO_ASAP) {

1169 if (limits) {

1170 int curframe;

1171

1172 curframe = uhci_get_current_frame_number(urb­>dev) % UHCI_NUMFRAMES;

1173 urb­>start_frame = (curframe + 10) % UHCI_NUMFRAMES;

1174 } else

1175 urb­>start_frame = end;

1176 } else {

1177 urb­>start_frame %= UHCI_NUMFRAMES;

1178 /* FIXME: Sanity check */

1179 }

1180

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1389

1181 return 0;

1182 }

1024
90%

isochronous_find_limits()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1123 1156 ====================
[usb_submit_urb()>uhci_submit_urb()>uhci_submit_isochronous()>isochronous_find_start()>isochronous_find_limits()]
1123 static int isochronous_find_limits(struct urb *urb, unsigned int *start, unsigned int *end)

1124 {

1125 struct urb *last_urb = NULL;

1126 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1127 struct list_head *tmp, *head = &uhci­>urb_list;

1128 int ret = 0;

1129 unsigned long flags;

1130

1131 nested_lock(&uhci­>urblist_lock, flags);

1132 tmp = head­>next;

1133 while (tmp != head) {

1134 struct urb *u = list_entry(tmp, struct urb, urb_list);

1135

1136 tmp = tmp­>next;

1137

1138 /* look for pending URB's with identical pipe handle */

1139 if ((urb­>pipe == u­>pipe) && (urb­>dev == u­>dev) &&

1140 (u­>status == ­EINPROGRESS) && (u != urb)) {

1141 if (!last_urb)

1142 *start = u­>start_frame;

1143 last_urb = u;

1144 }

1145 }

1146

1147 if (last_urb) {

1148 *end = (last_urb­>start_frame + last_urb­>number_of_packets) & 1023;

1149 ret = 0;

1150 } else

1151 ret = ­1; /* no previous urb found */

1152

1153 nested_unlock(&uhci­>urblist_lock, flags);

1154

1155 return ret;

1156 }

0 ­1
isochronous_find_start() USB_ISO_ASAP as soon as

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1390

possible USB
10

uhci_submit_isochronous() uhci_insert_td_frame_list()
isochronous_find_start()

uhci_insert_td_frame_list() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 200 220 ====================
[usb_submit_urb()>uhci_submit_urb()>uhci_submit_isochronous()>uhci_insert_td_frame_list()]
200 static void uhci_insert_td_frame_list(struct uhci *uhci, struct uhci_td *td, unsigned framenum)

201 {

202 unsigned long flags;

203 struct uhci_td *nexttd;

204

205 framenum %= UHCI_NUMFRAMES;

206

207 spin_lock_irqsave(&uhci­>framelist_lock, flags);

208

209 td­>frameptr = &uhci­>fl­>frame[framenum];

210 td­>link = uhci­>fl­>frame[framenum];

211 if (!(td­>link & (UHCI_PTR_TERM | UHCI_PTR_QH))) {

212 nexttd = (struct uhci_td *)uhci_ptr_to_virt(td­>link);

213 td­>nexttd = nexttd;

214 nexttd­>prevtd = td;

215 nexttd­>frameptr = NULL;

216 }

217 uhci­>fl­>frame[framenum] = virt_to_bus(td);

218

219 spin_unlock_irqrestore(&uhci­>framelist_lock, flags);

220 }

USB

uhci_result_isochronous()
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1222 1261 ====================
[uhci_interrupt()>uhci_transfer_result()>uhci_result_isochronous()]
1222 static int uhci_result_isochronous(struct urb *urb)

1223 {

1224 struct list_head *tmp, *head;

1225 struct urb_priv *urbp = (struct urb_priv *)urb­>hcpriv;

1226 int status;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1391

1227 int i, ret = 0;

1228

1229 if (!urbp)

1230 return ­EINVAL;

1231

1232 urb­>actual_length = 0;

1233

1234 i = 0;

1235 head = &urbp­>list;

1236 tmp = head­>next;

1237 while (tmp != head) {

1238 struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

1239 int actlength;

1240

1241 tmp = tmp­>next;

1242

1243 if (td­>status & TD_CTRL_ACTIVE)

1244 return ­EINPROGRESS;

1245

1246 actlength = uhci_actual_length(td­>status);

1247 urb­>iso_frame_desc[i].actual_length = actlength;

1248 urb­>actual_length += actlength;

1249

1250 status = uhci_map_status(uhci_status_bits(td­>status), usb_pipeout(urb­>pipe));

1251 urb­>iso_frame_desc[i].status = status;

1252 if (status != 0) {

1253 urb­>error_count++;

1254 ret = status;

1255 }

1256

1257 i++;

1258 }

1259

1260 return ret;

1261 }

uhci_transfer_result()

uhci_transfer_result() drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1416 1426 ====================
[uhci_interrupt()>uhci_transfer_result()]
1416 switch (usb_pipetype(urb­>pipe)) {

1417 case PIPE_CONTROL:

1418 case PIPE_BULK:

1419 case PIPE_ISOCHRONOUS:

1420 /* Release bandwidth for Interrupt or Isoc. transfers */

1421 /* Spinlock needed ? */

1422 if (urb­>bandwidth)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1392

1423 usb_release_bandwidth(urb­>dev, urb, 1);

1424 uhci_unlink_generic(urb);

1425 break;

1426 case PIPE_INTERRUPT:

.

==================== drivers/usb/uhci.c 1439 1474 ====================
1439 break;

1440 }

1441

1442 if (urb­>next) {

1443 turb = urb­>next;

1444 do {

1445 if (turb­>status != ­EINPROGRESS) {

1446 proceed = 1;

1447 break;

1448 }

1449

1450 turb = turb­>next;

1451 } while (turb && turb != urb && turb != urb­>next);

1452

1453 if (turb == urb || turb == urb­>next)

1454 is_ring = 1;

1455 }

1456

1457 if (urb­>complete && !proceed) {

1458 urb­>complete(urb);

1459 if (!proceed && is_ring)

1460 uhci_submit_urb(urb);

1461 }

1462

1463 if (proceed && urb­>next) {

1464 turb = urb­>next;

1465 do {

1466 if (turb­>status != ­EINPROGRESS &&

1467 uhci_submit_urb(turb) != 0)

1468

1469 turb = turb­>next;

1470 } while (turb && turb != urb­>next);

1471

1472 if (urb­>complete)

1473 urb­>complete(urb);

1474 }

USB
uhci_unlink_generic()

uhci_unlink_generic() uhci_destroy_urb_priv() uhci_remove_td()
USB

1442 1474

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1393

IP
USB

USB

50
20 USB

200

N N 1 N usb next
usb

1442 1474
­EINPROGRESS

next 1460

USB

TD_CTRL_ACTIVE
1 USB ”

link

USB
drivers/usb/ibmcam.c

drivers/usb/ibmcam.h
ioctl()

ibmcam_ioctl()
ibmcam_ioctl()

ibmcam_ioctl()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1394

ibmcam_init_isoc()

==================== drivers/usb/ibmcam.c 2148 2217 ====================
[ibmcam_open(1)>ibmcam_init_isoc()]
2148 static int ibmcam_init_isoc(struct usb_ibmcam *ibmcam)

2149 {

2150 struct usb_device *dev = ibmcam­>dev;

2151 int i, err;

2152

2153 if (!IBMCAM_IS_OPERATIONAL(ibmcam))

2154 return ­EFAULT;

2155

2156 ibmcam­>compress = 0;

2157 ibmcam­>curframe = ­1;

2158 ibmcam­>cursbuf = 0;

2159 ibmcam­>scratchlen = 0;

2160

2161 /* Alternate interface 1 is is the biggest frame size */

2162 i = usb_set_interface(dev, ibmcam­>iface, ibmcam­>ifaceAltActive);

2163 if (i < 0) {

2164 printk(KERN_ERR "usb_set_interface error\n");

2165 ibmcam­>last_error = i;

2166 return ­EBUSY;

2167 }

2168 usb_ibmcam_change_lighting_conditions(ibmcam);

2169 usb_ibmcam_set_sharpness(ibmcam);

2170 usb_ibmcam_reinit_iso(ibmcam, 0);

2171

2172 /* We double buffer the Iso lists */

2173

2174 for (i=0; i < IBMCAM_NUMSBUF; i++) {

2175 int j, k;

2176 urb_t *urb;

2177

2178 urb = usb_alloc_urb(FRAMES_PER_DESC);

2179 if (urb == NULL) {

2180 printk(KERN_ERR "ibmcam_init_isoc: usb_init_isoc() failed.\n");

2181 return ­ENOMEM;

2182 }

2183 ibmcam­>sbuf[i].urb = urb;

2184 urb­>dev = dev;

2185 urb­>context = ibmcam;

2186 urb­>pipe = usb_rcvisocpipe(dev, ibmcam­>video_endp);

2187 urb­>transfer_flags = USB_ISO_ASAP;

2188 urb­>transfer_buffer = ibmcam­>sbuf[i].data;

2189 urb­>complete = ibmcam_isoc_irq;

2190 urb­>number_of_packets = FRAMES_PER_DESC;

2191 urb­>transfer_buffer_length = ibmcam­>iso_packet_len * FRAMES_PER_DESC;

2192 for (j=k=0; j < FRAMES_PER_DESC; j++, k += ibmcam­>iso_packet_len) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1395

2193 urb­>iso_frame_desc[j].offset = k;

2194 urb­>iso_frame_desc[j].length = ibmcam­>iso_packet_len;

2195 }

2196 }

2197

2198 /* Link URBs into a ring so that they invoke each other infinitely */

2199 for (i=0; i < IBMCAM_NUMSBUF; i++) {

2200 if ((i+1) < IBMCAM_NUMSBUF)

2201 ibmcam­>sbuf[i].urb­>next = ibmcam­>sbuf[i+1].urb;

2202 else

2203 ibmcam­>sbuf[i].urb­>next = ibmcam­>sbuf[0].urb;

2204 }

2205

2206 /* Submit all URBs */

2207 for (i=0; i < IBMCAM_NUMSBUF; i++) {

2208 err = usb_submit_urb(ibmcam­>sbuf[i].urb);

2209 if (err)

2210 printk(KERN_ERR "ibmcam_init_isoc: usb_run_isoc(%d) ret %d\n",

2211 i, err);

2212 }

2213

2214 ibmcam­>streaming = 1;

2215 /* printk(KERN_DEBUG "streaming=1 ibmcam­>video_endp=$%02x\n", ibmcam­>video_endp); */

2216 return 0;

2217 }

2172 2212 IBMCAM_NUMSBUF
drivers/usb/ibmcam.h 2

for urb
FRAMES_PER_DESC 32 2186 usb_rcvisocpipe()

2189
ibmcam_isoc_irq()

2198 2204 urb next

2207 2212 urb
32 64 FRAMES_PER_DESC

32
uhci_transfer_result() next

1445 1467 1473

==================== drivers/usb/ibmcam.c 1212 1223 ====================
[uhci_interrupt()>uhci_transfer_result()>ibmcam_isoc_irq()]
1212 static void ibmcam_isoc_irq(struct urb *urb)

1213 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1396

1214 int len;

1215 struct usb_ibmcam *ibmcam = urb­>context;

1216 struct ibmcam_sbuf *sbuf;

1217 int i;

1218

1219 /* We don't want to do anything if we are about to be removed! */

1220 if (!IBMCAM_IS_OPERATIONAL(ibmcam))

1221 return;

1222

1223 #if 0

.

==================== drivers/usb/ibmcam.c 1233 1250 ====================
1233 #endif

1234

1235 if (!ibmcam­>streaming) {

1236 if (debug >= 1)

1237 printk(KERN_DEBUG "ibmcam: oops, not streaming, but interrupt\n");

1238 return;

1239 }

1240

1241 sbuf = &ibmcam­>sbuf[ibmcam­>cursbuf];

1242

1243 /* Copy the data received into our scratch buffer */

1244 len = ibmcam_compress_isochronous(ibmcam, urb);

1245

1246 ibmcam­>urb_count++;

1247 ibmcam­>urb_length = len;

1248 ibmcam­>data_count += len;

1249

1250 #if 0 /* This code prints few initial bytes of ISO data: used to decode markers */

.

==================== drivers/usb/ibmcam.c 1257 1279 ====================
1257 #endif

1258

1259 /* If we collected enough data let's parse! */

1260 if (ibmcam­>scratchlen) {

1261 /* If we don't have a frame we're current working on, complain */

1262 if (ibmcam­>curframe >= 0)

1263 ibmcam_parse_data(ibmcam);

1264 else {

1265 if (debug >= 1)

1266 printk(KERN_DEBUG "ibmcam: received data, but no frame available\n");

1267 }

1268 }

1269

1270 for (i = 0; i < FRAMES_PER_DESC; i++) {

1271 sbuf­>urb­>iso_frame_desc[i].status = 0;

1272 sbuf­>urb­>iso_frame_desc[i].actual_length = 0;

1273 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1397

1274

1275 /* Move to the next sbuf */

1276 ibmcam­>cursbuf = (ibmcam­>cursbuf + 1) % IBMCAM_NUMSBUF;

1277

1278 return;

1279 }

1244 ibmcam_compress_isochronous()
ibmcam_parse_data()

write() read()
ibmcam_read()

==================== drivers/usb/ibmcam.c 2743 2821 ====================
2743 static long ibmcam_read(struct video_device *dev, char *buf, unsigned long count, int noblock)

2744 {

2745 struct usb_ibmcam *ibmcam = (struct usb_ibmcam *)dev;

2746 int frmx = ­1;

2747 volatile struct ibmcam_frame *frame;

2748

2749 if (debug >= 1)

2750 printk(KERN_DEBUG "ibmcam_read: %ld bytes, noblock=%d\n", count, noblock);

2751

2752 if (!IBMCAM_IS_OPERATIONAL(ibmcam) || (buf == NULL))

2753 return ­EFAULT;

2754

2755 /* See if a frame is completed, then use it. */

2756 if (ibmcam­>frame[0].grabstate >= FRAME_DONE) /* _DONE or _ERROR */

2757 frmx = 0;

2758 else if (ibmcam­>frame[1].grabstate >= FRAME_DONE)/* _DONE or _ERROR */

2759 frmx = 1;

2760

2761 if (noblock && (frmx == ­1))

2762 return ­EAGAIN;

2763

2764 /* If no FRAME_DONE, look for a FRAME_GRABBING state. */

2765 /* See if a frame is in process (grabbing), then use it. */

2766 if (frmx == ­1) {

2767 if (ibmcam­>frame[0].grabstate == FRAME_GRABBING)

2768 frmx = 0;

2769 else if (ibmcam­>frame[1].grabstate == FRAME_GRABBING)

2770 frmx = 1;

2771 }

2772

2773 /* If no frame is active, start one. */

2774 if (frmx == ­1)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1398

2775 ibmcam_new_frame(ibmcam, frmx = 0);

2776

2777 frame = &ibmcam­>frame[frmx];

2778

2779 restart:

2780 if (!IBMCAM_IS_OPERATIONAL(ibmcam))

2781 return ­EIO;

2782 while (frame­>grabstate == FRAME_GRABBING) {

2783 interruptible_sleep_on((void *)&frame­>wq);

2784 if (signal_pending(current))

2785 return ­EINTR;

2786 }

2787

2788 if (frame­>grabstate == FRAME_ERROR) {

2789 frame­>bytes_read = 0;

2790 if (ibmcam_new_frame(ibmcam, frmx))

2791 printk(KERN_ERR "ibmcam_read: ibmcam_new_frame error\n");

2792 goto restart;

2793 }

2794

2795 if (debug >= 1)

2796 printk(KERN_DEBUG "ibmcam_read: frmx=%d, bytes_read=%ld, scanlength=%ld\n",

2797 frmx, frame­>bytes_read, frame­>scanlength);

2798

2799 /* copy bytes to user space; we allow for partials reads */

2800 if ((count + frame­>bytes_read) > frame­>scanlength)

2801 count = frame­>scanlength ­ frame­>bytes_read;

2802

2803 if (copy_to_user(buf, frame­>data + frame­>bytes_read, count))

2804 return ­EFAULT;

2805

2806 frame­>bytes_read += count;

2807 if (debug >= 1)

2808 printk(KERN_DEBUG "ibmcam_read: {copy} count used=%ld, new bytes_read=%ld\n",

2809 count, frame­>bytes_read);

2810

2811 if (frame­>bytes_read >= frame­>scanlength) { /* All data has been read */

2812 frame­>bytes_read = 0;

2813

2814 /* Mark it as available to be used again. */

2815 ibmcam­>frame[frmx].grabstate = FRAME_UNUSED;

2816 if (ibmcam_new_frame(ibmcam, frmx ? 0 : 1))

2817 printk(KERN_ERR "ibmcam_read: ibmcam_new_frame returned error\n");

2818 }

2819

2820 return count;

2821 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1399

NAK
rh_init_int_timer()

CPU USB urb_list
drivers/usb/uhci.c

==================== drivers/usb/uhci.c 1774 1787 ====================
1774 /* Root Hub INTs are polled by this timer */

1775 static int rh_init_int_timer(struct urb *urb)

1776 {

1777 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1778

1779 uhci­>rh.interval = urb­>interval;

1780 init_timer(&uhci­>rh.rh_int_timer);

1781 uhci­>rh.rh_int_timer.function = rh_int_timer_do;

1782 uhci­>rh.rh_int_timer.data = (unsigned long)urb;

1783 uhci­>rh.rh_int_timer.expires = jiffies + (HZ * (urb­>interval < 30 ? 30 : urb­>interval)) / 1000;

1784 add_timer(&uhci­>rh.rh_int_timer);

1785

1786 return 0;

1787 }

CPU rh_int_timer_do()

==================== drivers/usb/uhci.c 1730 1771 ====================
1730 static void rh_int_timer_do(unsigned long ptr)

1731 {

1732 struct urb *urb = (struct urb *)ptr;

1733 struct uhci *uhci = (struct uhci *)urb­>dev­>bus­>hcpriv;

1734 struct list_head *tmp, *head = &uhci­>urb_list;

1735 struct urb_priv *urbp;

1736 int len;

1737 unsigned long flags;

1738

1739 if (uhci­>rh.send) {

1740 len = rh_send_irq(urb);

1741 if (len > 0) {

1742 urb­>actual_length = len;

1743 if (urb­>complete)

1744 urb­>complete(urb);

1745 }

1746 }

1747

1748 nested_lock(&uhci­>urblist_lock, flags);

1749 tmp = head­>next;

1750 while (tmp != head) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1400

1751 struct urb *u = list_entry(tmp, urb_t, urb_list);

1752

1753 tmp = tmp­>next;

1754

1755 urbp = (struct urb_priv *)u­>hcpriv;

1756 if (urbp) {

1757 /* Check if the FSBR timed out */

1758 if (urbp­>fsbr && time_after_eq(jiffies, urbp­>inserttime + IDLE_TIMEOUT))

1759 uhci_fsbr_timeout(uhci, u);

1760

1761 /* Check if the URB timed out */

1762 if (u­>timeout && time_after_eq(jiffies, u­>timeout)) {

1763 u­>transfer_flags |= USB_ASYNC_UNLINK | USB_TIMEOUT_KILLED;

1764 uhci_unlink_urb(u);

1765 }

1766 }

1767 }

1768 nested_unlock(&uhci­>urblist_lock, flags);

1769

1770 rh_init_int_timer(urb);

1771 }

while uhci urb_list FSBR

IDLE_TIMEOUT 50
uhci_fsbr_timeout()

u­>timeout uhci_unlink_urb()

rh_init_int_timer()
uhci_unlink_urb() drivers/usb/uhci.c

8.10 select()

getchar()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

1401

“I/O I/O
while

I/O

I/O
fcntl()

O_NONBLOCK 1 read()
­1

Linux

Linux/Unix select() sys_select() fs/select.c

==================== fs/select.c 257 346 ====================
257 asmlinkage long

258 sys_select(int n, fd_set *inp, fd_set *outp, fd_set *exp, struct timeval *tvp)

259 {

260 fd_set_bits fds;

261 char *bits;

262 long timeout;

263 int ret, size;

264

265 timeout = MAX_SCHEDULE_TIMEOUT;

266 if (tvp) {

267 time_t sec, usec;

268

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

1402

269 if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp)))

270 || (ret = __get_user(sec, &tvp­>tv_sec))

271 || (ret = __get_user(usec, &tvp­>tv_usec)))

272 goto out_nofds;

273

274 ret = ­EINVAL;

275 if (sec < 0 || usec < 0)

276 goto out_nofds;

277

278 if ((unsigned long) sec < MAX_SELECT_SECONDS) {

279 timeout = ROUND_UP(usec, 1000000/HZ);

280 timeout += sec * (unsigned long) HZ;

281 }

282 }

283

284 ret = ­EINVAL;

285 if (n < 0)

286 goto out_nofds;

287

288 if (n > current­>files­>max_fdset)

289 n = current­>files­>max_fdset;

290

291 /*

292 * We need 6 bitmaps (in/out/ex for both incoming and outgoing),

293 * since we used fdset we need to allocate memory in units of

294 * long­words.

295 */

296 ret = ­ENOMEM;

297 size = FDS_BYTES(n);

298 bits = select_bits_alloc(size);

299 if (!bits)

300 goto out_nofds;

301 fds.in = (unsigned long *) bits;

302 fds.out = (unsigned long *) (bits + size);

303 fds.ex = (unsigned long *) (bits + 2*size);

304 fds.res_in = (unsigned long *) (bits + 3*size);

305 fds.res_out = (unsigned long *) (bits + 4*size);

306 fds.res_ex = (unsigned long *) (bits + 5*size);

307

308 if ((ret = get_fd_set(n, inp, fds.in)) ||

309 (ret = get_fd_set(n, outp, fds.out)) ||

310 (ret = get_fd_set(n, exp, fds.ex)))

311 goto out;

312 zero_fd_set(n, fds.res_in);

313 zero_fd_set(n, fds.res_out);

314 zero_fd_set(n, fds.res_ex);

315

316 ret = do_select(n, &fds, &timeout);

317

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1403

318 if (tvp && !(current­>personality & STICKY_TIMEOUTS)) {

319 time_t sec = 0, usec = 0;

320 if (timeout) {

321 sec = timeout / HZ;

322 usec = timeout % HZ;

323 usec *= (1000000/HZ);

324 }

325 put_user(sec, &tvp­>tv_sec);

326 put_user(usec, &tvp­>tv_usec);

327 }

328

329 if (ret < 0)

330 goto out;

331 if (!ret) {

332 ret = ­ERESTARTNOHAND;

333 if (signal_pending(current))

334 goto out;

335 ret = 0;

336 }

337

338 set_fd_set(n, inp, fds.res_in);

339 set_fd_set(n, outp, fds.res_out);

340 set_fd_set(n, exp, fds.res_ex);

341

342 out:

343 select_bits_free(bits, size);

344 out_nofds:

345 return ret;

346 }

tvp timeval 0
inp outp exp

fd_set
32

32 fd_set
sys_select() inp

outp
exp

n
timeval __get_user() __copy_from_user()

put_user() __copy_to_user()

3 6
6 get_fd_set() 3 308

310 get_fd_set() include/linux/poll.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

1404

==================== include/linux/poll.h 52 71 ====================
[sys_select()>set_fd_set()]
52 /*

53 * We do a VERIFY_WRITE here even though we are only reading this time:

54 * we'll write to it eventually..

55 *

56 * Use "unsigned long" accesses to let user­mode fd_set's be long­aligned.

57 */

58 static inline

59 int get_fd_set(unsigned long nr, void *ufdset, unsigned long *fdset)

60 {

61 nr = FDS_BYTES(nr);

62 if (ufdset) {

63 int error;

64 error = verify_area(VERIFY_WRITE, ufdset, nr);

65 if (!error && __copy_from_user(fdset, ufdset, nr))

66 error = ­EFAULT;

67 return error;

68 }

69 memset(fdset, 0, nr);

70 return 0;

71 }

do_select() fs/select.c

==================== fs/select.c 163 181 ====================
[sys_select()>do_select()]
163 int do_select(int n, fd_set_bits *fds, long *timeout)

164 {

165 poll_table table, *wait;

166 int retval, i, off;

167 long __timeout = *timeout;

168

169 read_lock(¤t­>files­>file_lock);

170 retval = max_select_fd(n, fds);

171 read_unlock(¤t­>files­>file_lock);

172

173 if (retval < 0)

174 return retval;

175 n = retval;

176

177 poll_initwait(&table);

178 wait = &table;

179 if (!__timeout)

180 wait = NULL;

181 retval = 0;

fds fd_set_bits 6 3 ”

170 max_select_fd() 3

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

1405

poll_table include/linux/poll.h

==================== include/linux/poll.h 15 18 ====================
15 typedef struct poll_table_struct {

16 int error;

17 struct poll_table_page * table;

18 } poll_table;

poll_table_page fs/select.c

==================== fs/select.c 27 37 ====================
27 struct poll_table_entry {

28 struct file * filp;

29 wait_queue_t wait;

30 wait_queue_head_t * wait_address;

31 };

32

33 struct poll_table_page {

34 struct poll_table_page * next;

35 struct poll_table_entry * entry;

36 struct poll_table_entry entries[0];

37 };

wait_queue_t
wait_queue_t

wait_queue_t
wait_queue_t

poll_table_entry wait_queue_t
poll_table_page entries[] 0

poll_table_entry entry
entries[] poll_table_entry entries[]

next
do_select() poll_table table 177

include/linux/poll.h

==================== include/linux/poll.h 28 32 ====================
[sys_select()>do_select()>poll_initwait()]
28 static inline void poll_initwait(poll_table* pt)

29 {

30 pt­>error = 0;

31 pt­>table = NULL;

32 }

poll_table

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

1406

CPU for

==================== fs/select.c 182 234 ====================
[sys_select()>do_select()]
182 for (;;) {

183 set_current_state(TASK_INTERRUPTIBLE);

184 for (i = 0 ; i < n; i++) {

185 unsigned long bit = BIT(i);

186 unsigned long mask;

187 struct file *file;

188

189 off = i / __NFDBITS;

190 if (!(bit & BITS(fds, off)))

191 continue;

192 file = fget(i);

193 mask = POLLNVAL;

194 if (file) {

195 mask = DEFAULT_POLLMASK;

196 if (file­>f_op && file­>f_op­>poll)

197 mask = file­>f_op­>poll(file, wait);

198 fput(file);

199 }

200 if ((mask & POLLIN_SET) && ISSET(bit, __IN(fds,off))) {

201 SET(bit, __RES_IN(fds,off));

202 retval++;

203 wait = NULL;

204 }

205 if ((mask & POLLOUT_SET) && ISSET(bit, __OUT(fds,off))) {

206 SET(bit, __RES_OUT(fds,off));

207 retval++;

208 wait = NULL;

209 }

210 if ((mask & POLLEX_SET) && ISSET(bit, __EX(fds,off))) {

211 SET(bit, __RES_EX(fds,off));

212 retval++;

213 wait = NULL;

214 }

215 }

216 wait = NULL;

217 if (retval || !__timeout || signal_pending(current))

218 break;

219 if(table.error) {

220 retval = table.error;

221 break;

222 }

223 __timeout = schedule_timeout(__timeout);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

1407

224 }

225 current­>state = TASK_RUNNING;

226

227 poll_freewait(&table);

228

229 /*

230 * Up­to­date the caller timeout.

231 */

232 *timeout = __timeout;

233 return retval;

234 }

for 182 224 CPU for 184 215
BITS() fs/select.c

==================== fs/select.c 112 112 ====================
112 #define BITS(fds, n) (*__IN(fds, n)|*__OUT(fds, n)|*__EX(fds, n))

1 197
fds fd_set_bits 200 214

schedule_timeout()

do­while

wait_queue_t poll_table_entry

file_operations poll open read write
poll

poll file_operations fs/pipe.c

==================== fs/pipe.c 412 412 ====================
412 struct file_operations read_pipe_fops = {

.

==================== fs/pipe.c 416 416 ====================
416 poll: pipe_poll,

.

==================== fs/pipe.c 420 420 ====================
420 };

poll pipe_poll() fs/pipe.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38
Administrator
下划线

1408

==================== fs/pipe.c 278 297 ====================
[sys_select()>do_select()>pipe_poll()]
278 /* No kernel lock held ­ fine */

279 static unsigned int

280 pipe_poll(struct file *filp, poll_table *wait)

281 {

282 unsigned int mask;

283 struct inode *inode = filp­>f_dentry­>d_inode;

284

285 poll_wait(filp, PIPE_WAIT(*inode), wait);

286

287 /* Reading only ­­ no need for acquiring the semaphore. */

288 mask = POLLIN | POLLRDNORM;

289 if (PIPE_EMPTY(*inode))

290 mask = POLLOUT | POLLWRNORM;

291 if (!PIPE_WRITERS(*inode) && filp­>f_version != PIPE_WCOUNTER(*inode))

292 mask |= POLLHUP;

293 if (!PIPE_READERS(*inode))

294 mask |= POLLERR;

295

296 return mask;

297 }

inode
wait_queue_t

PIPE_WAIT() include/linux/pipe_fs_i.h

==================== include/linux/pipe_fs_i.h 22 22 ====================
22 #define PIPE_WAIT(inode) (&(inode).i_pipe­>wait)

poll_wait() inline include/linux/poll.h

==================== include/linux/poll.h 22 26 ====================
[sys_select()>do_select()>pipe_poll()>poll_wait()]
22 extern inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)

23 {

24 if (p && wait_address)

25 __pollwait(filp, wait_address, p);

26 }

__pollwait() fs/select.c

==================== fs/select.c 74 103 ====================
[sys_setect()>do_select()>pipe_pull()>poll_wait()>__pollwait()]
74 void __pollwait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)

75 {

76 struct poll_table_page *table = p­>table;

77

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1409

78 if (!table || POLL_TABLE_FULL(table)) {

79 struct poll_table_page *new_table;

80

81 new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);

82 if (!new_table) {

83 p­>error = ­ENOMEM;

84 __set_current_state(TASK_RUNNING);

85 return;

86 }

87 new_table­>entry = new_table­>entries;

88 new_table­>next = table;

89 p­>table = new_table;

90 table = new_table;

91 }

92

93 /* Add a new entry */

94 {

95 struct poll_table_entry * entry = table­>entry;

96 table­>entry = entry+1;

97 get_file(filp);

98 entry­>filp = filp;

99 entry­>wait_address = wait_address;

100 init_waitqueue_entry(&entry­>wait, current);

101 add_wait_queue(wait_address,&entry­>wait);

102 }

103 }

poll_table_page
poll_table_entry

poll_table_page poll_table_entry
wait_queue_t wait wait_address
inode wait_queue_t task_struct 100
init_waitqueue_entry() wait_queue_t

task_struct
wait_queue_t

schedule() wait_event() wait_event_interruptible()
4

wait_queue_t

do_select()
add_wait_queue() wait_queue_t

do_select()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1410

wait_queue_t do_select() 227 poll_freewait()

6 pipe_write()
fs/pipe.c

==================== fs/pipe.c 134 136 ====================
134 static ssize_t

135 pipe_write(struct file *filp, const char *buf, size_t count, loff_t *ppos)

136 {

.

==================== fs/pipe.c 209 228 ====================
209 do {

210 /*

211 * Synchronous wake­up: it knows that this process

212 * is going to give up this CPU, so it doesnt have

213 * to do idle reschedules.

214 */

215 wake_up_interruptible_sync(PIPE_WAIT(*inode));

216 PIPE_WAITING_WRITERS(*inode)++;

217 pipe_wait(inode);

218 PIPE_WAITING_WRITERS(*inode)­­;

219 if (signal_pending(current))

220 goto out;

221 if (!PIPE_READERS(*inode))

222 goto sigpipe;

223 } while (!PIPE_FREE(*inode));

224 ret = ­EFAULT;

225 }

226

227 /* Signal readers asynchronously that there is more data. */

228 wake_up_interruptible(PIPE_WAIT(*inode));

.

==================== fs/pipe.c 246 246 ====================
246 }

4
pipe_write() PIPE_WAIT(*inode) inode

wait_queue_t task_struct poll_table_entry
poll_table_page

file_operations psaux_fops drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 994 1001 ====================
994 struct file_operations psaux_fops = {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1411

995 read: read_aux,

996 write: write_aux,

997 poll: aux_poll,

998 open: open_aux,

999 release: release_aux,

1000 fasync: fasync_aux,

1001 };

aux_poll() drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 985 992 ====================
[sys_select()>do_select()>aux_poll()]
985 /* No kernel lock held ­ fine */

986 static unsigned int aux_poll(struct file *file, poll_table * wait)

987 {

988 poll_wait(file, &queue­>proc_list, wait);

989 if (!queue_empty())

990 return POLLIN | POLLRDNORM;

991 return 0;

992 }

poll_wait() inode
queue­>proc_list queue drivers/char/pc_keyb.c

aux_queue drivers/char/pc_keyb.c

==================== include/linux/pc_keyb.h 124 130 ====================
124 timeout­­;

125 } while (timeout);

126 #ifdef KBD_REPORT_TIMEOUTS

127 printk(KERN_WARNING "Keyboard timed out[1]\n");

128 #endif

129 }

130

proc_list wait_queue_head_t

inode
queue­>proc_list drivers/char/pc_keyb.c

handle_mouse_event()

==================== drivers/char/pc_keyb.c 396 398 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()]
396 static inline void handle_mouse_event(unsigned char scancode)

397 {

398 #ifdef CONFIG_PSMOUSE

.

==================== drivers/char/pc_keyb.c 418 422 ====================
418 if (head != queue­>tail) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1412

419 queue­>head = head;

420 kill_fasync(&queue­>fasync, SIGIO, POLL_IN);

421 wake_up_interruptible(&queue­>proc_list);

422 }

==================== drivers/char/pc_keyb.c 424 425 ====================
424 #endif

425 }

do_select()

3
do_select() for 218 break

for

wait_queue_t poll_freewait() fs/select.c

==================== fs/select.c 55 72 ====================
[sys_select()>do_select()>poll_freewait()]
55 void poll_freewait(poll_table* pt)

56 {

57 struct poll_table_page * p = pt­>table;

58 while (p) {

59 struct poll_table_entry * entry;

60 struct poll_table_page *old;

61

62 entry = p­>entry;

63 do {

64 entry­­;

65 remove_wait_queue(entry­>wait_address,&entry­>wait);

66 fput(entry­>filp);

67 } while (entry > p­>entries);

68 old = p;

69 p = p­>next;

70 free_page((unsigned long) old);

71 }

72 }

poll_table_entry
poll_table_page poll_table wait_queue_t

sys_select() set_fd_set() 3 338 340
set_fd_set() include/linux/poll.h

==================== include/linux/poll.h 73 78 ====================
[sys_select()>set_fd_set()]
73 static inline

74 void set_fd_set(unsigned long nr, void *ufdset, unsigned long *fdset)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1413

75 {

76 if (ufdset)

77 __copy_to_user(ufdset, fdset, FDS_BYTES(nr));

78 }

select_bits_free() 6

CPU

select()

Linux

(1)
(2) SIGIO 6
(3) fcntl()
(4) ioctl()

SIGIO
SIGIO

CPU
file f_owner fown_struct

include/linux/fs.h

==================== include/linux/fs.h 492 496 ====================
492 struct fown_struct {

493 int pid; /* pid or ­pgrp where SIGIO should be sent */

494 uid_t uid, euid; /* uid/euid of process setting the owner */

495 int signum; /* posix.1b rt signal to be delivered on IO */

496 };

fcntl() sys_fcntl() do_fcntl()
fs/fcntl.c

==================== fs/fcntl.c 229 234 ====================
[sys_fcntl()>do_fcntl()]
229 static long do_fcntl(unsigned int fd, unsigned int cmd,

230 unsigned long arg, struct file * filp)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1414

231 {

232 long err = ­EINVAL;

233

234 switch (cmd) {

.

==================== fs/fcntl.c 273 282 ====================
273 case F_SETOWN:

274 lock_kernel();

275 filp­>f_owner.pid = arg;

276 filp­>f_owner.uid = current­>uid;

277 filp­>f_owner.euid = current­>euid;

278 err = 0;

279 if (S_ISSOCK (filp­>f_dentry­>d_inode­>i_mode))

280 err = sock_fcntl (filp, F_SETOWN, arg);

281 unlock_kernel();

282 break;

.

==================== fs/fcntl.c 309 312 ====================
309 }

310

311 return err;

312 }

ioctl() f_owner
signum fcntl()

SIGIO
sys_ioctl() fs/ioctl.c

==================== fs/ioctl.c 48 54 ====================
48 asmlinkage long sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)

49 {

50 struct file * filp;

51 unsigned int flag;

52 int on, error = ­EBADF;

53

54 filp = fget(fd);

.

==================== fs/ioctl.c 58 59 ====================
58 lock_kernel();

59 switch (cmd) {

.

==================== fs/ioctl.c 83 101 ====================
83 case FIOASYNC:

84 if ((error = get_user(on, (int *)arg)) != 0)

85 break;

86 flag = on ? FASYNC : 0;

87

88 /* Did FASYNC state change ? */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1415

89 if ((flag ^ filp­>f_flags) & FASYNC) {

90 if (filp­>f_op && filp­>f_op­>fasync)

91 error = filp­>f_op­>fasync(fd, filp, on);

92 else error = ­ENOTTY;

93 }

94 if (error != 0)

95 break;

96

97 if (on)

98 filp­>f_flags |= FASYNC;

99 else

100 filp­>f_flags &= ~FASYNC;

101 break;

.

==================== fs/ioctl.c 109 115 ====================a
109 }

110 unlock_kernel();

111 fput(filp);

112

113 out:

114 return error;

115 }

ioctl() cmd arg
cmd FIOASYNC arg 1 0

file_operations fasync
file_operations psaux_fops fasync fasync_aux() drivers/char/pc_keyb.c

==================== drivers/char/pc_keyb.c 860 868 ====================
[sys_ioctl()>fasync_aux()]
860 static int fasync_aux(int fd, struct file *filp, int on)

861 {

862 int retval;

863

864 retval = fasync_helper(fd, filp, on, &queue­>fasync);

865 if (retval < 0)

866 return retval;

867 return 0;

868 }

queue aux_queue proc_list
fasync_struct

fasync fasync fasync_helper()
fasync_struct fasync

SIGIO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1416

fs/fcntl.c

==================== fs/fcntl.c 438 480 ====================
[sys_ioctl()>fasync_aux()>fasync_helper()]
438 /*

439 * fasync_helper() is used by some character device drivers (mainly mice)

440 * to set up the fasync queue. It returns negative on error, 0 if it did

441 * no changes and positive if it added/deleted the entry.

442 */

443 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)

444 {

445 struct fasync_struct *fa, **fp;

446 struct fasync_struct *new = NULL;

447 int result = 0;

448

449 if (on) {

450 new = kmem_cache_alloc(fasync_cache, SLAB_KERNEL);

451 if (!new)

452 return ­ENOMEM;

453 }

454 write_lock_irq(&fasync_lock);

455 for (fp = fapp; (fa = *fp) != NULL; fp = &fa­>fa_next) {

456 if (fa­>fa_file == filp) {

457 if(on) {

458 fa­>fa_fd = fd;

459 kmem_cache_free(fasync_cache, new);

460 } else {

461 *fp = fa­>fa_next;

462 kmem_cache_free(fasync_cache, fa);

463 result = 1;

464 }

465 goto out;

466 }

467 }

468

469 if (on) {

470 new­>magic = FASYNC_MAGIC;

471 new­>fa_file = filp;

472 new­>fa_fd = fd;

473 new­>fa_next = *fapp;

474 *fapp = new;

475 result = 1;

476 }

477 out:

478 write_unlock_irq(&fasync_lock);

479 return result;

480 }

fasync_struct include/linux/fs.h

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1417

==================== include/linux/fs.h 597 602 ====================
597 struct fasync_struct {

598 int magic;

599 int fa_fd;

600 struct fasync_struct *fa_next; /* singly linked list */

601 struct file *fa_file;

602 };

task_struct file file
file fasync_helper()

handle_mouse_event() wake_up_interruptible()
kill_fasync()

==================== drivers/char/pc_keyb.c 396 397 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()]
396 static inline void handle_mouse_event(unsigned char scancode)

397 {

.

==================== drivers/char/pc_keyb.c 420 420 ====================
420 kill_fasync(&queue­>fasync, SIGIO, POLL_IN);

.

==================== drivers/char/pc_keyb.c 425 425 ====================
425 }

kill_fasync() fasync SIGIO POLL_IN
SIGIO

kill_fasync() fs/fcntl.c

==================== fs/fcntl.c 501 506 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()>kill_fasync()]
501 void kill_fasync(struct fasync_struct **fp, int sig, int band)

502 {

503 read_lock(&fasync_lock);

504 __kill_fasync(*fp, sig, band);

505 read_unlock(&fasync_lock);

506 }

__kill_fasync()

==================== fs/fcntl.c 482 499 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()>kill_fasync()>__kill_fasync()]
482 void __kill_fasync(struct fasync_struct *fa, int sig, int band)

483 {

484 while (fa) {

485 struct fown_struct * fown;

486 if (fa­>magic != FASYNC_MAGIC) {

487 printk(KERN_ERR "kill_fasync: bad magic number in "

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1418

488 "fasync_struct!\n");

489 return;

490 }

491 fown = &fa­>fa_file­>f_owner;

492 /* Don't send SIGURG to processes which have not set a

493 queued signum: SIGURG has its own default signalling

494 mechanism. */

495 if (fown­>pid && !(sig == SIGURG && fown­>signum == 0))

496 send_sigio(fown, fa­>fa_fd, band);

497 fa = fa­>fa_next;

498 }

499 }

fasync_struct file
send_sigio() fs/fcntl.c

==================== fs/fcntl.c 413 433 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()>kill_fasync()>__kill_fasync()>send_sigio()]
413 void send_sigio(struct fown_struct *fown, int fd, int band)

414 {

415 struct task_struct * p;

416 int pid = fown­>pid;

417

418 read_lock(&tasklist_lock);

419 if ((pid > 0) && (p = find_task_by_pid(pid))) {

420 send_sigio_to_task(p, fown, fd, band);

421 goto out;

422 }

423 for_each_task(p) {

424 int match = p­>pid;

425 if (pid < 0)

426 match = ­p­>pgrp;

427 if (pid != match)

428 continue;

429 send_sigio_to_task(p, fown, fd, band);

430 }

431 out:

432 read_unlock(&tasklist_lock);

433 }

pid
send_sigio_to_task() fs/fcntl.c

==================== fs/fcntl.c 374 411 ====================
[keyboard_interrupt()>handle_kbd_event()>handle_mouse_event()>kill_fasync()>__kill_fasync()>send_sigio()
>send_sigio_to_task()]
374 static void send_sigio_to_task(struct task_struct *p,

375 struct fown_struct *fown,

376 int fd,

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1419

377 int reason)

378 {

379 if ((fown­>euid != 0) &&

380 (fown­>euid ^ p­>suid) && (fown­>euid ^ p­>uid) &&

381 (fown­>uid ^ p­>suid) && (fown­>uid ^ p­>uid))

382 return;

383 switch (fown­>signum) {

384 siginfo_t si;

385 default:

386 /* Queue a rt signal with the appropriate fd as its

387 value. We use SI_SIGIO as the source, not

388 SI_KERNEL, since kernel signals always get

389 delivered even if we can't queue. Failure to

390 queue in this case _should_ be reported; we fall

391 back to SIGIO in that case. ­­sct */

392 si.si_signo = fown­>signum;

393 si.si_errno = 0;

394 si.si_code = reason & ~__SI_MASK;

395 /* Make sure we are called with one of the POLL_*

396 reasons, otherwise we could leak kernel stack into

397 userspace. */

398 if ((reason & __SI_MASK) != __SI_POLL)

399 BUG();

400 if (reason ­ POLL_IN >= NSIGPOLL)

401 si.si_band = ~0L;

402 else

403 si.si_band = band_table[reason ­ POLL_IN];

404 si.si_fd = fd;

405 if (!send_sig_info(fown­>signum, &si, p))

406 break;

407 /* fall­through: fall back on the old plain SIGIO signal */

408 case 0:

409 send_sig(SIGIO, p, 1);

410 }

411 }

fown­>signum 0 SIGIO send_sig()
send_sig_info()

8.11 devfs

Unix /dev
Unix/Linux /dev

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1420

/dev

Unix/Linux /dev

/dev
/dev

256 /dev

(1) /dev
(2) PCI

/dev
“/dev/ide/hd/1 “/dev/ide/floppy/1

(3) /dev

(4) /dev

(5)
/dev

Linux
/proc

devfs /proc
devfs CONFIG_DEVFS_FS

devfs_fs_type fs/devfs/base.c

==================== fs/devfs/base.c 3145 3145 ====================
3145 static DECLARE_FSTYPE (devfs_fs_type, DEVFS_NAME, devfs_read_super, FS_SINGLE);

gcc

struct file_system_type devfs_fs_type = {

 name: "devfs",

 read_super: devfs_read_super,

 fs_flags: FS_SINGLE,

 owner: THIS_MODULE,

}

init_devfs_fs() devfs
fs/devfs/base.c

==================== fs/devfs/base.c 3342 3361 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1421

3342 int __init init_devfs_fs (void)

3343 {

3344 int err;

3345

3346 printk ("%s: v%s Richard Gooch (rgooch@atnf.csiro.au)\n",

3347 DEVFS_NAME, DEVFS_VERSION);

3348 #ifdef CONFIG_DEVFS_DEBUG

3349 devfs_debug = devfs_debug_init;

3350 printk ("%s: devfs_debug: 0x%0x\n", DEVFS_NAME, devfs_debug);

3351 #endif

3352 printk ("%s: boot_options: 0x%0x\n", DEVFS_NAME, boot_options);

3353 err = register_filesystem (&devfs_fs_type);

3354 if (!err)

3355 {

3356 struct vfsmount *devfs_mnt = kern_mount (&devfs_fs_type);

3357 err = PTR_ERR (devfs_mnt);

3358 if (!IS_ERR (devfs_mnt)) err = 0;

3359 }

3360 return err;

3361 } /* End Function init_devfs_fs */

register_filesystem() devfs_fs_type
kern_mount() devfs 5

kern_mount() “/
“/

devfs_fs_type fs_flags FS_SINGLE 1
“/ devfs devfs

UNNAMED_MAJOR get_unnamed_dev() 5 /proc
kern_mount() read_super()

read_super() file_system_type read_super
devfs_fs_type devfs read_super devfs_read_super()

fs/devfs/base.c

==================== fs/devfs/base.c 3112 3142 ====================
[init_devfs_fs()>kern_mount()>read_super()>devfs_read_super()]
3112 static struct super_block *devfs_read_super (struct super_block *sb,

3113 void *data, int silent)

3114 {

3115 struct inode *root_inode = NULL;

3116

3117 if (get_root_entry () == NULL) goto out_no_root;

mailto:rgooch@atnf.csiro.au
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1422

3118 atomic_set (&fs_info.devfsd_overrun_count, 0);

3119 init_waitqueue_head (&fs_info.devfsd_wait_queue);

3120 init_waitqueue_head (&fs_info.revalidate_wait_queue);

3121 fs_info.sb = sb;

3122 sb­>u.generic_sbp = &fs_info;

3123 sb­>s_blocksize = 1024;

3124 sb­>s_blocksize_bits = 10;

3125 sb­>s_magic = DEVFS_SUPER_MAGIC;

3126 sb­>s_op = &devfs_sops;

3127 if ((root_inode = get_vfs_inode (sb, root_entry, NULL)) == NULL)

3128 goto out_no_root;

3129 sb­>s_root = d_alloc_root (root_inode);

3130 if (!sb­>s_root) goto out_no_root;

3131 #ifdef CONFIG_DEVFS_DEBUG

3132 if (devfs_debug & DEBUG_DISABLED)

3133 printk ("%s: read super, made devfs ptr: %p\n",

3134 DEVFS_NAME, sb­>u.generic_sbp);

3135 #endif

3136 return sb;

3137

3138 out_no_root:

3139 printk ("devfs_read_super: get root inode failed\n");

3140 if (root_inode) iput (root_inode);

3141 return NULL;

3142 } /* End Function devfs_read_super */

/proc devfs
devfs

devfs_entry fs/devfs/base.c

==================== fs/devfs/base.c 630 654 ====================
630 struct devfs_entry

631 {

632 void *info;

633 union

634 {

635 struct directory_type dir;

636 struct fcb_type fcb;

637 struct symlink_type symlink;

638 struct fifo_type fifo;

639 }

640 u;

641 struct devfs_entry *prev; /* Previous entry in the parent directory */

642 struct devfs_entry *next; /* Next entry in the parent directory */

643 struct devfs_entry *parent; /* The parent directory */

644 struct devfs_entry *slave; /* Another entry to unregister */

645 struct devfs_inode inode;

646 umode_t mode;

647 unsigned short namelen; /* I think 64k+ filenames are a way off... */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1423

648 unsigned char registered:1;

649 unsigned char show_unreg:1;

650 unsigned char hide:1;

651 unsigned char no_persistence:1;

652 char name[1]; /* This is just a dummy: the allocated array is

653 bigger. This is NULL­terminated */

654 };

name[]
devfs_entry prev next parent slave

devfs dir
fcb devfs symlink

fifo devfs_entry
union_u fcb_type fs/devfs/base.c

==================== fs/devfs/base.c 577 603 ====================
577 struct file_type

578 {

579 unsigned long size;

580 };

581

582 struct device_type

583 {

584 unsigned short major;

585 unsigned short minor;

586 };

587

588 struct fcb_type /* File, char, block type */

589 {

590 uid_t default_uid;

591 gid_t default_gid;

592 void *ops;

593 union

594 {

595 struct file_type file;

596 struct device_type device;

597 }

598 u;

599 unsigned char auto_owner:1;

600 unsigned char aopen_notify:1;

601 unsigned char removable:1; /* Belongs in device_type, but save space */

602 unsigned char open:1; /* Not entirely correct */

603 };

devfs fcb_type
16 devfs

file_type ops file_operations

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1424

fs_info fs/devfs/base.c

==================== fs/devfs/base.c 668 685 ====================
668 struct fs_info /* This structure is for each mounted devfs */

669 {

670 unsigned int num_inodes; /* Number of inodes created */

671 unsigned int table_size; /* Size of the inode pointer table */

672 struct devfs_entry **table;

673 struct super_block *sb;

674 volatile struct devfsd_buf_entry *devfsd_buffer;

675 volatile unsigned int devfsd_buf_in;

676 volatile unsigned int devfsd_buf_out;

677 volatile int devfsd_sleeping;

678 volatile int devfsd_buffer_in_use;

679 volatile struct task_struct *devfsd_task;

680 volatile struct file *devfsd_file;

681 volatile unsigned long devfsd_event_mask;

682 atomic_t devfsd_overrun_count;

683 wait_queue_head_t devfsd_wait_queue;

684 wait_queue_head_t revalidate_wait_queue;

685 };

table devfs_entry table_size
devfs_entry devfs

devfs_entry 0
16

devfs
devfs devfs devfs

chrdevs[] blk_dev[]

devfs MIN_DEVNUM fs/devfs/base.c

==================== fs/devfs/base.c 527 528 ====================
527 #define MIN_DEVNUM 36864 /* Use major numbers 144 */

528 #define MAX_DEVNUM 61439 /* through 239, inclusive */

==================== fs/devfs/base.c 688 689 ====================
688 static unsigned int next_devnum_char = MIN_DEVNUM;

689 static unsigned int next_devnum_block = MIN_DEVNUM;

devfs_entry devfs get_root_entry()
fs/devfs/base.c

==================== fs/devfs/base.c 841 870 ====================
[init_devfs_fs()>kern_mount()>read_super()>devfs_read_super()>get_root_entry()]
841 /**

842 * get_root_entry ­ Get the root devfs entry.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1425

843 *

844 * Returns the root devfs entry on success, else %NULL.

845 */

846

847 static struct devfs_entry *get_root_entry (void)

848 {

849 struct devfs_entry *new;

850

851 /* Always ensure the root is created */

852 if (root_entry != NULL) return root_entry;

853 if ((root_entry = create_entry (NULL, NULL, 0)) == NULL) return NULL;

854 root_entry­>registered = TRUE;

855 root_entry­>mode = S_IFDIR;

856 /* Force an inode update, because lookup() is never done for the root */

857 update_devfs_inode_from_entry (root_entry);

858 /* And create the entry for ".devfsd" */

859 if ((new = create_entry (root_entry, ".devfsd", 0)) == NULL)

860 return NULL;

861 new­>registered = TRUE;

862 new­>u.fcb.u.device.major = next_devnum_char >> 8;

863 new­>u.fcb.u.device.minor = next_devnum_char & 0xff;

864 ++next_devnum_char;

865 new­>mode = S_IFCHR | S_IRUSR | S_IWUSR;

866 new­>u.fcb.default_uid = 0;

867 new­>u.fcb.default_gid = 0;

868 new­>u.fcb.ops = &devfsd_fops;

869 return root_entry;

870 } /* End Function get_root_entry */

devfs root_entry root_entry

==================== fs/devfs/base.c 764 808 ====================
[init_devfs_fs()>kern_mount()>read_super()>devfs_read_super()>get_root_entry()>create_entry()]
764 static struct devfs_entry *create_entry (struct devfs_entry *parent,

765 const char *name,unsigned int namelen)

766 {

767 struct devfs_entry *new, **table;

768

769 /* First ensure table size is enough */

770 if (fs_info.num_inodes >= fs_info.table_size)

771 {

772 if ((table = kmalloc (sizeof *table *

773 (fs_info.table_size + INODE_TABLE_INC),

774 GFP_KERNEL)) == NULL) return NULL;

775 fs_info.table_size += INODE_TABLE_INC;

776 #ifdef CONFIG_DEVFS_DEBUG

777 if (devfs_debug & DEBUG_I_CREATE)

778 printk ("%s: create_entry(): grew inode table to: %u entries\n",

779 DEVFS_NAME, fs_info.table_size);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1426

780 #endif

781 if (fs_info.table)

782 {

783 memcpy (table, fs_info.table, sizeof *table *fs_info.num_inodes);

784 kfree (fs_info.table);

785 }

786 fs_info.table = table;

787 }

788 if (name && (namelen < 1)) namelen = strlen (name);

789 if ((new = kmalloc (sizeof *new + namelen, GFP_KERNEL)) == NULL)

790 return NULL;

791 /* Magic: this will set the ctime to zero, thus subsequent lookups will

792 trigger the call to <update_devfs_inode_from_entry> */

793 memset (new, 0, sizeof *new + namelen);

794 new­>parent = parent;

795 if (name) memcpy (new­>name, name, namelen);

796 new­>namelen = namelen;

797 new­>inode.ino = fs_info.num_inodes + FIRST_INODE;

798 new­>inode.nlink = 1;

799 fs_info.table[fs_info.num_inodes] = new;

800 ++fs_info.num_inodes;

801 if (parent == NULL) return new;

802 new­>prev = parent­>u.dir.last;

803 /* Insert into the parent directory's list of children */

804 if (parent­>u.dir.first == NULL) parent­>u.dir.first = new;

805 else parent­>u.dir.last­>next = new;

806 parent­>u.dir.last = new;

807 return new;

808 } /* End Function create_entry */

fs_info num_inodes table_size fs_info.table
devfs_entry INODE_TABLE_INC 250

devfs 0 250

devfs_entry devfs inode FIRST_INODE
1 devfs

802 806
get_root_entry() devfs “.devfsd fcb
devfs ((((? ? ?))) devfs

fcb ops file_operations
“.devfsd fs/devfs/base.c devfsd_fops

==================== fs/devfs/base.c 715 721 ====================
715 /* Devfs daemon file operations */

716 static struct file_operations devfsd_fops =

717 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1427

718 read: devfsd_read,

719 ioctl: devfsd_ioctl,

720 release: devfsd_close,

721 };

devfs
devfs devfsd

/dev/.devfsd devfs
devfsd_notify()

devfs “/dev/x/y/z/1 is
up

devfs_read_super() devfs super_block
s_op devfs_sops fs/devfs/base.c

==================== fs/devfs/base.c 2364 2369 ====================
2364 static struct super_operations devfs_sops =

2365 {

2366 read_inode: devfs_read_inode,

2367 write_inode: devfs_write_inode,

2368 statfs: devfs_statfs,

2369 };

get_vfs_inode() devfs inode fs/devfs/base.c

==================== fs/devfs/base.c 2381 2399 ====================
[init_devfs_fs()>kern_mount()>read_super()>devfs_read_super()>get_vfs_inode()]
2381 static struct inode *get_vfs_inode (struct super_block *sb,

2382 struct devfs_entry *de,

2383 struct dentry *dentry)

2384 {

2385 struct inode *inode;

2386

2387 if (de­>inode.dentry != NULL)

2388 {

2389 printk ("%s: get_vfs_inode(%u): old de­>inode.dentry: %p \"%s\" new dentry: %p \"%s\"\n",

2390 DEVFS_NAME, de­>inode.ino,

2391 de­>inode.dentry, de­>inode.dentry­>d_name.name,

2392 dentry, dentry­>d_name.name);

2393 printk (" old inode: %p\n", de­>inode.dentry­>d_inode);

2394 return NULL;

2395 }

2396 if ((inode = iget (sb, de­>inode.ino)) == NULL) return NULL;

2397 de­>inode.dentry = dentry;

2398 return inode;

2399 } /* End Function get_vfs_inode */

5 iget() inode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1428

d_alloc_root() devfs dentry “/ devfs

kern_mount() devfs devfs
file_system_type devfs_fs_type kern_mnt vfsmount

/proc

mount_devfs_fs() devfs
fs/devfs/base.c

==================== fs/devfs/base.c 3361 3371 ====================
3363 void __init mount_devfs_fs (void)

3364 {

3365 int err;

3366

3367 if ((boot_options & OPTION_NOMOUNT)) return;

3368 err = do_mount ("none", "/dev", "devfs", 0, "");

3369 if (err == 0) printk ("Mounted devfs on /dev\n");

3370 else printk ("Warning: unable to mount devfs, err: %d\n", err);

3371 } /* End Function mount_devfs_fs */

devfs “/dev devfs_fs_type FS_SINGLE 1
devfs_fs_type vfsmount “/dev

devfs devfs_register_chrdev()
devfs_register_blkdev() devfs /dev

(1) devfs_register_chrdev() devfs file_operations
devfs

(2) devfs_register_blkdev() devfs
block_device_operations

devfs
(3) devfs_mk_dir()
(4) devfs_register()

devfs_register_chrdev() register_chrdev()
file_operations chrdevs[]

SOUND_MAJOR devfs
devfs_register_chrdev() register_chrdev() 0 devfs

devfs
file_operations
mknod() /dev devfs

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1429

devfs_register() devfs_register()
devfs_mk_dir()

devfs_mk_dir() devfs_register()
devfs devfs_mk_dir() fs/devfs/base.c

==================== fs/devfs/base.c 1530 1586 ====================
1530 /**

1531 * devfs_mk_dir ­ Create a directory in the devfs namespace.

1532 * @dir: The handle to the parent devfs directory entry. If this is %NULL the

1533 * new name is relative to the root of the devfs.

1534 * @name: The name of the entry.

1535 * @info: An arbitrary pointer which will be associated with the entry.

1536 *

1537 * Use of this function is optional. The devfs_register() function

1538 * will automatically create intermediate directories as needed. This function

1539 * is provided for efficiency reasons, as it provides a handle to a directory.

1540 * Returns a handle which may later be used in a call to devfs_unregister().

1541 * On failure %NULL is returned.

1542 */

1543

1544 devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char *name, void *info)

1545 {

1546 int is_new;

1547 struct devfs_entry *de;

1548

1549 if (name == NULL)

1550 {

1551 printk ("%s: devfs_mk_dir(): NULL name pointer\n", DEVFS_NAME);

1552 return NULL;

1553 }

1554 de = search_for_entry (dir, name, strlen (name), TRUE, TRUE, &is_new,

1555 FALSE);

1556 if (de == NULL)

1557 {

1558 printk ("%s: devfs_mk_dir(): could not create entry: \"%s\"\n",

1559 DEVFS_NAME, name);

1560 return NULL;

1561 }

1562 if (!S_ISDIR (de­>mode) && de­>registered)

1563 {

1564 printk ("%s: devfs_mk_dir(): existing non­directory entry: \"%s\"\n",

1565 DEVFS_NAME, name);

1566 return NULL;

1567 }

1568 #ifdef CONFIG_DEVFS_DEBUG

1569 if (devfs_debug & DEBUG_REGISTER)

1570 printk ("%s: devfs_mk_dir(%s): de: %p %s\n",

1571 DEVFS_NAME, name, de, is_new ? "new" : "existing");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1430

1572 #endif

1573 if (!S_ISDIR (de­>mode) && !is_new)

1574 {

1575 /* Transmogrifying an old entry */

1576 de­>u.dir.first = NULL;

1577 de­>u.dir.last = NULL;

1578 }

1579 de­>mode = S_IFDIR | S_IRUGO | S_IXUGO;

1580 de­>info = info;

1581 if (!de­>registered) de­>u.dir.num_removable = 0;

1582 de­>registered = TRUE;

1583 de­>show_unreg = (boot_options & OPTION_SHOW) ? TRUE : FALSE;

1584 de­>hide = FALSE;

1585 return de;

1586 } /* End Function devfs_mk_dir */

dir devfs_entry devfs_handle_t devfs_entry
include/linux/devfs_fs_kernel.h

==================== include/linux/devfs_fs_kernel.h 45 45 ====================
45 typedef struct devfs_entry * devfs_handle_t;

search_for_entry() dir
devfs_entry search_for_entry()
fs/devfs/base.c

==================== fs/devfs/base.c 873 952 ====================
[devfs_mk_dir()>search_for_entry()]
873 /**

874 * search_for_entry ­ Search for an entry in the devfs tree.

875 * @dir: The parent directory to search from. If this is %NULL the root is used

876 * @name: The name of the entry.

877 * @namelen: The number of characters in @name.

878 * @mkdir: If %TRUE intermediate directories are created as needed.

879 * @mkfile: If %TRUE the file entry is created if it doesn't exist.

880 * @is_new: If the returned entry was newly made, %TRUE is written here. If

881 * this is %NULL nothing is written here.

882 * @traverse_symlink: If %TRUE then symbolic links are traversed.

883 *

884 * If the entry is created, then it will be in the unregistered state.

885 * Returns a pointer to the entry on success, else %NULL.

886 */

887

888 static struct devfs_entry *search_for_entry (struct devfs_entry *dir,

889 const char *name,

890 unsigned int namelen, int mkdir,

891 int mkfile, int *is_new,

892 int traverse_symlink)

893 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1431

894 int len;

895 const char *subname, *stop, *ptr;

896 struct devfs_entry *entry;

897

898 if (is_new) *is_new = FALSE;

899 if (dir == NULL) dir = get_root_entry ();

900 if (dir == NULL) return NULL;

901 /* Extract one filename component */

902 subname = name;

903 stop = name + namelen;

904 while (subname < stop)

905 {

906 /* Search for a possible '/' */

907 for (ptr = subname; (ptr < stop) && (*ptr != '/'); ++ptr);

908 if (ptr >= stop)

909 {

910 /* Look for trailing component */

911 len = stop ­ subname;

912 entry = search_for_entry_in_dir (dir, subname, len,

913 traverse_symlink);

914 if (entry != NULL) return entry;

915 if (!mkfile) return NULL;

916 entry = create_entry (dir, subname, len);

917 if (entry && is_new) *is_new = TRUE;

918 return entry;

919 }

920 /* Found '/': search for directory */

921 if (strncmp (subname, "../", 3) == 0)

922 {

923 /* Going up */

924 dir = dir­>parent;

925 if (dir == NULL) return NULL; /* Cannot escape from devfs */

926 subname += 3;

927 continue;

928 }

929 len = ptr ­ subname;

930 entry = search_for_entry_in_dir (dir, subname, len, traverse_symlink);

931 if (!entry && !mkdir) return NULL;

932 if (entry == NULL)

933 {

934 /* Make it */

935 if ((entry = create_entry (dir, subname, len)) == NULL)

936 return NULL;

937 entry­>mode = S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR;

938 if (is_new) *is_new = TRUE;

939 }

940 if (!S_ISDIR (entry­>mode))

941 {

942 printk ("%s: existing non­directory entry\n", DEVFS_NAME);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1432

943 return NULL;

944 }

945 /* Ensure an unregistered entry is re­registered and visible */

946 entry­>registered = TRUE;

947 entry­>hide = FALSE;

948 subname = ptr + 1;

949 dir = entry;

950 }

951 return NULL;

952 } /* End Function search_for_entry */

devfs_entry is_new
devfs_entry dir 0 devfs name

while
search_for_entry_in_dir() 930 create_entry()

“/ 908
search_for_entry_in_dir()

create_entry path_walk() search_for_entry_in_dir()
fs/devfs/base.c devfs_entry

union

==================== fs/devfs/base.c 738 762 ====================
[devfs_mk_dir()>search_for_entry()>search_for_entry_in_dir()]
738 static struct devfs_entry *search_for_entry_in_dir (struct devfs_entry *parent,

739 const char *name,

740 unsigned int namelen,

741 int traverse_symlink)

742 {

743 struct devfs_entry *curr;

744

745 if (!S_ISDIR (parent­>mode))

746 {

747 printk ("%s: entry is not a directory\n", DEVFS_NAME);

748 return NULL;

749 }

750 for (curr = parent­>u.dir.first; curr != NULL; curr = curr­>next)

751 {

752 if (curr­>namelen != namelen) continue;

753 if (memcmp (curr­>name, name, namelen) == 0) break;

754 /* Not found: try the next one */

755 }

756 if (curr == NULL) return NULL;

757 if (!S_ISLNK (curr­>mode) || !traverse_symlink) return curr;

758 /* Need to follow the link: this is a stack chomper */

759 return search_for_entry (parent,

760 curr­>u.symlink.linkname, curr­>u.symlink.length,

761 FALSE, FALSE, NULL, TRUE);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1433

762 } /* End Function search_for_entry_in_dir */

devfs_mk_dir() devfs
devfs_register() fs/devfs/base.c

==================== fs/devfs/base.c 1214 1366 ====================
1214 /**

1215 * devfs_register ­ Register a device entry.

1216 * @dir: The handle to the parent devfs directory entry. If this is %NULL the

1217 * new name is relative to the root of the devfs.

1218 * @name: The name of the entry.

1219 * @flags: A set of bitwise­ORed flags (DEVFS_FL_*).

1220 * @major: The major number. Not needed for regular files.

1221 * @minor: The minor number. Not needed for regular files.

1222 * @mode: The default file mode.

1223 * @ops: The &file_operations or &block_device_operations structure.

1224 * This must not be externally deallocated.

1225 * @info: An arbitrary pointer which will be written to the @private_data

1226 * field of the &file structure passed to the device driver. You can set

1227 * this to whatever you like, and change it once the file is opened (the next

1228 * file opened will not see this change).

1229 *

1230 * Returns a handle which may later be used in a call to devfs_unregister().

1231 * On failure %NULL is returned.

1232 */

1233

1234 devfs_handle_t devfs_register (devfs_handle_t dir, const char *name,

1235 unsigned int flags,

1236 unsigned int major, unsigned int minor,

1237 umode_t mode, void *ops, void *info)

1238 {

1239 int is_new;

1240 struct devfs_entry *de;

1241

1242 if (name == NULL)

1243 {

1244 printk ("%s: devfs_register(): NULL name pointer\n", DEVFS_NAME);

1245 return NULL;

1246 }

1247 if (ops == NULL)

1248 {

1249 if (S_ISBLK (mode)) ops = (void *) get_blkfops (major);

1250 if (ops == NULL)

1251 {

1252 printk ("%s: devfs_register(%s): NULL ops pointer\n",

1253 DEVFS_NAME, name);

1254 return NULL;

1255 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1434

1256 printk ("%s: devfs_register(%s): NULL ops, got %p from major table\n",

1257 DEVFS_NAME, name, ops);

1258 }

1259 if (S_ISDIR (mode))

1260 {

1261 printk("%s: devfs_register(%s): creating directories is not allowed\n",

1262 DEVFS_NAME, name);

1263 return NULL;

1264 }

1265 if (S_ISLNK (mode))

1266 {

1267 printk ("%s: devfs_register(%s): creating symlinks is not allowed\n",

1268 DEVFS_NAME, name);

1269 return NULL;

1270 }

1271 if (S_ISCHR (mode) && (flags & DEVFS_FL_AUTO_DEVNUM))

1272 {

1273 if (next_devnum_char >= MAX_DEVNUM)

1274 {

1275 printk ("%s: devfs_register(%s): exhausted char device numbers\n",

1276 DEVFS_NAME, name);

1277 return NULL;

1278 }

1279 major = next_devnum_char >> 8;

1280 minor = next_devnum_char & 0xff;

1281 ++next_devnum_char;

1282 }

1283 if (S_ISBLK (mode) && (flags & DEVFS_FL_AUTO_DEVNUM))

1284 {

1285 if (next_devnum_block >= MAX_DEVNUM)

1286 {

1287 printk ("%s: devfs_register(%s): exhausted block device numbers\n",

1288 DEVFS_NAME, name);

1289 return NULL;

1290 }

1291 major = next_devnum_block >> 8;

1292 minor = next_devnum_block & 0xff;

1293 ++next_devnum_block;

1294 }

1295 de = search_for_entry (dir, name, strlen (name), TRUE, TRUE, &is_new,

1296 FALSE);

1297 if (de == NULL)

1298 {

1299 printk ("%s: devfs_register(): could not create entry: \"%s\"\n",

1300 DEVFS_NAME, name);

1301 return NULL;

1302 }

1303 #ifdef CONFIG_DEVFS_DEBUG

1304 if (devfs_debug & DEBUG_REGISTER)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1435

1305 printk ("%s: devfs_register(%s): de: %p %s\n",

1306 DEVFS_NAME, name, de, is_new ? "new" : "existing");

1307 #endif

1308 if (!is_new)

1309 {

1310 /* Existing entry */

1311 if (!S_ISCHR (de­>mode) && !S_ISBLK (de­>mode) &&

1312 !S_ISREG (de­>mode))

1313 {

1314 printk ("%s: devfs_register(): existing non­device/file entry: \"%s\"\n",

1315 DEVFS_NAME, name);

1316 return NULL;

1317 }

1318 if (de­>registered)

1319 {

1320 printk("%s: devfs_register(): device already registered: \"%s\"\n",

1321 DEVFS_NAME, name);

1322 return NULL;

1323 }

1324 }

1325 de­>registered = TRUE;

1326 if (S_ISCHR (mode) || S_ISBLK (mode))

1327 {

1328 de­>u.fcb.u.device.major = major;

1329 de­>u.fcb.u.device.minor = minor;

1330 }

1331 else if (S_ISREG (mode)) de­>u.fcb.u.file.size = 0;

1332 else

1333 {

1334 printk ("%s: devfs_register(): illegal mode: %x\n",

1335 DEVFS_NAME, mode);

1336 return (NULL);

1337 }

1338 de­>info = info;

1339 de­>mode = mode;

1340 if (flags & DEVFS_FL_CURRENT_OWNER)

1341 {

1342 de­>u.fcb.default_uid = current­>uid;

1343 de­>u.fcb.default_gid = current­>gid;

1344 }

1345 else

1346 {

1347 de­>u.fcb.default_uid = 0;

1348 de­>u.fcb.default_gid = 0;

1349 }

1350 de­>registered = TRUE;

1351 de­>u.fcb.ops = ops;

1352 de­>u.fcb.auto_owner = (flags & DEVFS_FL_AUTO_OWNER) ? TRUE : FALSE;

1353 de­>u.fcb.aopen_notify = (flags & DEVFS_FL_AOPEN_NOTIFY) ? TRUE : FALSE;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1436

1354 if (flags & DEVFS_FL_REMOVABLE)

1355 {

1356 de­>u.fcb.removable = TRUE;

1357 ++de­>parent­>u.dir.num_removable;

1358 }

1359 de­>u.fcb.open = FALSE;

1360 de­>show_unreg = ((boot_options & OPTION_SHOW)

1361 || (flags & DEVFS_FL_SHOW_UNREG)) ? TRUE : FALSE;

1362 de­>hide = (flags & DEVFS_FL_HIDE) ? TRUE : FALSE;

1363 de­>no_persistence = (flags & DEVFS_FL_NO_PERSISTENCE) ? TRUE : FALSE;

1364 devfsd_notify (de, DEVFSD_NOTIFY_REGISTERED, flags & DEVFS_FL_WAIT);

1365 return de;

1366 } /* End Function devfs_register */

file_operations devfs
devfs_register() ops file_operations ops 0

file_operations

search_for_entry() dir devfs_entry
1295 devfs_entry fcb

devfsd_notify() devfsd devfs

devfs
devfs /dev

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1437

9 SMP

9.1

10 100 CPU
CPU

Semetric Multi­Processor Architecture SMP
SMP

SMP SMP SMP
Intel Pentium

CPU
CPU

CPU CPU
SMP CPU

9.1 SMP
Intel Pentium Pentium 32

CPU
CPU CPU CPU

CPU

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1438

9.1 SMP

SMP SMP

SMP

SMP

CPU
SMP

1 1
— —

SMP

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1439

(1) CPU1 bit4 0
1

(2) CPU1 CPU2
bit4 0 1

(3) CPU1 bit4 0 CPU1
CPU1

bit4 1

(4) CPU2

CPU
SMP SMP

CPU
CPU

cache line

DMA
DMA DMA

DMA DMA
SMP

CPU CPU
Write­Through

Write­Back
DMA

(1) Cache

L1 L2

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1440

(2) TLB 2

CPU “CPU
TLB Translation Lookaside

Buffers
(3) Write Buffer

CPU

TLB
CPU Memory Type Range Register MTRR

(1)
(2)
(3)
(4)

MTRR write combining

MTRR
MTRR Pentium

MTRR Linux MTRR

CPU
program ordering

processor ordering

strong ordering
weak ordering

SMP
gcc

SMP
SMP

CPU
CPU SMP CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1441

DMA

SMP CPU
CPU DMA

CPU
CPU CPU

CPU
CPU SMP CPU

CPU CPU CPU
CPU

CPU CPU
CPU

Intel i386 Pentium Linux
SMP

Curt Schimmel UNIX Systems for
Modern Architectures Pentium SMP

SMP Intel
Intel

9.2 SMP

Intel 80386 SMP
i386 Pentium P6

i386 Pentium SMP
8 16 32

— — i386 CPU
CPU LOCK

“LOCK CPU
LOCK CPU

xchg CPU
“LOCK xchg

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1442

Semephore spin_trylock()
xchg include/asm­i386/spinlock.h

==================== include/asm­i386/spinlock.h 68 76 ====================
68 static inline int spin_trylock(spinlock_t *lock)

69 {

70 char oldval;

71 __asm__ __volatile__(

72 "xchgb %b0,%1"

73 :"=q" (oldval), "=m" (lock­>lock)

74 :"0" (0) : "memory");

75 return oldval > 0;

76 }

%0 oldval 0 %1 lock­>lock
lock­>lock 0 lock spin_trylock()

0 lock­>lock 0 0
spin_trylock() 1 xchg CPU
“LOCK kernel/softirq.c

==================== kernel/softirq.c 244 251 ====================
244 spinlock_t global_bh_lock = SPIN_LOCK_UNLOCKED;

245

246 static void bh_action(unsigned long nr)

247 {

248 int cpu = smp_processor_id();

249

250 if (!spin_trylock(&global_bh_lock))

251 goto resched;

.

==================== kernel/softirq.c 256 257 ====================
256 if (bh_base[nr])

257 bh_base[nr]();

.

==================== kernel/softirq.c 260 261 ====================
260 spin_unlock(&global_bh_lock);

261 return;

.

==================== kernel/softirq.c 265 267 ====================
265 resched:

266 mark_bh(nr);

267 }

global_bh_lock bh spinlock_t
include/asm­i386/spinlock.h

==================== include/asm­i386/spinlock.h 17 26 ====================
17 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1443

18 * Your basic SMP spinlocks, allowing only a single CPU anywhere

19 */

20

21 typedef struct {

22 volatile unsigned int lock;

23 #if SPINLOCK_DEBUG

24 unsigned magic;

25 #endif

26 } spinlock_t;

250 spin_trylock() 260 spin_unlock()
CPU CPU spin_trylock()

global_bh_lock 0 spin_trylock() 0 CPU
bh resched xchg

global_bh_lock
CPU

xchg CPU global_bh_lock xchg
CPU spin_trylock()

Intel Pentium snooping
global_bh_lock

down()
include/asm­i386/semaphore.h

==================== include/asm­i386/semaphore.h 114 115 ====================
114 static inline void down(struct semaphore * sem)

115 {

.

==================== include/asm­i386/semaphore.h 120 123 ====================
120 __asm__ __volatile__(

121 "# atomic down operation\n\t"

122 LOCK "decl %0\n\t" /* ­­sem­>count */

123 "js 2f\n"

.

==================== include/asm­i386/semaphore.h 129 132 ====================
129 :"=m" (sem­>count)

130 :"c" (sem)

131 :"memory");

132 }

sem­>count 1 dec —
— “LOCK

CPU SMP
CPU ”

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1444

memory barrier SMP Intel
Pentium

(1) down() dec
CPU

(2) iret cpuid sfence
mov GDTR LDTR IDTR

cpuid
cpuid

mb() rmb() wmb()
include/asm­i386/system.h Intel CPU Pentium rmb() mb()

==================== include/asm­i386/system.h 257 281 ====================
257 /*

258 * Force strict CPU ordering.

259 * And yes, this is required on UP too when we're talking

260 * to devices.

261 *

262 * For now, "wmb()" doesn't actually do anything, as all

263 * Intel CPU's follow what Intel calls a *Processor Order*,

264 * in which all writes are seen in the program order even

265 * outside the CPU.

266 *

267 * I expect future Intel CPU's to have a weaker ordering,

268 * but I'd also expect them to finally get their act together

269 * and add some real memory barriers if so.

270 *

271 * The Pentium III does add a real memory barrier with the

272 * sfence instruction, so we use that where appropriate.

273 */

274 #ifndef CONFIG_X86_XMM

275 #define mb() __asm__ __volatile__ ("lock; addl $0,0(%%esp)": : :"memory")

276 #else

277 #define mb() __asm__ __volatile__ ("sfence": : :"memory")

278 #endif

279 #define rmb() mb()

280 #define wmb() __asm__ __volatile__ ("": : :"memory")

281

sfence storage fence cpuid
sfence cpuid %eax Pentium CPU

sfence CPU LOCK
0 wmb()

Intel CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1445

gcc
mb() kernel/softirq.c

==================== kernel/softirq.c 269 273 ====================
269 void init_bh(int nr, void (*routine)(void))

270 {

271 bh_base[nr] = routine;

272 mb();

273 }

CPU bh CPU
TLB

CPU

bh_action() inline smp_processor_id()
CPU hard_smp_processor_id()

include/asm­i386/smp.h

==================== include/asm­i386/smp.h 72 84 ====================
72 /*

73 * This function is needed by all SMP systems. It must _always_ be valid

74 * from the initial startup. We map APIC_BASE very early in page_setup(),

75 * so this is correct in the x86 case.

76 */

77

78 #define smp_processor_id() (current­>processor)

79

80 extern __inline int hard_smp_processor_id(void)

81 {

82 /* we don't want to mark this access volatile ­ bad code generation */

83 return GET_APIC_ID(*(unsigned long *)(APIC_BASE+APIC_ID));

84 }

CPU task_struct
processor CPU

CPU CPU 0
CPU CPU hard_smp_processor_id() APIC

CPU 0

9.3

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1446

Intel Pentum CPU
snooping CPU

CPU
CPU

SMP

SMP 4
spin_lock CPU

spin_lock
TLB IPI

CPU CPU
TLB CPU

TLB i386 SMP ”APIC
APIC INVALIDATE_TLB_VECTOR CPU

TLB Invalidate
TLB

send_IPI_mask() CPU CPU
INVALIDATE_TLB_VECTOR

send_IPI_mask() flush_tlb_others() CPU CPU
TLB flush_tlb_others() TLB

flush_tlb_others() 2 kswapd()
try_to_swap_out() try_to_swap_out()

0

mm/vmscan.c

==================== mm/vmscan.c 38 39 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()]
38 static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address,

pte_t * page_table, int gfp_mask)

39 {

.

==================== mm/vmscan.c 78 84 ====================
78 /* From this point on, the odds are that we're going to

79 * nuke this pte, so read and clear the pte. This hook

80 * is needed on CPUs which update the accessed and dirty

81 * bits in hardware.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1447

82 */

83 pte = ptep_get_and_clear(page_table);

84 flush_tlb_page(vma, address);

.

==================== mm/vmscan.c 157 157 ====================
157 }

83 ptep_get_and_clear() page_table 0
flush_tlb_page() CPU kswapd() CPU

CPU
CPU

CPU INVALIDATE_TLB_VECTOR
flush_tlb_page() arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 372 386 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>flush_tlb_page()]
372 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)

373 {

374 struct mm_struct *mm = vma­>vm_mm;

375 unsigned long cpu_mask = mm­>cpu_vm_mask & ~(1 << smp_processor_id());

376

377 if (current­>active_mm == mm) {

378 if(current­>mm)

379 __flush_tlb_one(va);

380 else

381 leave_mm(smp_processor_id());

382 }

383

384 if (cpu_mask)

385 flush_tlb_others(cpu_mask, mm, va);

386 }

mm_struct mm_struct
cpu_vm_mask CPU CPU

CPU bit0 CPU
mm_struct

mm_struct 1 mm_struct
0 switch_mm() CPU smp_processor_id()

4 switch_mm()
375 mm_struct

cpu_mask CPU cpu_mask 0
CPU mm_struct

flush_tlb_others() 377 382 CPU
mm_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1448

flush_tlb_others() arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 304 346 ====================
[kswapd()>do_try_to_free_pages()>refill_inactive()>swap_out()>swap_out_mm()>swap_out_vma()>swap_out_pgd()
>swap_out_pmd()>try_to_swap_out()>flush_tlb_page()>flush_tlb_others()]
304 static void flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,

305 unsigned long va)

306 {

307 /*

308 * A couple of (to be removed) sanity checks:

309 *

310 * ­ we do not send IPIs to not­yet booted CPUs.

311 * ­ current CPU must not be in mask

312 * ­ mask must exist :)

313 */

314 if (!cpumask)

315 BUG();

316 if ((cpumask & cpu_online_map) != cpumask)

317 BUG();

318 if (cpumask & (1 << smp_processor_id()))

319 BUG();

320 if (!mm)

321 BUG();

322

323 /*

324 * i'm not happy about this global shared spinlock in the

325 * MM hot path, but we'll see how contended it is.

326 * Temporarily this turns IRQs off, so that lockups are

327 * detected by the NMI watchdog.

328 */

329 spin_lock(&tlbstate_lock);

330

331 flush_mm = mm;

332 flush_va = va;

333 atomic_set_mask(cpumask, &flush_cpumask);

334 /*

335 * We have to send the IPI only to

336 * CPUs affected.

337 */

338 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);

339

340 while (flush_cpumask)

341 /* nothing. lockup detection does not belong here */;

342

343 flush_mm = NULL;

344 flush_va = 0;

345 spin_unlock(&tlbstate_lock);

346 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1449

cpu_online_map CPU 32
cpumask cpu_online_map CPU flush_mm

flush_va flush_cpumask IPI CPU
send_IPI_mask() CPU

INVALIDATE_TLB_VECTOR flush_cpumask 0
CPU

CPU INVALIDATE_TLB_VECTOR
smp_invalidate_interrupt() arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 269 302 ====================
269 /*

270 * TLB flush IPI:

271 *

272 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.

273 * 2) Leave the mm if we are in the lazy tlb mode.

274 */

275

276 asmlinkage void smp_invalidate_interrupt (void)

277 {

278 unsigned long cpu = smp_processor_id();

279

280 if (!test_bit(cpu, &flush_cpumask))

281 return;

282 /*

283 * This was a BUG() but until someone can quote me the

284 * line from the intel manual that guarantees an IPI to

285 * multiple CPUs is retried _only_ on the erroring CPUs

286 * its staying as a return

287 *

288 * BUG();

289 */

290

291 if (flush_mm == cpu_tlbstate[cpu].active_mm) {

292 if (cpu_tlbstate[cpu].state == TLBSTATE_OK) {

293 if (flush_va == FLUSH_ALL)

294 local_flush_tlb();

295 else

296 __flush_tlb_one(flush_va);

297 } else

298 leave_mm(cpu);

299 }

300 ack_APIC_irq();

301 clear_bit(cpu, &flush_cpumask);

302 }

tlb_state cpu_tlbstate[] arch/i386/kernel/smp.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1450

==================== arch/i386/kernel/smp.c 106 106 ====================
106 struct tlb_state cpu_tlbstate[NR_CPUS] = {[0 ... NR_CPUS­1] = { &init_mm, 0 }};

include/asm­i386/pgalloc.h

==================== include/asm­i386/pgalloc.h 214 221 ====================
214 #define TLBSTATE_OK 1

215 #define TLBSTATE_LAZY 2

216

217 struct tlb_state

218 {

219 struct mm_struct *active_mm;

220 int state;

221 };

cpu_tlbstate[] {&init_mm, 0} 106 gcc C
CPU tlb_state switch_mm() CPU

active_mm mm_struct
CPU state TLBSTATE_OK 1

CPU TLB TLBSTATE_OK
TLB

TLB
CPU

vmalloc()
HIGHMEM PCI

CPU
TLB exit()

TLB CPU
active_mm

TLB
inlinc enter_lazy_tlb() CPU TLB

TLBSTATE_LAZY include/asm­i386/mmu_context.h

==================== include/asm­i386/mmu_context.h 17 21 ====================
17 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk, unsigned cpu)

18 {

19 if(cpu_tlbstate[cpu].state == TLBSTATE_OK)

20 cpu_tlbstate[cpu].state = TLBSTATE_LAZY;

21 }

__exit_mm() schedule()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1451

TLB TLB
TLB local_flush_tlb() include/asm­i386/pgalloc.h

==================== include/asm­i386/pgalloc.h 199 200 ====================
199 #define local_flush_tlb() \

200 __flush_tlb()

__flush_tlb()

==================== include/asm­i386/pgtable.h 37 46 ====================
37 #define __flush_tlb() \

38 do { \

39 unsigned int tmpreg; \

40 \

41 __asm__ __volatile__(\

42 "movl %%cr3, %0; # flush TLB \n" \

43 "movl %0, %%cr3; \n" \

44 : "=r" (tmpreg) \

45 :: "memory"); \

46 } while (0)

TLB %cr3
%cr3 tmpreg %cr3

%cr3 %cr3 TLB

__flush_tlb_one()

==================== include/asm­i386/pgtable.h 87 88 ====================
87 #define __flush_tlb_one(addr) \

88 __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))

invlpg TLB TLB 32
TLB TLB TLB

CPU TLB TLBSTATE_LAZY leave_mm()
mm_struct cpu_vm_mask CPU

arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 219 228 ====================
[smp_invalidate_interrupt()>leave_mm()]
219 /*

220 * We cannot call mmdrop() because we are in interrupt context,

221 * instead update mm­>cpu_vm_mask.

222 */

223 static void inline leave_mm (unsigned long cpu)

224 {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1452

225 if (cpu_tlbstate[cpu].state == TLBSTATE_OK)

226 BUG();

227 clear_bit(cpu, &cpu_tlbstate[cpu].active_mm­>cpu_vm_mask);

228 }

CPU tlb_state mm_struct
cpu_vm_mask CPU CPU TLB

CPU TLB
TLBSTATE_OK

mm_struct CPU TLB
SMP

TLB
inline switch_mm() include/asm­i386/mmu_context.h

==================== include/asm­i386/mmu_context.h 28 30 ====================
28 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk,

unsigned cpu)

29 {

30 if (prev != next) {

.

==================== include/asm­i386/mmu_context.h 45 59 ====================
45 }

46 #ifdef CONFIG_SMP

47 else {

48 cpu_tlbstate[cpu].state = TLBSTATE_OK;

49 if(cpu_tlbstate[cpu].active_mm != next)

50 BUG();

51 if(!test_and_set_bit(cpu, &next­>cpu_vm_mask)) {

52 /* We were in lazy tlb mode and leave_mm disabled

53 * tlb flush IPI delivery. We must flush our tlb.

54 */

55 local_flush_tlb();

56 }

57 }

58 #endif

59 }

4
smp_invalidate_interrupt() ack_APIC_irq() APIC

CPU flush_cpumask 0 CPU CPU
TLB CPU flush_tlb_others() while

flush_cpumask 0 CPU flush_tlb_others()

flush_tlb_page() TLB

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1453

__flush_tlb() leave_mm()
try_to_swap_out() flush_tlb_page()

TLB

TLB flush_tlb_mm()
TLB arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 358 370 ====================
358 void flush_tlb_mm (struct mm_struct * mm)

359 {

360 unsigned long cpu_mask = mm­>cpu_vm_mask & ~(1 << smp_processor_id());

361

362 if (current­>active_mm == mm) {

363 if (current­>mm)

364 local_flush_tlb();

365 else

366 leave_mm(smp_processor_id());

367 }

368 if (cpu_mask)

369 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);

370 }

local_flush_tlb() __flush_tlb() include/asm­i386/pgalloc.h

==================== include/asm­i386/pgalloc.h 199 200 ====================
199 #define local_flush_tlb() \

200 __flush_tlb()

flush_tlb_mm() flush_tlb_page()
flush_tlb_others() FLUSH_ALL
FLUSH_ALL CPU __flush_tlb() %cr3 TLB

9.4 SMP

i386 8259A 3
8259A CPU SMP 8259A

8259A
8259A CPU

Intel Pentiun
Advanced Programable Interrupt Controllor APIC

CPU APIC CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1454

CPU Pentium Intel CPU APIC
SMP APIC 9.2

CPU APIC I/O APIC
SMP CPU APIC

I/O APIC APIC
APIC CPU 8259A 9.2

CPU
APIC CONFIG_X86_LOCAL_APIC

9.2 SMP

3 gcc
SMP

include/asm­i386/hw_irq.h

==================== include/asm­i386/hw_irq.h 123 134 ====================
123 #define BUILD_SMP_INTERRUPT(x,v) XBUILD_SMP_INTERRUPT(x,v)

124 #define XBUILD_SMP_INTERRUPT(x,v)\

125 asmlinkage void x(void); \

126 asmlinkage void call_##x(void); \

127 __asm__(\

128 "\n"__ALIGN_STR"\n" \

129 SYMBOL_NAME_STR(x) ":\n\t" \

130 "pushl $"#v"\n\t" \

131 SAVE_ALL \

132 SYMBOL_NAME_STR(call_##x)":\n\t" \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1455

133 "call "SYMBOL_NAME_STR(smp_##x)"\n\t" \

134 "jmp ret_from_intr\n");

arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 74 83 ====================
74 /*

75 * The following vectors are part of the Linux architecture, there

76 * is no hardware IRQ pin equivalent for them, they are triggered

77 * through the ICC by us (IPIs)

78 */

79 #ifdef CONFIG_SMP

80 BUILD_SMP_INTERRUPT(reschedule_interrupt,RESCHEDULE_VECTOR)

81 BUILD_SMP_INTERRUPT(invalidate_interrupt,INVALIDATE_TLB_VECTOR)

82 BUILD_SMP_INTERRUPT(call_function_interrupt,CALL_FUNCTION_VECTOR)

83 #endif

80 gcc

asmlinkage void reschedule interrupt(void); \

asmlinkage void call_reschedule_interrupt(void); \

__asm__(

reschedule_interrupt:

 pushl $RESCHEDULE_VECTOR

 SAVE_ALL

call_smp_reschedule_interrupt:

 call smp_reschedule_interrupt

 jmp ret_from_intr

RESCHEDULE_VECTOR reschedule_interrupt()
smp_reschedule_interrupt()

INVALIDATE_TLB_VECTOR invalidate_interrupt()
smp_invalidate_interrupt() CALL_FUNCTION_VECTOR

call_function_interrupt() smp_call_function_interrupt()
invalidate_interrupt()

smp_reschedule_interrupt() CPU CPU
arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 513 521 ====================
513 /*

514 * Reschedule call back. Nothing to do,

515 * all the work is done automatically when

516 * we return from the interrupt.

517 */

518 asmlinkage void smp_reschedule_interrupt(void)

519 {

520 ack_APIC_irq();

521 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1456

ack_APIC_irq() CPU APIC
include/asm­i386/apic.h

==================== include/asm­i386/apic.h 54 65 ====================
54 extern inline void ack_APIC_irq(void)

55 {

56 /*

57 * ack_APIC_irq() actually gets compiled as a single instruction:

58 * ­ a single rmw on Pentium/82489DX

59 * ­ a single write on P6+ cores (CONFIG_X86_GOOD_APIC)

60 * ... yummie.

61 */

62

63 /* Docs say use 0 for future compatibility */

64 apic_write_around(APIC_EOI, 0);

65 }

APIC 0
3

CPU
smp_reschedule_interrupt() CPU CPU

smp_send_reschedule() CPU RESCHEDULE_VECTOR
arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 415 418 ====================
415 void smp_send_reschedule(int cpu)

416 {

417 send_IPI_mask(1 << cpu, RESCHEDULE_VECTOR);

418 }

CPU
need_resched 1

init_IRQ() 3
init_IRQ() SMP

arch/i386/kernel/i8259.c

==================== arch/i386/kernel/i8259.c 438 505 ====================
438 void __init init_IRQ(void)

439 {

440 int i;

441

442 #ifndef CONFIG_X86_VISWS_APIC

443 init_ISA_irqs();

444 #else

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1457

445 init_VISWS_APIC_irqs();

446 #endif

447 /*

448 * Cover the whole vector space, no vector can escape

449 * us. (some of these will be overridden and become

450 * 'special' SMP interrupts)

451 */

452 for (i = 0; i < NR_IRQS; i++) {

453 int vector = FIRST_EXTERNAL_VECTOR + i;

454 if (vector != SYSCALL_VECTOR)

455 set_intr_gate(vector, interrupt[i]);

456 }

457

458 #ifdef CONFIG_SMP

459 /*

460 * IRQ0 must be given a fixed assignment and initialized,

461 * because it's used before the IO­APIC is set up.

462 */

463 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);

464

465 /*

466 * The reschedule interrupt is a CPU­to­CPU reschedule­helper

467 * IPI, driven by wakeup.

468 */

469 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);

470

471 /* IPI for invalidation */

472 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);

473

474 /* IPI for generic function call */

475 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);

476 #endif

477

478 #ifdef CONFIG_X86_LOCAL_APIC

479 /* self generated IPI for local APIC timer */

480 set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);

481

482 /* IPI vectors for APIC spurious and error interrupts */

483 set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);

484 set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);

485 #endif

486

487 /*

488 * Set the clock to HZ Hz, we already have a valid

489 * vector now:

490 */

491 outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */

492 outb_p(LATCH & 0xff , 0x40); /* LSB */

493 outb(LATCH >> 8 , 0x40); /* MSB */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1458

494

495 #ifndef CONFIG_VISWS

496 setup_irq(2, &irq2);

497 #endif

498

499 /*

500 * External FPU? Set up irq13 if so, for

501 * original braindamaged IBM FERR coupling.

502 */

503 if (boot_cpu_data.hard_math && !cpu_has_fpu)

504 setup_irq(13, &irq13);

505 }

452 for FIRST_EXTERNAL_VECTOR 0x20 224
SMP 4 4

include/asm­i386/hw_irq.h

==================== include/asm­i386/hw_irq.h 41 43 ====================
41 #define INVALIDATE_TLB_VECTOR 0xfd

42 #define RESCHEDULE_VECTOR 0xfc

43 #define CALL_FUNCTION_VECTOR 0xfb

==================== include/asm­i386/hw_irq.h 52 58 ====================
52 /*

53 * First APIC vector available to drivers: (vectors 0x30­0xee)

54 * we start at 0x31 to spread out vectors evenly between priority

55 * levels. (0x80 is the syscall vector)

56 */

57 #define FIRST_DEVICE_VECTOR 0x31

58 #define FIRST_SYSTEM_VECTOR 0xef

FIRST_DEVICE_VECTOR interrupt[0] 3
IRQ0x01_interrupt() ­256 0xffffff00

common_interrupt do_IRQ() 0x31 0xef
APIC I/O APIC 8259A

SMP APIC 8259A CPU
setup_IO_APIC() APIC 8259A

arch/i386/kernel/io_apic.c Intel
APIC 82489DX

479 484 CPU APIC CPU
APIC

APIC 0x20 0xff 240 0 0x1f CPU
15 16 15

CPU APIC CPU
Intel CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1459

APIC CPU
APIC

APIC CPU CPU
CPU APIC arch/i386/kemel/apic.c

APIC CPU setup_IO_APIC()
arch/i386/kernel/io_apic.c

==================== arch/i386/kernel/io_apic.c 1521 1538 ====================
1521 void __init setup_IO_APIC(void)

1522 {

1523 enable_IO_APIC();

1524

1525 io_apic_irqs = ~PIC_IRQS;

1526 printk("ENABLING IO­APIC IRQs\n");

1527

1528 /*

1529 * Set up the IO­APIC IRQ routing table by parsing the MP­BIOS

1530 * mptable:

1531 */

1532 setup_ioapic_ids_from_mpc();

1533 sync_Arb_IDs();

1534 setup_IO_APIC_irqs();

1535 init_IO_APIC_traps();

1536 check_timer();

1537 print_IO_APIC();

1538 }

APIC

APIC CPU CPU
APIC CPU CPU CPU INVALIDATE_TLB_VECTOR

RESCHEDULE_VECTOR send_IPI_mask()
arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 172 201 ====================
172 static inline void send_IPI_mask(int mask, int vector)

173 {

174 unsigned long cfg;

175 unsigned long flags;

176

177 __save_flags(flags);

178 __cli();

179

180 /*

181 * Wait for idle.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1460

182 */

183 apic_wait_icr_idle();

184

185 /*

186 * prepare target chip field

187 */

188 cfg = __prepare_ICR2(mask);

189 apic_write_around(APIC_ICR2, cfg);

190

191 /*

192 * program the ICR

193 */

194 cfg = __prepare_ICR(0, vector);

195

196 /*

197 * Send the IPI. The write to APIC_ICR fires this off.

198 */

199 apic_write_around(APIC_ICR, cfg);

200 __restore_flags(flags);

201 }

CPU APIC APIC_ICR APIC_ICR2
CPU apic_wait_icr_idle() APIC_ICR

__prepare_ICR() __prepare_ICR2()
arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 114 122 ====================
114 static inline int __prepare_ICR (unsigned int shortcut, int vector)

115 {

116 return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;

117 }

118

119 static inline int __prepare_ICR2 (unsigned int mask)

120 {

121 return SET_APIC_DEST_FIELD(mask);

122 }

APIC_ICR2 CPU
CPU CPU

APIC_ICR2 RESCHEDULE_VECTOR
APIC_ICR

CALL_FUNCTION_VECTOR CPU
call_data_struct CPU

arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 420 434 ====================
420 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1461

421 * Structure and data for smp_call_function(). This is designed to minimise

422 * static memory requirements. It also looks cleaner.

423 */

424 static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;

425

426 struct call_data_struct {

427 void (*func) (void *info);

428 void *info;

429 atomic_t started;

430 atomic_t finished;

431 int wait;

432 };

433

434 static struct call_data_struct * call_data;

func info
CALL_FUNCTION_VECTOR smp_call_function_interrupt()

arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 523 541 ====================
523 asmlinkage void smp_call_function_interrupt(void)

524 {

525 void (*func) (void *info) = call_data­>func;

526 void *info = call_data­>info;

527 int wait = call_data­>wait;

528

529 ack_APIC_irq();

530 /*

531 * Notify initiating CPU that I've grabbed the data and am

532 * about to execute the function

533 */

534 atomic_inc(&call_data­>started);

535 /*

536 * At this point the info structure may be out of scope unless wait==1

537 */

538 (*func)(info);

539 if (wait)

540 atomic_inc(&call_data­>finished);

541 }

CPU CPU
CPU CPU

Pentium cpuid CPU
CPU

CPU CPU
cpuid_smp_cpuid() arch/i386/kemel/cupid.c

CPU CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1462

send_IPI_allbutself() arch/i386/kernel/smp.c

==================== arch/i386/kernel/smp.c 151 160 ====================
151 static inline void send_IPI_allbutself(int vector)

152 {

153 /*

154 * if there are no other CPUs in the system then

155 * we get an APIC send error if we try to broadcast.

156 * thus we have to avoid sending IPIs in this case.

157 */

158 if (smp_num_cpus > 1)

159 __send_IPI_shortcut(APIC_DEST_ALLBUT, vector);

160 }

__send_IPI_shortcut()

==================== arch/i386/kernel/smp.c 124 149 ====================
[send_IPI_allbutself()>__send_IPI_shortcut()]
124 static inline void __send_IPI_shortcut(unsigned int shortcut, int vector)

125 {

126 /*

127 * Subtle. In the case of the 'never do double writes' workaround

128 * we have to lock out interrupts to be safe. As we don't care

129 * of the value read we use an atomic rmw access to avoid costly

130 * cli/sti. Otherwise we use an even cheaper single atomic write

131 * to the APIC.

132 */

133 unsigned int cfg;

134

135 /*

136 * Wait for idle.

137 */

138 apic_wait_icr_idle();

139

140 /*

141 * No need to touch the target chip field

142 */

143 cfg = __prepare_ICR(shortcut, vector);

144

145 /*

146 * Send the IPI. The write to APIC_ICR fires this off.

147 */

148 apic_write_around(APIC_ICR, cfg);

149 }

SMP APIC 32 CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1463

1 0
CPU CPU setup_APIC_clocks() APIC

arch/i386/kernel/apic.c

==================== arch/i386/kernel/apic.c 597 611 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>setup_APIC_clocks()]
597 void __init setup_APIC_clocks (void)

598 {

599 __cli();

600

601 calibration_result = calibrate_APIC_clock();

602 /*

603 * Now set up the timer for real.

604 */

605 setup_APIC_timer((void *)calibration_result);

606

607 __sti();

608

609 /* and update all other cpus */

610 smp_call_function(setup_APIC_timer, (void *)calibration_result, 1, 1);

611 }

CPU CPU
CPU APIC

calibrate_APIC_clock() APIC
CPU APIC APIC

setup_APIC_timer()
CPU APIC CPU APIC smp_call_function()

CPU CPU
arch/i386/kernel/apic.c

==================== arch/i386/kernel/apic.c 469 516 ====================
469 void setup_APIC_timer(void * data)

470 {

471 unsigned int clocks = (unsigned int) data, slice, t0, t1;

472 unsigned long flags;

473 int delta;

474

475 __save_flags(flags);

476 __sti();

477 /*

478 * ok, Intel has some smart code in their APIC that knows

479 * if a CPU was in 'hlt' lowpower mode, and this increases

480 * its APIC arbitration priority. To avoid the external timer

481 * IRQ APIC event being in synchron with the APIC clock we

482 * introduce an interrupt skew to spread out timer events.

483 *

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1464

484 * The number of slices within a 'big' timeslice is smp_num_cpus+1

485 */

486

487 slice = clocks / (smp_num_cpus+1);

488 printk("cpu: %d, clocks: %d, slice: %d\n",

489 smp_processor_id(), clocks, slice);

490

491 /*

492 * Wait for IRQ0's slice:

493 */

494 wait_8254_wraparound();

495

496 __setup_APIC_LVTT(clocks);

497

498 t0 = apic_read(APIC_TMICT)*APIC_DIVISOR;

499 /* Wait till TMCCT gets reloaded from TMICT... */

500 do {

501 t1 = apic_read(APIC_TMCCT)*APIC_DIVISOR;

502 delta = (int)(t0 ­ t1 ­ slice*(smp_processor_id()+1));

503 } while (delta >= 0);

504 /* Now wait for our slice for real. */

505 do {

506 t1 = apic_read(APIC_TMCCT)*APIC_DIVISOR;

507 delta = (int)(t0 ­ t1 ­ slice*(smp_processor_id()+1));

508 } while (delta < 0);

509

510 __setup_APIC_LVTT(clocks);

511

512 printk("CPU%d<T0:%d,T1:%d,D:%d,S:%d,C:%d>\n",

513 smp_processor_id(), t0, t1, delta, slice, clocks);

514

515 __restore_flags(flags);

516 }

CPU do­while CPU
CPU

CPU arch/i386/kernel/apic.c 3

==================== arch/i386/kernel/apic.c 709 731 ====================
709 void smp_apic_timer_interrupt(struct pt_regs * regs)

710 {

711 int cpu = smp_processor_id();

712

713 /*

714 * the NMI deadlock­detector uses this.

715 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1465

716 apic_timer_irqs[cpu]++;

717

718 /*

719 * NOTE! We'd better ACK the irq immediately,

720 * because timer handling can be slow.

721 */

722 ack_APIC_irq();

723 /*

724 * update_process_times() expects us to have done irq_enter().

725 * Besides, if we don't timer interrupts ignore the global

726 * interrupt lock, which is the WrongThing (tm) to do.

727 */

728 irq_enter(cpu, 0);

729 smp_local_timer_interrupt(regs);

730 irq_exit(cpu, 0);

731 }

smp_local_timer_interrupt() arch/i386/kernel/apic.c

==================== arch/i386/kernel/apic.c 643 697 ====================
643 /*

644 * Local timer interrupt handler. It does both profiling and

645 * process statistics/rescheduling.

646 *

647 * We do profiling in every local tick, statistics/rescheduling

648 * happen only every 'profiling multiplier' ticks. The default

649 * multiplier is 1 and it can be changed by writing the new multiplier

650 * value into /proc/profile.

651 */

652

653 inline void smp_local_timer_interrupt(struct pt_regs * regs)

654 {

655 int user = user_mode(regs);

656 int cpu = smp_processor_id();

657

658 /*

659 * The profiling function is SMP safe. (nothing can mess

660 * around with "current", and the profiling counters are

661 * updated with atomic operations). This is especially

662 * useful with a profiling multiplier != 1

663 */

664 if (!user)

665 x86_do_profile(regs­>eip);

666

667 if (­­prof_counter[cpu] <= 0) {

668 /*

669 * The multiplier may have changed since the last time we got

670 * to this point as a result of the user writing to

671 * /proc/profile. In this case we need to adjust the APIC

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1466

672 * timer accordingly.

673 *

674 * Interrupts are already masked off at this point.

675 */

676 prof_counter[cpu] = prof_multiplier[cpu];

677 if (prof_counter[cpu] != prof_old_multiplier[cpu]) {

678 __setup_APIC_LVTT(calibration_result/prof_counter[cpu]);

679 prof_old_multiplier[cpu] = prof_counter[cpu];

680 }

681

682 #ifdef CONFIG_SMP

683 update_process_times(user);

684 #endif

685 }

686

687 /*

688 * We take the 'long' return path, and there every subsystem

689 * grabs the apropriate locks (kernel lock/ irq lock).

690 *

691 * we might want to decouple profiling from the 'long path',

692 * and do the profiling totally in assembly.

693 *

694 * Currently this isn't too much of an issue (performance wise),

695 * we can take more than 100K local irqs per second on a 100 MHz P5.

696 */

697 }

3 SMP
APIC

9.5 SMP

CPU
SMP task_struct

has_cpu 1 CPU 0
processor has_cpu 1 CPU

has_cpu 0 can_schedule()
kernel/sched.c

==================== kernel/sched.c 108 119 ====================
108 #ifdef CONFIG_SMP

109

110 #define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])

111 #define can_schedule(p,cpu) ((!(p)­>has_cpu) && \

112 ((p)­>cpus_allowed & (1 << cpu)))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1467

113

114 #else

115

116 #define idle_task(cpu) (&init_task)

117 #define can_schedule(p,cpu) (1)

118

119 #endif

cpus_allowed task_struct 1
CPU

CPU schedule() next
prev task_struct has_cpu 1 processor

CPU 4 schedule() kernel/sched.c

==================== kernel/sched.c 508 509 ====================
508 asmlinkage void schedule(void)

509 {

.

==================== kernel/sched.c 518 518 ====================
518 this_cpu = prev­>processor;

.

==================== kernel/sched.c 587 595 ====================
587 #ifdef CONFIG_SMP

588 next­>has_cpu = 1;

589 next­>processor = this_cpu;

590 #endif

591 spin_unlock_irq(&runqueue_lock);

592

593 if (prev == next)

594 goto same_process;

595

.

==================== kernel/sched.c 648 649 ====================
648 switch_to(prev, next, prev);

649 __schedule_tail(prev);

.

==================== kernel/sched.c 690 690 ====================
690 }

prev next prev __schedule_tail() SMP
CPU kernel/sched.c

==================== kernel/sched.c 426 491 ====================
[schedule()>__schedule_tail()]
426 static inline void __schedule_tail(struct task_struct *prev)

427 {

428 #ifdef CONFIG_SMP

429 int policy;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1468

430

431 /*

432 * prev­>policy can be written from here only before `prev'

433 * can be scheduled (before setting prev­>has_cpu to zero).

434 * Of course it must also be read before allowing prev

435 * to be rescheduled, but since the write depends on the read

436 * to complete, wmb() is enough. (the spin_lock() acquired

437 * before setting has_cpu is not enough because the spin_lock()

438 * common code semantics allows code outside the critical section

439 * to enter inside the critical section)

440 */

441 policy = prev­>policy;

442 prev­>policy = policy & ~SCHED_YIELD;

443 wmb();

444

445 /*

446 * fast path falls through. We have to clear has_cpu before

447 * checking prev­>state to avoid a wakeup race ­ thus we

448 * also have to protect against the task exiting early.

449 */

450 task_lock(prev);

451 prev­>has_cpu = 0;

452 mb();

453 if (prev­>state == TASK_RUNNING)

454 goto needs_resched;

455

456 out_unlock:

457 task_unlock(prev); /* Synchronise here with release_task() if prev is TASK_ZOMBIE */

458 return;

459

460 /*

461 * Slow path ­ we 'push' the previous process and

462 * reschedule_idle() will attempt to find a new

463 * processor for it. (but it might preempt the

464 * current process as well.) We must take the runqueue

465 * lock and re­check prev­>state to be correct. It might

466 * still happen that this process has a preemption

467 * 'in progress' already ­ but this is not a problem and

468 * might happen in other circumstances as well.

469 */

470 needs_resched:

471 {

472 unsigned long flags;

473

474 /*

475 * Avoid taking the runqueue lock in cases where

476 * no preemption­check is necessery:

477 */

478 if ((prev == idle_task(smp_processor_id())) ||

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1469

479 (policy & SCHED_YIELD))

480 goto out_unlock;

481

482 spin_lock_irqsave(&runqueue_lock, flags);

483 if (prev­>state == TASK_RUNNING)

484 reschedule_idle(prev);

485 spin_unlock_irqrestore(&runqueue_lock, flags);

486 goto out_unlock;

487 }

488 #else

489 prev­>policy &= ~SCHED_YIELD;

490 #endif /* CONFIG_SMP */

491 }

inline CPU 489 prev
SCHED_YIELD 0 prev

SMP prev SCHED_YIELD
0 prev has_cpu 0

CPU 443 452
CPU

prev CPU
prev TASK_RUNNING

479

CPU init SMP
CPU

reschedule_idle()
CPU kernel/sched.c

==================== kernel/sched.c 205 294 ====================
[schedule()>__schedule_tail()>reschedule_idle()]
205 static void reschedule_idle(struct task_struct * p)

206 {

207 #ifdef CONFIG_SMP

208 int this_cpu = smp_processor_id();

209 struct task_struct *tsk, *target_tsk;

210 int cpu, best_cpu, i, max_prio;

211 cycles_t oldest_idle;

212

213 /*

214 * shortcut if the woken up task's last CPU is

215 * idle now.

216 */

217 best_cpu = p­>processor;

218 if (can_schedule(p, best_cpu)) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1470

219 tsk = idle_task(best_cpu);

220 if (cpu_curr(best_cpu) == tsk) {

221 int need_resched;

222 send_now_idle:

223 /*

224 * If need_resched == ­1 then we can skip sending

225 * the IPI altogether, tsk­>need_resched is

226 * actively watched by the idle thread.

227 */

228 need_resched = tsk­>need_resched;

229 tsk­>need_resched = 1;

230 if ((best_cpu != this_cpu) && !need_resched)

231 smp_send_reschedule(best_cpu);

232 return;

233 }

234 }

235

236 /*

237 * We know that the preferred CPU has a cache­affine current

238 * process, lets try to find a new idle CPU for the woken­up

239 * process. Select the least recently active idle CPU. (that

240 * one will have the least active cache context.) Also find

241 * the executing process which has the least priority.

242 */

243 oldest_idle = (cycles_t) ­1;

244 target_tsk = NULL;

245 max_prio = 1;

246

247 for (i = 0; i < smp_num_cpus; i++) {

248 cpu = cpu_logical_map(i);

249 if (!can_schedule(p, cpu))

250 continue;

251 tsk = cpu_curr(cpu);

252 /*

253 * We use the first available idle CPU. This creates

254 * a priority list between idle CPUs, but this is not

255 * a problem.

256 */

257 if (tsk == idle_task(cpu)) {

258 if (last_schedule(cpu) < oldest_idle) {

259 oldest_idle = last_schedule(cpu);

260 target_tsk = tsk;

261 }

262 } else {

263 if (oldest_idle == ­1ULL) {

264 int prio = preemption_goodness(tsk, p, cpu);

265

266 if (prio > max_prio) {

267 max_prio = prio;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1471

268 target_tsk = tsk;

269 }

270 }

271 }

272 }

273 tsk = target_tsk;

274 if (tsk) {

275 if (oldest_idle != ­1ULL) {

276 best_cpu = tsk­>processor;

277 goto send_now_idle;

278 }

279 tsk­>need_resched = 1;

280 if (tsk­>processor != this_cpu)

281 smp_send_reschedule(tsk­>processor);

282 }

283 return;

284

285

286 #else /* UP */

287 int this_cpu = smp_processor_id();

288 struct task_struct *tsk;

289

290 tsk = cpu_curr(this_cpu);

291 if (preemption_goodness(tsk, p, this_cpu) > 1)

292 tsk­>need_resched = 1;

293 #endif

294 }

208 283 SMP CPU
CPU for

CPU CPU CPU
“goodness CPU

for
task_struct need_resched 1 CPU

RESCHEDULE_VECTOR

signal_wake_up()
CPU CPU

CPU

SMP CPU
CPU RESCHEDULE_VECTOR

kernel/signal.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1472

==================== kernel/signal.c 466 491 ====================
466 static inline void signal_wake_up(struct task_struct *t)

467 {

468 t­>sigpending = 1;

469

470 if (t­>state & TASK_INTERRUPTIBLE) {

471 wake_up_process(t);

472 return;

473 }

474

475 #ifdef CONFIG_SMP

476 /*

477 * If the task is running on a different CPU

478 * force a reschedule on the other CPU to make

479 * it notice the new signal quickly.

480 *

481 * The code below is a tad loose and might occasionally

482 * kick the wrong CPU if we catch the process in the

483 * process of changing ­ but no harm is done by that

484 * other than doing an extra (lightweight) IPI interrupt.

485 */

486 spin_lock(&runqueue_lock);

487 if (t­>has_cpu && t­>processor != smp_processor_id())

488 smp_send_reschedule(t­>processor);

489 spin_unlock(&runqueue_lock);

490 #endif /* CONFIG_SMP */

491 }

488 RESCHEDULE_VECTOR

9.6 SMP

SMP CPU
CPU

CPU

reset
”BP ”AP

SMP

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1473

start_kernel() smp_init() SMP
init/main.c

==================== init/main.c 505 512 ====================
[start_kernel()>smp_init()]
505 /* Called by boot processor to activate the rest. */

506 static void __init smp_init(void)

507 {

508 /* Get other processors into their bootup holding patterns. */

509 smp_boot_cpus();

510 smp_threads_ready=1;

511 smp_commence();

512 }

smp_boot_cpus() CPU
CPU CPU

CPU smp_commence() smp_boot_cpus()
arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 829 880 ====================
[start_kernel()>smp_init()>smp_boot_cpus()]
829 void __init smp_boot_cpus(void)

830 {

831 int apicid, cpu;

832

833 #ifdef CONFIG_MTRR

834 /* Must be done before other processors booted */

835 mtrr_init_boot_cpu ();

836 #endif

837 /*

838 * Initialize the logical to physical CPU number mapping

839 * and the per­CPU profiling counter/multiplier

840 */

841

842 for (apicid = 0; apicid < NR_CPUS; apicid++) {

843 x86_apicid_to_cpu[apicid] = ­1;

844 prof_counter[apicid] = 1;

845 prof_old_multiplier[apicid] = 1;

846 prof_multiplier[apicid] = 1;

847 }

848

849 /*

850 * Setup boot CPU information

851 */

852 smp_store_cpu_info(0); /* Final full version of the data */

853 printk("CPU%d: ", 0);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1474

854 print_cpu_info(&cpu_data[0]);

855

856 /*

857 * We have the boot CPU online for sure.

858 */

859 set_bit(0, &cpu_online_map);

860 x86_apicid_to_cpu[boot_cpu_id] = 0;

861 x86_cpu_to_apicid[0] = boot_cpu_id;

862 global_irq_holder = 0;

863 current­>processor = 0;

864 init_idle();

865 smp_tune_scheduling();

866

867 /*

868 * If we couldnt find an SMP configuration at boot time,

869 * get out of here now!

870 */

871 if (!smp_found_config) {

872 printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n");

873 #ifndef CONFIG_VISWS

874 io_apic_irqs = 0;

875 #endif

876 cpu_online_map = phys_cpu_present_map = 1;

877 smp_num_cpus = 1;

878 goto smp_done;

879 }

880

MTRR
MTRR

MTRR MTRR CPU
mtrr_init_boot_cpu() CPU MTRR CPU

x86_apicid_to_cpu[] CPU CPU
smp_store_cpu_info() CPU

cpuid
CPU CPU

CPU AMD AMD
cpuinfo_x86 cpu_data[] /proc /proc

/proc/cpuinfo cpu_data[]
“more /proc/cpuinfo CPU

CPU 0 boot_cpu_id x86_apicid_to_cpu[]
x86_cpu_to_apicid[] smp_found_config CPU

setup_arch() find_smp_config() BIOS 0 CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1475

CPU smp_found_config 0 smp_boot_cpus()

==================== arch/i386/kernel/smpboot.c 881 928 ====================
[start_kernel()>smp_init()>smp_boot_cpus()]
881 /*

882 * Should not be necessary because the MP table should list the boot

883 * CPU too, but we do it for the sake of robustness anyway.

884 */

885 if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) {

886 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",

887 boot_cpu_id);

888 phys_cpu_present_map |= (1 << hard_smp_processor_id());

889 }

890

891 /*

892 * If we couldn't find a local APIC, then get out of here now!

893 */

894 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) &&

895 !test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) {

896 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",

897 boot_cpu_id);

898 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");

899 #ifndef CONFIG_VISWS

900 io_apic_irqs = 0;

901 #endif

902 cpu_online_map = phys_cpu_present_map = 1;

903 smp_num_cpus = 1;

904 goto smp_done;

905 }

906

907 verify_local_APIC();

908

909 /*

910 * If SMP should be disabled, then really disable it!

911 */

912 if (!max_cpus) {

913 smp_found_config = 0;

914 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");

915 #ifndef CONFIG_VISWS

916 io_apic_irqs = 0;

917 #endif

918 cpu_online_map = phys_cpu_present_map = 1;

919 smp_num_cpus = 1;

920 goto smp_done;

921 }

922

923 connect_bsp_APIC();

924 setup_local_APIC();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1476

925

926 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id)

927 BUG();

928

894 CPU APIC SMP CPU
APIC CPU APIC

Intel
phys_cpu_present_map CPU CPU setup_arch() 10
get_smp_config() MP_processor_info() BIOS

CPU

==================== arch/i386/kernel/smpboot.c 929 955 ====================
[start_kernel()>smp_init()>smp_boot_cpus()]
929 /*

930 * Now scan the CPU present map and fire up the other CPUs.

931 */

932 Dprintk("CPU present map: %lx\n", phys_cpu_present_map);

933

934 for (apicid = 0; apicid < NR_CPUS; apicid++) {

935 /*

936 * Don't even attempt to start the boot CPU!

937 */

938 if (apicid == boot_cpu_id)

939 continue;

940

941 if (!(phys_cpu_present_map & (1 << apicid)))

942 continue;

943 if ((max_cpus >= 0) && (max_cpus <= cpucount+1))

944 continue;

945

946 do_boot_cpu(apicid);

947

948 /*

949 * Make sure we unmap all failed CPUs

950 */

951 if ((x86_apicid_to_cpu[apicid] == ­1) &&

952 (phys_cpu_present_map & (1 << apicid)))

953 printk("phys CPU #%d not responding ­ cannot use it.\n",apicid);

954 }

955

max_cpus CPU
cpucount 0 for

phys_cpu_present_map do_boot_cpu()
arch/i386/kernel/smpboot.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1477

==================== arch/i386/kernel/smpboot.c 541 580 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()]
541 static void __init do_boot_cpu (int apicid)

542 {

543 struct task_struct *idle;

544 unsigned long send_status, accept_status, boot_status, maxlvt;

545 int timeout, num_starts, j, cpu;

546 unsigned long start_eip;

547

548 cpu = ++cpucount;

549 /*

550 * We can't use kernel_thread since we must avoid to

551 * reschedule the child.

552 */

553 if (fork_by_hand() < 0)

554 panic("failed fork for CPU %d", cpu);

555

556 /*

557 * We remove it from the pidhash and the runqueue

558 * once we got the process:

559 */

560 idle = init_task.prev_task;

561 if (!idle)

562 panic("No idle process for CPU %d", cpu);

563

564 idle­>processor = cpu;

565 x86_cpu_to_apicid[cpu] = apicid;

566 x86_apicid_to_cpu[apicid] = cpu;

567 idle­>has_cpu = 1; /* we schedule the first task manually */

568 idle­>thread.eip = (unsigned long) start_secondary;

569

570 del_from_runqueue(idle);

571 unhash_process(idle);

572 init_tasks[cpu] = idle;

573

574 /* start_eip had better be page­aligned! */

575 start_eip = setup_trampoline();

576

577 /* So we see what's up */

578 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);

579 stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle);

580

CPU
CPU

CPU CPU

fork_by_hand() CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1478

==================== arch/i386/kernel/smpboot.c 493 501 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()>fork_by_hand()]
493 static int __init fork_by_hand(void)

494 {

495 struct pt_regs regs;

496 /*

497 * don't care about the eip and regs settings since

498 * we'll never reschedule the forked task.

499 */

500 return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0);

501 }

do_fork() fork

0 regs
do_fork() SET_LINKS()

task_struct init_task 560 init_task
task_struct idle

568 idle­>thread.eip start_secondary() CPU
del_from_runqueue()

unhash_process() task_struct
init_tasks[] CPU task_struct

CPU CPU
0 init_tasks[]

task_struct
start_secondary() CPU

CPU
CPU CPU CPU CPU

start_secondary() start_secondary()
CPU

startup_32() CPU 10 startup_32()
CPU startup_32()

10 CPU startup_32()
CPU CPU startup_32()

%ebx 1 CPU 0 startup_32()
CPU CPU 575

setup_trampoline() CPU
start_eip start_eip CPU idle­>thread.eip

CPU
setup_trampoline() arch/i386/kernel/smpboot.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1479

==================== arch/i386/kernel/smpboot.c 101 119 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()>setup_trampoline()]
101 /*

102 * Trampoline 80x86 program as an array.

103 */

104

105 extern unsigned char trampoline_data [];

106 extern unsigned char trampoline_end [];

107 static unsigned char *trampoline_base;

108

109 /*

110 * Currently trivial. Write the real­>protected mode

111 * bootstrap into the page concerned. The caller

112 * has made sure it's suitably aligned.

113 */

114

115 static unsigned long __init setup_trampoline(void)

116 {

117 memcpy(trampoline_base, trampoline_data, trampoline_end ­ trampoline_data);

118 return virt_to_phys(trampoline_base);

119 }

arch/i386/kernel/trampoline.S trampoline

==================== arch/i386/kernel/trampoline.S 37 68 ====================
37 ENTRY(trampoline_data)

38 r_base = .

39

40 mov %cs, %ax # Code and data in the same place

41 mov %ax, %ds

42

43 mov $1, %bx # Flag an SMP trampoline

44 cli # We should be safe anyway

45

46 movl $0xA5A5A5A5, trampoline_data ­ r_base

47 # write marker for master knows we're running

48

49 lidt idt_48 ­ r_base # load idt with 0, 0

50 lgdt gdt_48 ­ r_base # load gdt with whatever is appropriate

51

52 xor %ax, %ax

53 inc %ax # protected mode (PE) bit

54 lmsw %ax # into protected mode

55 jmp flush_instr

56 flush_instr:

57 ljmpl $__KERNEL_CS, $0x00100000

58 # jump to startup_32 in arch/i386/kernel/head.S

59

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1480

60 idt_48:

61 .word 0 # idt limit = 0

62 .word 0, 0 # idt base = 0L

63

64 gdt_48:

65 .word 0x0800 # gdt limit = 2048, 256 GDT entries

66 .long gdt_table­__PAGE_OFFSET # gdt base = gdt (first SMP CPU)

67

68 .globl SYMBOL_NAME(trampoline_end)

43
%bx 1 CPU 52 54 CR0 1

CR0 PE 1 1 0 CPU
PG 0 57

__KERNEL_CS 0x00100000 2 __KERNEL_CS
0x10 gdt_48 0 0x00100000

1MB startup_32()
trampoline_base CPU

APIC CPU CPU APIC
8

1MB trampoline_data()
1MB trampoline_data()

trampoline_base CPU smp_alloc_memory()
do_boot_cpu() 579 CPU start_secondary() task_struct

3

==================== arch/i386/kernel/smpboot.c 581 597 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()]
581 /*

582 * This grunge runs the startup process for

583 * the targeted processor.

584 */

585

586 atomic_set(&init_deasserted, 0);

587

588 Dprintk("Setting warm reset code and vector.\n");

589

590 CMOS_WRITE(0xa, 0xf);

591 local_flush_tlb();

592 Dprintk("1.\n");

593 *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4;

594 Dprintk("2.\n");

595 *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf;

596 Dprintk("3.\n");

597

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1481

CPU CPU APIC CPU APIC
init_deasserted 0 APIC

1 start_eip
0x467 0x469

CPU CPU APIC
CPU APIC

APIC_ICR2 APIC_ICR
CPU APIC

==================== arch/i386/kernel/smpboot.c 598 658 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()]
598 /*

599 * Be paranoid about clearing APIC errors.

600 */

601 if (APIC_INTEGRATED(apic_version[apicid])) {

602 apic_read_around(APIC_SPIV);

603 apic_write(APIC_ESR, 0);

604 apic_read(APIC_ESR);

605 }

606

607 /*

608 * Status is now clean

609 */

610 send_status = 0;

611 accept_status = 0;

612 boot_status = 0;

613

614 /*

615 * Starting actual IPI sequence...

616 */

617

618 Dprintk("Asserting INIT.\n");

619

620 /*

621 * Turn INIT on target chip

622 */

623 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));

624

625 /*

626 * Send IPI

627 */

628 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT

629 | APIC_DM_INIT);

630

631 Dprintk("Waiting for send to finish...\n");

632 timeout = 0;

633 do {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1482

634 Dprintk("+");

635 udelay(100);

636 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;

637 } while (send_status && (timeout++ < 1000));

638

639 mdelay(10);

640

641 Dprintk("Deasserting INIT.\n");

642

643 /* Target chip */

644 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));

645

646 /* Send IPI */

647 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);

648

649 Dprintk("Waiting for send to finish...\n");

650 timeout = 0;

651 do {

652 Dprintk("+");

653 udelay(100);

654 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;

655 } while (send_status && (timeout++ < 1000));

656

657 atomic_set(&init_deasserted, 1);

658

628 APIC_INT_ASSERT 1
647 0 APIC_ICR

APIC_ICR_BUSY 0

==================== arch/i386/kernel/smpboot.c 659 726 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()]
659 /*

660 * Should we send STARTUP IPIs ?

661 *

662 * Determine this based on the APIC version.

663 * If we don't have an integrated APIC, don't

664 * send the STARTUP IPIs.

665 */

666 if (APIC_INTEGRATED(apic_version[apicid]))

667 num_starts = 2;

668 else

669 num_starts = 0;

670

671 /*

672 * Run STARTUP IPI loop.

673 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1483

674 Dprintk("#startup loops: %d.\n", num_starts);

675

676 maxlvt = get_maxlvt();

677

678 for (j = 1; j <= num_starts; j++) {

679 Dprintk("Sending STARTUP #%d.\n",j);

680 apic_read_around(APIC_SPIV);

681 apic_write(APIC_ESR, 0);

682 apic_read(APIC_ESR);

683 Dprintk("After apic_write.\n");

684

685 /*

686 * STARTUP IPI

687 */

688

689 /* Target chip */

690 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));

691

692 /* Boot on the stack */

693 /* Kick the second */

694 apic_write_around(APIC_ICR, APIC_DM_STARTUP

695 | (start_eip >> 12));

696

697 /*

698 * Give the other CPU some time to accept the IPI.

699 */

700 udelay(300);

701

702 Dprintk("Startup point 1.\n");

703

704 Dprintk("Waiting for send to finish...\n");

705 timeout = 0;

706 do {

707 Dprintk("+");

708 udelay(100);

709 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;

710 } while (send_status && (timeout++ < 1000));

711

712 /*

713 * Give the other CPU some time to accept the IPI.

714 */

715 udelay(200);

716 /*

717 * Due to the Pentium erratum 3AP.

718 */

719 if (maxlvt > 3) {

720 apic_read_around(APIC_SPIV);

721 apic_write(APIC_ESR, 0);

722 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1484

723 accept_status = (apic_read(APIC_ESR) & 0xEF);

724 if (send_status || accept_status)

725 break;

726 }

start_eip CPU CPU
694 695 start_eip APIC APIC_ICR

12 12 0
1MB 12 0 8

==================== arch/i386/kernel/smpboot.c 727 779 ====================
[start_kernel()>smp_init()>smp_boot_cpus()>do_boot_cpu()]
727 Dprintk("After Startup.\n");

728

729 if (send_status)

730 printk("APIC never delivered???\n");

731 if (accept_status)

732 printk("APIC delivery error (%lx).\n", accept_status);

733

734 if (!send_status && !accept_status) {

735 /*

736 * allow APs to start initializing.

737 */

738 Dprintk("Before Callout %d.\n", cpu);

739 set_bit(cpu, &cpu_callout_map);

740 Dprintk("After Callout %d.\n", cpu);

741

742 /*

743 * Wait 5s total for a response

744 */

745 for (timeout = 0; timeout < 50000; timeout++) {

746 if (test_bit(cpu, &cpu_callin_map))

747 break; /* It has booted */

748 udelay(100);

749 }

750

751 if (test_bit(cpu, &cpu_callin_map)) {

752 /* number CPUs logically, starting from 1 (BSP is 0) */

753 Dprintk("OK.\n");

754 printk("CPU%d: ", cpu);

755 print_cpu_info(&cpu_data[cpu]);

756 Dprintk("CPU has booted.\n");

757 } else {

758 boot_status = 1;

759 if (*((volatile unsigned char *)phys_to_virt(8192))

760 == 0xA5)

761 /* trampoline started but...? */

762 printk("Stuck ??\n");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1485

763 else

764 /* trampoline code not run */

765 printk("Not responding.\n");

766 #if APIC_DEBUG

767 inquire_remote_apic(apicid);

768 #endif

769 }

770 }

771 if (send_status || accept_status || boot_status) {

772 x86_cpu_to_apicid[cpu] = ­1;

773 x86_apicid_to_cpu[apicid] = ­1;

774 cpucount­­;

775 }

776

777 /* mark "stuck" area as not stuck */

778 *((volatile unsigned long *)phys_to_virt(8192)) = 0;

779 }

CPU startup_32()
10 startup_32() CPU %ebx 1 CPU

CPU CPU
CPU initialize_secondary() 10 arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 468 486 ====================
[startup_32()>initialize_secondary()]
468 /*

469 * Everything has been set up for the secondary

470 * CPUs ­ they just need to reload everything

471 * from the task structure

472 * This function must not return.

473 */

474 void __init initialize_secondary(void)

475 {

476 /*

477 * We don't actually need to load the full TSS,

478 * basically just the stack pointer and the eip.

479 */

480

481 asm volatile(

482 "movl %0,%%esp\n\t"

483 "jmp *%1"

484 :

485 :"r" (current­>thread.esp),"r" (current­>thread.eip));

486 }

CPU startup_32() CPU
CPU thread.eip

start_secondary() 483 jmp CPU 482

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1486

initialize_secondary() start_secondary()
arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 445 466 ====================
445 /*

446 * Activate a secondary processor.

447 */

448 int __init start_secondary(void *unused)

449 {

450 /*

451 * Dont put anything before smp_callin(), SMP

452 * booting is too fragile that we want to limit the

453 * things done here to the most necessary things.

454 */

455 cpu_init();

456 smp_callin();

457 while (!atomic_read(&smp_commenced))

458 rep_nop();

459 /*

460 * low­memory mappings have been cleared, flush them from

461 * the local TLBs too.

462 */

463 local_flush_tlb();

464

465 return cpu_idle();

466 }

CPU startup_32()
start_secondary() cpu_init() CPU CPU

10 startup_32()
cpu_initialized

CPU 1 CPU CPU
cpu_init() CPU

CPU CPU CPU smp_boot_cpus() for
CPU do_boot_cpu() CPU CPU

start_secondary() CPU CPU
CPU CPU start_secondary()

CPU CPU CPU CPU
cpu_idle()

(1) init_deasserted do_boot_cpu() CPU CPU APIC
init_deasserted 0 586 1 657 CPU

start_secondary() smp_callin() while
1 CPU APIC

(2) cpu_callout_map CPU smp_callin() 1

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1487

2 CPU do_boot_cpu() 739 CPU 1
(3) cpu_callin_map CPU do_boot_cpu() CPU

CPU CPU 745 749
CPU smp_callin() 1 CPU

1 do_boot_cpu()
(4) smp_commenced CPU cpu_init() 1

CPU
smp_callin() arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 349 439 ====================
[start_secondary()>smp_callin()]
349 void __init smp_callin(void)

350 {

351 int cpuid, phys_id;

352 unsigned long timeout;

353

354 /*

355 * If waken up by an INIT in an 82489DX configuration

356 * we may get here before an INIT­deassert IPI reaches

357 * our local APIC. We have to wait for the IPI or we'll

358 * lock up on an APIC access.

359 */

360 while (!atomic_read(&init_deasserted));

361

362 /*

363 * (This works even if the APIC is not enabled.)

364 */

365 phys_id = GET_APIC_ID(apic_read(APIC_ID));

366 cpuid = current­>processor;

367 if (test_and_set_bit(cpuid, &cpu_online_map)) {

368 printk("huh, phys CPU#%d, CPU#%d already present??\n",

369 phys_id, cpuid);

370 BUG();

371 }

372 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);

373

374 /*

375 * STARTUP IPIs are fragile beasts as they might sometimes

376 * trigger some glue motherboard logic. Complete APIC bus

377 * silence for 1 second, this overestimates the time the

378 * boot CPU is spending to send the up to 2 STARTUP IPIs

379 * by a factor of two. This should be enough.

380 */

381

382 /*

383 * Waiting 2s total for startup (udelay is not yet working)

384 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1488

385 timeout = jiffies + 2*HZ;

386 while (time_before(jiffies, timeout)) {

387 /*

388 * Has the boot CPU finished it's STARTUP sequence?

389 */

390 if (test_bit(cpuid, &cpu_callout_map))

391 break;

392 }

393

394 if (!time_before(jiffies, timeout)) {

395 printk("BUG: CPU%d started up but did not get a callout!\n",

396 cpuid);

397 BUG();

398 }

399

400 /*

401 * the boot CPU has finished the init stage and is spinning

402 * on callin_map until we finish. We are free to set up this

403 * CPU, first the APIC. (this is probably redundant on most

404 * boards)

405 */

406

407 Dprintk("CALLIN, before setup_local_APIC().\n");

408 setup_local_APIC();

409

410 sti();

411

412 #ifdef CONFIG_MTRR

413 /*

414 * Must be done before calibration delay is computed

415 */

416 mtrr_init_secondary_cpu ();

417 #endif

418 /*

419 * Get our bogomips.

420 */

421 calibrate_delay();

422 Dprintk("Stack at about %p\n",&cpuid);

423

424 /*

425 * Save our processor parameters

426 */

427 smp_store_cpu_info(cpuid);

428

429 /*

430 * Allow the master to continue.

431 */

432 set_bit(cpuid, &cpu_callin_map);

433

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1489

434 /*

435 * Synchronize the TSC with the BP

436 */

437 if (cpu_has_tsc)

438 synchronize_tsc_ap();

439 }

smp_boot_cpus()
CPU CPU CPU 421
calibrate_delay() CPU CPU start_kernel()

10 CPU “BogoMIPS

CPU 432 cpu_callin_map CPU
1 CPU CPU ”TSC

synchronize_tsc_ap() TSC TSC “Time Stamp Count 64
1 64

CPU smp_callin()
smp_commenced 1 cpu_idle()

CPU CPU 934 954 for CPU
arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 956 959 ====================
[start_kernel()>smp_init()>smp_boot_cpus()]
956 /*

957 * Cleanup possible dangling ends...

958 */

959 #ifndef CONFIG_VISWS

==================== arch/i386/kernel/smpboot.c 974 1022 ====================
974 #endif

975

976 /*

977 * Allow the user to impress friends.

978 */

979

980 Dprintk("Before bogomips.\n");

981 if (!cpucount) {

982 printk(KERN_ERR "Error: only one processor found.\n");

983 } else {

984 unsigned long bogosum = 0;

985 for (cpu = 0; cpu < NR_CPUS; cpu++)

986 if (cpu_online_map & (1<<cpu))

987 bogosum += cpu_data[cpu].loops_per_jiffy;

988 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1490

989 cpucount+1,

990 bogosum/(500000/HZ),

991 (bogosum/(5000/HZ))%100);

992 Dprintk("Before bogocount ­ setting activated=1.\n");

993 }

994 smp_num_cpus = cpucount + 1;

995

996 if (smp_b_stepping)

997 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");

998 Dprintk("Boot done.\n");

999

1000 #ifndef CONFIG_VISWS

1001 /*

1002 * Here we can be sure that there is an IO­APIC in the system. Let's

1003 * go and set it up:

1004 */

1005 if (!skip_ioapic_setup)

1006 setup_IO_APIC();

1007 #endif

1008

1009 /*

1010 * Set up all local APIC timers in the system:

1011 */

1012 setup_APIC_clocks();

1013

1014 /*

1015 * Synchronize the TSC with the AP

1016 */

1017 if (cpu_has_tsc && cpucount)

1018 synchronize_tsc_bp();

1019

1020 smp_done:

1021 zap_low_mappings();

1022 }

CPU setup_IO_APIC()
APIC arch/i386/kernel/io_apic.c

APIC
zap_low_mappings() 3GB

CPU 10
CPU CPU SMP

CPU
swapper_pg_dir

swapper_pg_dir

CPU smp_boot_cpus() smp_init() CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1491

CPU smp_commence() smp_commenced 1
CPU arch/i386/kernel/smpboot.c

==================== arch/i386/kernel/smpboot.c 164 185 ====================
[start_kernel()>smp_init()>smp_commence()]
164 /*

165 * Architecture specific routine called by the kernel just before init is

166 * fired off. This allows the BP to have everything in order [we hope].

167 * At the end of this all the APs will hit the system scheduling and off

168 * we go. Each AP will load the system gdt's and jump through the kernel

169 * init into idle(). At this point the scheduler will one day take over

170 * and give them jobs to do. smp_callin is a standard routine

171 * we use to track CPUs as they power up.

172 */

173

174 static atomic_t smp_commenced = ATOMIC_INIT(0);

175

176 void __init smp_commence(void)

177 {

178 /*

179 * Lets the callins below out of their loop.

180 */

181 Dprintk("Setting commenced=1, go go go\n");

182

183 wmb();

184 atomic_set(&smp_commenced,1);

185 }

wmb() smp_commenced 1 start_secondary()
CPU 457 while cpu_idle()

cpu_idle()
CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1492

10

10.1

bootstrap
boot EPROM Flash

EPROM Flash

CPU
EPROM Flash

CPU
i386 CPU reset CPU

CS 0xffff IP 0 0xffff0
i386 CPU

2K 70 NOVA
DJS­130 RTOS 13 13

13 13 RTOS
EPROM PROM

10
10 10

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1493

CPU

EPROM

CPU
512

LILO Linux
EPROM

LILO

Linux LILO
EPROM

Microsoft IBM PC DOS DOS
DOS EPROM BIOS

BIOS
BIOS DOS

BIOS
Linux BIOS

BIOS Linux BIOS

BIOS
”MBR MBR

fdisk 512 MBR

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1494

MBR BIOS
”LILO

MBR LILO GRUB MBR /hda1
LILO

arch/ CPU boot i386 arch/i386/boot

(1) bootsect.S Linux 512
(2) sctup.S
(3) video.S

arch/i386/boot compressed head.S misc.c
lib/inflate.c

bootsect setup vmlinux
bootsect setup

arch/i386/boot/bootsect.S

==================== arch/i386/boot/bootsect.S 1 26 ====================
1 /*

2 * bootsect.S Copyright (C) 1991, 1992 Linus Torvalds

3 *

4 * modified by Drew Eckhardt

5 * modified by Bruce Evans (bde)

6 * modified by Chris Noe (May 1999) (as86 ­> gas)

7 *

8 * bootsect is loaded at 0x7c00 by the bios­startup routines, and moves

9 * itself out of the way to address 0x90000, and jumps there.

10 *

11 * bde ­ should not jump blindly, there may be systems with only 512K low

12 * memory. Use int 0x12 to get the top of memory, etc.

13 *

14 * It then loads 'setup' directly after itself (0x90200), and the system

15 * at 0x10000, using BIOS interrupts.

16 *

17 * NOTE! currently system is at most (8*65536­4096) bytes long. This should

18 * be no problem, even in the future. I want to keep it simple. This 508 kB

19 * kernel size should be enough, especially as this doesn't contain the

20 * buffer cache as in minix (and especially now that the kernel is

21 * compressed :­)

22 *

23 * The loader has been made as simple as possible, and continuous

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1495

24 * read errors will result in a unbreakable loop. Reboot by hand. It

25 * loads pretty fast by getting whole tracks at a time whenever possible.

26 */

PC 0xA0000 640KB BIOS
0xA0000 640KB 0x100000 1MB

BIOS LILO
0x7c00 0x7c00 0x90000

BIOS “int 0x13 setup
setup 0x90200 bootsect

setup
BIOS 0x90000 0xA0000 64KB bootsect

512 setup 63.5KB

BIOS Linux
64KB 8 64KB

512KB 512KB 4KB LILO
BIOS

508KB
arch/i386/boot/tools build.c

build 508KB
zImage bzImage bzImage

0x100000 1MB zImage bzImage
0x100000 1MB

CPU bootsect 16 setup 32
bootsect setup BIOS

BIOS
BIOS BIOS

setup 0x100000

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1496

10.2

Linux CPU
startup_32 SMP

CPU ”BP CPU
”AP CPU CPU

startup_32 startup_32 CPU
CPU CPU startup_32 %bx 0 CPU

startup_32 %bx 1 CPU
CPU CPU

CPU
CPU

stext _stext 0x100000 1MB
CPU startup_32

0x100000 2
0xC0000000 3GB

0xC0000000 startup_32
0xC0100000
CPU CPU startup_32

__KERNEL_CS __KERNEL_DS 0 2
CS startup_32 __KERNEL_CS

__KERNEL_DS __KERNEL_CS
startup_32 0xC0100000 “ljmp 0x100000 “ljmp
startup_32 CPU IP 0x100000 0xC0100000

CPU startup_32
CS

CPU startup_32
startup_32 arch/i386/kernel/head.S

==================== arch/i386/kernel/head.S 39 93 ====================
[startup_32()]
39 /*

40 * swapper_pg_dir is the main page directory, address 0x00101000

41 *

42 * On entry, %esi points to the real­mode code as a 32­bit pointer.

43 */

44 ENTRY(stext)

45 ENTRY(_stext)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1497

46 startup_32:

47 /*

48 * Set segments to known values

49 */

50 cld

51 movl $(__KERNEL_DS),%eax

52 movl %eax,%ds

53 movl %eax,%es

54 movl %eax,%fs

55 movl %eax,%gs

56 #ifdef CONFIG_SMP

57 orw %bx,%bx

58 jz 1f

59

60 /*

61 * New page tables may be in 4Mbyte page mode and may

62 * be using the global pages.

63 *

64 * NOTE! If we are on a 486 we may have no cr4 at all!

65 * So we do not try to touch it unless we really have

66 * some bits in it to set. This won't work if the BSP

67 * implements cr4 but this AP does not ­­ very unlikely

68 * but be warned! The same applies to the pse feature

69 * if not equally supported. ­­macro

70 *

71 * NOTE! We have to correct for the fact that we're

72 * not yet offset PAGE_OFFSET..

73 */

74 #define cr4_bits mmu_cr4_features­__PAGE_OFFSET

75 cmpl $0,cr4_bits

76 je 3f

77 movl %cr4,%eax # Turn on paging options (PSE,PAE,..)

78 orl cr4_bits,%eax

79 movl %eax,%cr4

80 jmp 3f

81 1:

82 #endif

83 /*

84 * Initialize page tables

85 */

86 movl $pg0­__PAGE_OFFSET,%edi /* initialize page tables */

87 movl $007,%eax /* "007" doesn't mean with right to kill, but

88 PRESENT+RW+USER */

89 2: stosl

90 add $0x1000,%eax

91 cmp $empty_zero_page­__PAGE_OFFSET,%edi

92 jne 2b

93

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1498

CPU CS %ds %es %fs %gs __KERNEL_DS
2 0x18 GDT 3 RPL

0 startup_32
0

CPU CPU Linux

CPU 86 92 pg0
empty_zero_page 8K CPU

CPU CPU 57 58 76 80
CPU PSE/PAE 36

%cr4 77 79

==================== arch/i386/kernel/head.S 399 415 ====================
399 /*

400 * The page tables are initialized to only 8MB here ­ the final page

401 * tables are set up later depending on memory size.

402 */

403 .org 0x2000

404 ENTRY(pg0)

405

406 .org 0x3000

407 ENTRY(pg1)

408

409 /*

410 * empty_zero_page must immediately follow the page tables ! (The

411 * initialization loop counts until empty_zero_page)

412 */

413

414 .org 0x4000

415 ENTRY(empty_zero_page)

__PAGE_OFFSET
include/asm­i386/page.h

==================== include/asm­i386/page.h 81 81 ====================
81 #define __PAGE_OFFSET (0xC0000000)

pg0 0x2000
0x7 0x1007 0x2007 1

2 0x0 0x1000 0x2000
0 1 2 2K

8MB Linux

==================== arch/i386/kernel/head.S 383 397 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1499

383 /*

384 * This is initialized to create an identity­mapping at 0­8M (for bootup

385 * purposes) and another mapping of the 0­8M area at virtual address

386 * PAGE_OFFSET.

387 */

388 .org 0x1000

389 ENTRY(swapper_pg_dir)

390 .long 0x00102007

391 .long 0x00103007

392 .fill BOOT_USER_PGD_PTRS­2,4,0

393 /* default: 766 entries */

394 .long 0x00102007

395 .long 0x00103007

396 /* default: 254 entries */

397 .fill BOOT_KERNEL_PGD_PTRS­2,4,0

392 766
4 0 397 254

include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable.h 126 128 ====================
126 #define TWOLEVEL_PGDIR_SHIFT 22

127 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)

128 #define BOOT_KERNEL_PGD_PTRS (1024­BOOT_USER_PGD_PTRS)

2 __PAGE_OFFSET 0xC0000000
BOOT_USER_PGD_PTRS 768 BOOT_KERNEL_PGD_PTRS 256
4KB 1024 4GB Linux 3GB

768 256
swapper_pg_dir

390 391 394 395 8MB
empty_zero_page

0xC0000000 (empty_zero_page ­ 0xC0000000)
__PAGE_OFFSET 86 91

394 0x00102000 1MB
pg0 403 404 pg0 0x2000
0 0x00100000 pg0
0x00102000

390 391
CPU startup_32()

CPU IP

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1500

(1) CPU
(2)

CPU IP

CPU swapper_pg_dir
CPU

CPU

10.1

__PAGE_OFFSET 0xC0000000
CPU CPU

CPU CPU

==================== arch/i386/kernel/head.S 94 110 ====================
[startup_32()]
94 /*

95 * Enable paging

96 */

97 3:

98 movl $swapper_pg_dir­__PAGE_OFFSET,%eax

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1501

99 movl %eax,%cr3 /* set the page table pointer.. */

100 movl %cr0,%eax

101 orl $0x80000000,%eax

102 movl %eax,%cr0 /* ..and set paging (PG) bit */

103 jmp 1f /* flush the prefetch­queue */

104 1:

105 movl $1f,%eax

106 jmp *%eax /* make sure eip is relocated */

107 1:

108 /* Set up the stack pointer */

109 lss stack_start,%esp

110

%cr3 %cr0 1 CPU
%cr3 swapper_pg_dir

103 104
CPU Intel i386

103 jmp IP
CPU 104

__PAGE_OFFSET
106 105 %eax

%eax jmp CPU

CPU
CPU

109 CPU stack_start

==================== arch/i386/kernel/head.S 330 332 ====================
330 ENTRY(stack_start)

331 .long SYMBOL_NAME(init_task_union)+8192

332 .long __KERNEL_DS

init_task_union union include/linux/sched.h

==================== include/linux/sched.h 480 487 ====================
480 #ifndef INIT_TASK_SIZE

481 # define INIT_TASK_SIZE 2048*sizeof(long)

482 #endif

483

484 union task_union {

485 struct task_struct task;

486 unsigned long stack[INIT_TASK_SIZE/sizeof(long)];

487 };

task_union task_struct

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1502

8K 4 task_struct
task_struct

init_task_union arch/i386/kernel/init_task.c

==================== arch/i386/kernel/init_task.c 15 24 ====================
15 /*

16 * Initial task structure.

17 *

18 * We need to make sure that this is 8192­byte aligned due to the

19 * way process stacks are handled. This is done by having a special

20 * "init_task" linker map entry..

21 */

22 union task_union init_task_union

23 __attribute__((__section__(".data.init_task"))) =

24 { INIT_TASK(init_task_union.task) };

INIT_TASK() include/linux/sched.h

==================== include/linux/sched.h 434 477 ====================
434 /*

435 * INIT_TASK is used to set up the first task table, touch at

436 * your own risk!. Base=0, limit=0x1fffff (=2MB)

437 */

438 #define INIT_TASK(tsk) \

439 { \

440 state: 0, \

441 flags: 0, \

442 sigpending: 0, \

443 addr_limit: KERNEL_DS, \

444 exec_domain: &default_exec_domain, \

445 lock_depth: ­1, \

446 counter: DEF_COUNTER, \

447 nice: DEF_NICE, \

448 policy: SCHED_OTHER, \

449 mm: NULL, \

450 active_mm: &init_mm, \

451 cpus_allowed: ­1, \

452 run_list: LIST_HEAD_INIT(tsk.run_list), \

453 next_task: &tsk, \

454 prev_task: &tsk, \

455 p_opptr: &tsk, \

456 p_pptr: &tsk, \

457 thread_group: LIST_HEAD_INIT(tsk.thread_group), \

458 wait_chldexit: __WAIT_QUEUE_HEAD_INITIALIZER(tsk.wait_chldexit),\

459 real_timer: { \

460 function: it_real_fn \

461 }, \

462 cap_effective: CAP_INIT_EFF_SET, \

463 cap_inheritable: CAP_INIT_INH_SET, \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1503

464 cap_permitted: CAP_FULL_SET, \

465 keep_capabilities: 0, \

466 rlim: INIT_RLIMITS, \

467 user: INIT_USER, \

468 comm: "swapper", \

469 thread: INIT_THREAD, \

470 fs: &init_fs, \

471 files: &init_files, \

472 sigmask_lock: SPIN_LOCK_UNLOCKED, \

473 sig: &init_signals, \

474 pending: { NULL, &tsk.pending.head, {{0}}}, \

475 blocked: {{0}}, \

476 alloc_lock: SPIN_LOCK_UNLOCKED \

477 }

thread 0

==================== include/asm­i386/processor.h 379 387 ====================
379 #define INIT_THREAD { \

380 0, \

381 0, 0, 0, 0, \

382 { [0 ... 7] = 0 }, /* debugging registers */ \

383 0, 0, 0, \

384 { { 0, }, }, /* 387 state */ \

385 0,0,0,0,0,0, \

386 0,{~0,} /* io permissions */ \

387 }

“swapper
init

98 109 CPU CPU

CPU CPU
initialize_secondary() start_secondary() task_struct

CPU

==================== arch/i386/kernel/head.S 111 135 ====================
[startup_32()]
111 #ifdef CONFIG_SMP

112 orw %bx,%bx

113 jz 1f /* Initial CPU cleans BSS */

114 pushl $0

115 popfl

116 jmp checkCPUtype

117 1:

118 #endif CONFIG_SMP

119

120 /*

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1504

121 * Clear BSS first so that there are no surprises...

122 * No need to cld as DF is already clear from cld above...

123 */

124 xorl %eax,%eax

125 movl $ SYMBOL_NAME(__bss_start),%edi

126 movl $ SYMBOL_NAME(_end),%ecx

127 subl %edi,%ecx

128 rep

129 stosb

130

131 /*

132 * start system 32­bit setup. We need to re­do some of the things done

133 * in 16­bit mode for the "real" operations.

134 */

135 call setup_idt

CPU 114 116 0
checkCPUtype CPU

bss bss bss
static 0

124 129 __bss_start _end bss 0 __bss_start _end
gcc

setup_idt() 3
8 256 setup_idt()

==================== arch/i386/kernel/head.S 304 328 ====================
[startup_32()>setup_idt()]
304 /*

305 * setup_idt

306 *

307 * sets up a idt with 256 entries pointing to

308 * ignore_int, interrupt gates. It doesn't actually load

309 * idt ­ that can be done only after paging has been enabled

310 * and the kernel moved to PAGE_OFFSET. Interrupts

311 * are enabled elsewhere, when we can be relatively

312 * sure everything is ok.

313 */

314 setup_idt:

315 lea ignore_int,%edx

316 movl $(__KERNEL_CS << 16),%eax

317 movw %dx,%ax /* selector = 0x0010 = cs */

318 movw $0x8E00,%dx /* interrupt gate ­ dpl=0, present */

319

320 lea SYMBOL_NAME(idt_table),%edi

321 mov $256,%ecx

322 rp_sidt:

323 movl %eax,(%edi)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1505

324 movl %edx,4(%edi)

325 addl $8,%edi

326 dec %ecx

327 jne rp_sidt

328 ret

256 ignore_int() 315 318
%edx %eax

idt_table 256 3
ignore_int() P 1 DPL 0 D 1 32

110 0x8e00 3
set_trap_gate() set_system_gate() ignore_int()

==================== arch/i386/kernel/head.S 337 356 ====================
337 ALIGN

338 ignore_int:

339 cld

340 pushl %eax

341 pushl %ecx

342 pushl %edx

343 pushl %es

344 pushl %ds

345 movl $(__KERNEL_DS),%eax

346 movl %eax,%ds

347 movl %eax,%es

348 pushl $int_msg

349 call SYMBOL_NAME(printk)

350 popl %eax

351 popl %ds

352 popl %es

353 popl %edx

354 popl %ecx

355 popl %eax

356 iret

==================== arch/i386/kernel/head.S 334 336 ====================
334 /* This is the default interrupt "handler" :­) */

335 int_msg:

336 .asciz "Unknown interrupt\n"

printk() printk()
/var/messages

idt_table[] arch/i386/kernel/traps.c

==================== arch/i386/kernel/traps.c 58 63 ====================
58 /*

59 * The IDT has to be page­aligned to simplify the Pentium

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1506

60 * F0 0F bug workaround.. We have a special link segment

61 * for this.

62 */

63 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };

”IDTR
LILO

setup BIOS
0

empty_zero_page ZERO_PAGE

empty_zero_page

==================== arch/i386/kernel/head.S 136 171 ====================
[startup_32()]
136 /*

137 * Initialize eflags. Some BIOS's leave bits like NT set. This would

138 * confuse the debugger if this code is traced.

139 * XXX ­ best to initialize before switching to protected mode.

140 */

141 pushl $0

142 popfl

143 /*

144 * Copy bootup parameters out of the way. First 2kB of

145 * _empty_zero_page is for boot parameters, second 2kB

146 * is for the command line.

147 *

148 * Note: %esi still has the pointer to the real­mode data.

149 */

150 movl $ SYMBOL_NAME(empty_zero_page),%edi

151 movl $512,%ecx

152 cld

153 rep

154 movsl

155 xorl %eax,%eax

156 movl $512,%ecx

157 rep

158 stosl

159 movl SYMBOL_NAME(empty_zero_page)+NEW_CL_POINTER,%esi

160 andl %esi,%esi

161 jnz 2f # New command line protocol

162 cmpw $(OLD_CL_MAGIC),OLD_CL_MAGIC_ADDR

163 jne 1f

164 movzwl OLD_CL_OFFSET,%esi

165 addl $(OLD_CL_BASE_ADDR),%esi

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1507

166 2:

167 movl $ SYMBOL_NAME(empty_zero_page)+2048,%edi

168 movl $512,%ecx

169 rep

170 movsl

171 1:

setup empty_zero page
arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 151 172 ====================
151 /*

152 * This is set up by the setup­routine at boot­time

153 */

154 #define PARAM ((unsigned char *)empty_zero_page)

155 #define SCREEN_INFO (*(struct screen_info *) (PARAM+0))

156 #define EXT_MEM_K (*(unsigned short *) (PARAM+2))

157 #define ALT_MEM_K (*(unsigned long *) (PARAM+0x1e0))

158 #define E820_MAP_NR (*(char*) (PARAM+E820NR))

159 #define E820_MAP ((struct e820entry *) (PARAM+E820MAP))

160 #define APM_BIOS_INFO (*(struct apm_bios_info *) (PARAM+0x40))

161 #define DRIVE_INFO (*(struct drive_info_struct *) (PARAM+0x80))

162 #define SYS_DESC_TABLE (*(struct sys_desc_table_struct*)(PARAM+0xa0))

163 #define MOUNT_ROOT_RDONLY (*(unsigned short *) (PARAM+0x1F2))

164 #define RAMDISK_FLAGS (*(unsigned short *) (PARAM+0x1F8))

165 #define ORIG_ROOT_DEV (*(unsigned short *) (PARAM+0x1FC))

166 #define AUX_DEVICE_INFO (*(unsigned char *) (PARAM+0x1FF))

167 #define LOADER_TYPE (*(unsigned char *) (PARAM+0x210))

168 #define KERNEL_START (*(unsigned long *) (PARAM+0x214))

169 #define INITRD_START (*(unsigned long *) (PARAM+0x218))

170 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x21c))

171 #define COMMAND_LINE ((char *) (PARAM+2048))

172 #define COMMAND_LINE_SIZE 256

CPU checkCPUtype
CPU 116 jmp

==================== arch/i386/kernel/head.S 172 246 ====================
[startup_32()]
172 #ifdef CONFIG_SMP

173 checkCPUtype:

174 #endif

175

176 movl $­1,X86_CPUID # ­1 for no CPUID initially

177

178 /* check if it is 486 or 386. */

179 /*

180 * XXX ­ this does a lot of unnecessary setup. Alignment checks don't

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1508

181 * apply at our cpl of 0 and the stack ought to be aligned already, and

182 * we don't need to preserve eflags.

183 */

184

185 movl $3,X86 # at least 386

186 pushfl # push EFLAGS

187 popl %eax # get EFLAGS

188 movl %eax,%ecx # save original EFLAGS

189 xorl $0x40000,%eax # flip AC bit in EFLAGS

190 pushl %eax # copy to EFLAGS

191 popfl # set EFLAGS

192 pushfl # get new EFLAGS

193 popl %eax # put it in eax

194 xorl %ecx,%eax # change in flags

195 andl $0x40000,%eax # check if AC bit changed

196 je is386

197

198 movl $4,X86 # at least 486

199 movl %ecx,%eax

200 xorl $0x200000,%eax # check ID flag

201 pushl %eax

202 popfl # if we are on a straight 486DX, SX, or

203 pushfl # 487SX we can't change it

204 popl %eax

205 xorl %ecx,%eax

206 pushl %ecx # restore original EFLAGS

207 popfl

208 andl $0x200000,%eax

209 je is486

210

211 /* get vendor info */

212 xorl %eax,%eax # call CPUID with 0 ­> return vendor ID

213 cpuid

214 movl %eax,X86_CPUID # save CPUID level

215 movl %ebx,X86_VENDOR_ID # lo 4 chars

216 movl %edx,X86_VENDOR_ID+4 # next 4 chars

217 movl %ecx,X86_VENDOR_ID+8 # last 4 chars

218

219 orl %eax,%eax # do we have processor info as well?

220 je is486

221

222 movl $1,%eax # Use the CPUID instruction to get CPU type

223 cpuid

224 movb %al,%cl # save reg for future use

225 andb $0x0f,%ah # mask processor family

226 movb %ah,X86

227 andb $0xf0,%al # mask model

228 shrb $4,%al

229 movb %al,X86_MODEL

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1509

230 andb $0x0f,%cl # mask mask revision

231 movb %cl,X86_MASK

232 movl %edx,X86_CAPABILITY

233

234 is486:

235 movl %cr0,%eax # 486 or better

236 andl $0x80000011,%eax # Save PG,PE,ET

237 orl $0x50022,%eax # set AM, WP, NE and MP

238 jmp 2f

239

240 is386: pushl %ecx # restore original EFLAGS

241 popfl

242 movl %cr0,%eax # 386

243 andl $0x80000011,%eax # Save PG,PE,ET

244 orl $2,%eax # set MP

245 2: movl %eax,%cr0

246 call check_x87

i386 CPU 80386 80486 Pentium
CPU CPU CPU

Intel
Pentium cpuid %eax CPU

Pentium
80386 80486

246 CPU 80387
CPU startup_32()

GDTR
setup CPU

IDTR
CPU

==================== arch/i386/kernel/head.S 247 266 ====================
[startup_32()]
247 #ifdef CONFIG_SMP

248 incb ready

249 #endif

250 lgdt gdt_descr

251 lidt idt_descr

252 ljmp $(__KERNEL_CS),$1f

253 1: movl $(__KERNEL_DS),%eax # reload all the segment registers

254 movl %eax,%ds # after changing gdt.

255 movl %eax,%es

256 movl %eax,%fs

257 movl %eax,%gs

258 #ifdef CONFIG_SMP

259 movl $(__KERNEL_DS), %eax

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1510

260 movl %eax,%ss # Reload the stack pointer (segment only)

261 #else

262 lss stack_start,%esp # Load processor stack

263 #endif

264 xorl %eax,%eax

265 lldt %ax

266 cld # gcc2 wants the direction flag cleared at all times

lgdt lidt CPU ”GDTR ”IDTR
Xgt_desc_struct

include/asm­i386/desc.h

==================== include/asm­i386/desc.h 51 54 ====================
51 struct Xgt_desc_struct {

52 unsigned short size;

53 unsigned long address __attribute__((packed));

54 };

16 size
arch/i386/kernel/head.S

==================== arch/i386/kernel/head.S 372 381 ====================
372 idt_descr:

373 .word IDT_ENTRIES*8­1 # idt contains 256 entries

374 SYMBOL_NAME(idt):

375 .long SYMBOL_NAME(idt_table)

376

377 .word 0

378 gdt_descr:

379 .word GDT_ENTRIES*8­1

380 SYMBOL_NAME(gdt):

381 .long SYMBOL_NAME(gdt_table)

idt_table IDTR

gdt_table

==================== arch/i386/kernel/head.S 450 458 ====================
450 ENTRY(gdt_table)

451 .quad 0x0000000000000000 /* NULL descriptor */

452 .quad 0x0000000000000000 /* not used */

453 .quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */

454 .quad 0x00cf92000000ffff /* 0x18 kernel 4GB data at 0x00000000 */

455 .quad 0x00cffa000000ffff /* 0x23 user 4GB code at 0x00000000 */

456 .quad 0x00cff2000000ffff /* 0x2b user 4GB data at 0x00000000 */

457 .quad 0x0000000000000000 /* not used */

458 .quad 0x0000000000000000 /* not used */

GDTR

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1511

Linux LDTR 0 264 265
SMP CPU CPU

==================== arch/i386/kernel/head.S 267 279 ====================
[startup_32()]
267 #ifdef CONFIG_SMP

268 movb ready, %cl

269 cmpb $1,%cl

270 je 1f # the first CPU calls start_kernel

271 # all other CPUs call initialize_secondary

272 call SYMBOL_NAME(initialize_secondary)

273 jmp L6

274 1:

275 #endif

276 call SYMBOL_NAME(start_kernel)

277 L6:

278 jmp L6 # main should never return here, but

279 # just in case, we know what happens.

SMP ready CPU 248
CPU ready 1 CPU CPU

CPU CPU 276 start_kernel()
CPU CPU

initialize_secondary() CPU
CPU CPU CPU

==================== arch/i386/kernel/smpboot.c 474 486 ====================
[startup_32()>initialize_secondary()]
468 /*

469 * Everything has been set up for the secondary

470 * CPUs ­ they just need to reload everything

471 * from the task structure

472 * This function must not return.

473 */

474 void __init initialize_secondary(void)

475 {

476 /*

477 * We don't actually need to load the full TSS,

478 * basically just the stack pointer and the eip.

479 */

480

481 asm volatile(

482 "movl %0,%%esp\n\t"

483 "jmp *%1"

484 :

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1512

485 :"r" (current­>thread.esp),"r" (current­>thread.eip));

486 }

CPU CPU
start_kernel() initialize_secondary() 277 278

CPU CPU

10.3

start_kernel() main()

C init/main.c

==================== init/main.c 516 531 ====================
516 /*

517 * Activate the first processor.

518 */

519

520 asmlinkage void __init start_kernel(void)

521 {

522 char * command_line;

523 unsigned long mempages;

524 extern char saved_command_line[];

525 /*

526 * Interrupts are still disabled. Do necessary setups, then

527 * enable them

528 */

529 lock_kernel();

530 printk(linux_banner);

531 setup_arch(&command_line);

printk()
init/version.c

==================== init/version.c 24 26 ====================
24 const char *linux_banner =

25 "Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"

26 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n";

setup_arch()

CONFIG_VISWS SUN CONFIG_BLK_DEV_RAM

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1513

RAMDISK
setup_arch() arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 598 604 ====================
[start_kernel()>setup_arch()]
598 void __init setup_arch(char **cmdline_p)

599 {

600 unsigned long bootmap_size;

601 unsigned long start_pfn, max_pfn, max_low_pfn;

602 int i;

603

604 #ifdef CONFIG_VISWS

==================== arch/i386/kernel/setup.c 606 620 ====================
606 #endif

607

608 ROOT_DEV = to_kdev_t(ORIG_ROOT_DEV);

609 drive_info = DRIVE_INFO;

610 screen_info = SCREEN_INFO;

611 apm_info.bios = APM_BIOS_INFO;

612 if(SYS_DESC_TABLE.length != 0) {

613 MCA_bus = SYS_DESC_TABLE.table[3] &0x2;

614 machine_id = SYS_DESC_TABLE.table[0];

615 machine_submodel_id = SYS_DESC_TABLE.table[1];

616 BIOS_revision = SYS_DESC_TABLE.table[2];

617 }

618 aux_device_present = AUX_DEVICE_INFO;

619

620 #ifdef CONFIG_BLK_DEV_RAM

.

==================== arch/i386/kernel/setup.c 624 626 ====================
624 #endif

625 setup_memory_region();

626

ROOT_DEV ORIG_ROOT_DEV
16 setup

drive_info screen_info
BIOS MCA_bus PS/2 Micro Channel machine_id

machine_submodel_id PC
BIOS

BIOS
BIOS “int 0x15 Linux

BIOS setup
e820 e820

“int 0x15 0xe820

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1514

empty_zero_page

==================== arch/i386/kernel/setup.c 491 525 ====================
[start_kernel()>setup_arch()>setup_memory_region()]
491 /*

492 * Do NOT EVER look at the BIOS memory size location.

493 * It does not work on many machines.

494 */

495 #define LOWMEMSIZE() (0x9f000)

496

497 void __init setup_memory_region(void)

498 {

499 char *who = "BIOS­e820";

500

501 /*

502 * Try to copy the BIOS­supplied E820­map.

503 *

504 * Otherwise fake a memory map; one section from 0k­>640k,

505 * the next section from 1mb­>appropriate_mem_k

506 */

507 if (copy_e820_map(E820_MAP, E820_MAP_NR) < 0) {

508 unsigned long mem_size;

509

510 /* compare results from other methods and take the greater */

511 if (ALT_MEM_K < EXT_MEM_K) {

512 mem_size = EXT_MEM_K;

513 who = "BIOS­88";

514 } else {

515 mem_size = ALT_MEM_K;

516 who = "BIOS­e801";

517 }

518

519 e820.nr_map = 0;

520 add_memory_region(0, LOWMEMSIZE(), E820_RAM);

521 add_memory_region(HIGH_MEMORY, (mem_size << 10) ­ HIGH_MEMORY, E820_RAM);

522 }

523 printk("BIOS­provided physical RAM map:\n");

524 print_memory_map(who);

525 } /* setup_memory_region */

include/asm­i386/e820.h
arch/i386/kernel/setup.c

==================== include/asm­i386/e820.h 15 17 ====================
15 #define E820MAP 0x2d0 /* our map */

16 #define E820MAX 32 /* number of entries in E820MAP */

17 #define E820NR 0x1e8 /* # entries in E820MAP */

==================== arch/i386/kernel/setup.c 158 159 ====================

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1515

158 #define E820_MAP_NR (*(char*) (PARAM+E820NR))

159 #define E820_MAP ((struct e820entry *) (PARAM+E820MAP))

E820_MAP e820entry 0x2d0
include/asm­i386/e820.h

==================== include/asm­i386/e820.h 28 37 ====================
28 struct e820map {

29 int nr_map;

30 struct e820entry {

31 unsigned long long addr; /* start of memory segment */

32 unsigned long long size; /* size of memory segment */

33 unsigned long type; /* type of memory segment */

34 } map[E820MAX];

35 };

36

37 extern struct e820map e820;

“map e820entry
copy_e820_map()

508 521 copy_e820_map()
arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 440 489 ====================
[start_kernel()>setup_arch()>setup_memory_region()>copy_e820_map()]
440 /*

441 * Copy the BIOS e820 map into a safe place.

442 *

443 * Sanity­check it while we're at it..

444 *

445 * If we're lucky and live on a modern system, the setup code

446 * will have given us a memory map that we can use to properly

447 * set up memory. If we aren't, we'll fake a memory map.

448 *

449 * We check to see that the memory map contains at least 2 elements

450 * before we'll use it, because the detection code in setup.S may

451 * not be perfect and most every PC known to man has two memory

452 * regions: one from 0 to 640k, and one from 1mb up. (The IBM

453 * thinkpad 560x, for example, does not cooperate with the memory

454 * detection code.)

455 */

456 static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)

457 {

458 /* Only one memory region (or negative)? Ignore it */

459 if (nr_map < 2)

460 return ­1;

461

462 do {

463 unsigned long long start = biosmap­>addr;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1516

464 unsigned long long size = biosmap­>size;

465 unsigned long long end = start + size;

466 unsigned long type = biosmap­>type;

467

468 /* Overflow in 64 bits? Ignore the memory map. */

469 if (start > end)

470 return ­1;

471

472 /*

473 * Some BIOSes claim RAM in the 640k ­ 1M region.

474 * Not right. Fix it up.

475 */

476 if (type == E820_RAM) {

477 if (start < 0x100000ULL && end > 0xA0000ULL) {

478 if (start < 0xA0000ULL)

479 add_memory_region(start, 0xA0000ULL­start, type);

480 if (end <= 0x100000ULL)

481 continue;

482 start = 0x100000ULL;

483 size = end ­ start;

484 }

485 }

486 add_memory_region(start, size, type);

487 } while (biosmap++,­­nr_map);

488 return 0;

489 }

e820entry
RAM

ROM RAM
include/asm­i386/e820.h 4

==================== include/asm­i386/e820.h 19 22 ====================
19 #define E820_RAM 1

20 #define E820_RESERVED 2

21 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */

22 #define E820_NVS 4

E820_NVS “Non­Volatile Storage ROM EPROM Flash

PC 1MB 640KB 0x0 0x9FFFF RAM
0xA0000 CGA EGA VGA EGA VGA

CGA EGA VGA 0xF0000
0xFFFFF 64KB EPROM Flash BIOS BIOS

nr_map 2
64 unsigned long long

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1517

BIOS RAM

PC 640KB RAM
Intel X86 CPU 1MB Z80 64KB

1MB
1MB “HIGH_MEMORY

HIGH_MEMORY 1024×1024 128MB RAM PC
1MB RAM

add_memory_region()
e820 RAM 0xA0000

1MB 0xA0000 1MB

setup_arch()

==================== arch/i386/kernel/setup.c 627 658 ====================
[start_kernel()>setup_arch()]
627 if (!MOUNT_ROOT_RDONLY)

628 root_mountflags &= ~MS_RDONLY;

629 init_mm.start_code = (unsigned long) &_text;

630 init_mm.end_code = (unsigned long) &_etext;

631 init_mm.end_data = (unsigned long) &_edata;

632 init_mm.brk = (unsigned long) &_end;

633

634 code_resource.start = virt_to_bus(&_text);

635 code_resource.end = virt_to_bus(&_etext)­1;

636 data_resource.start = virt_to_bus(&_etext);

637 data_resource.end = virt_to_bus(&_edata)­1;

638

639 parse_mem_cmdline(cmdline_p);

640

641 #define PFN_UP(x) (((x) + PAGE_SIZE­1) >> PAGE_SHIFT)

642 #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)

643 #define PFN_PHYS(x) ((x) << PAGE_SHIFT)

644

645 /*

646 * 128MB for vmalloc and initrd

647 */

648 #define VMALLOC_RESERVE (unsigned long)(128 << 20)

649 #define MAXMEM (unsigned long)(­PAGE_OFFSET­VMALLOC_RESERVE)

650 #define MAXMEM_PFN PFN_DOWN(MAXMEM)

651 #define MAX_NONPAE_PFN (1 << 20)

652

653 /*

654 * partially used pages are not usable ­ thus

655 * we are rounding upwards:

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1518

656 */

657 start_pfn = PFN_UP(__pa(&_end));

658

init_mm code_resource parse_mem_cmdline()
init_mm swapper mm_struct

RAM
parse_mem_cmdline()

e820
arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 539 545 ====================
539 /*

540 * "mem=nopentium" disables the 4MB page tables.

541 * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM

542 * to <mem>, overriding the bios size.

543 * "mem=XXX[KkmM]@XXX[KkmM]" defines a memory region from

544 * <start> to <start>+<mem>, overriding the bios size.

545 */

CPU Pentium 36 PAE
Pentium PSE 4MB 4KB

32 4KB PAE PSE
start_pfn

pfn “Page Frame Number
_end gcc

PFN_UP()

setup_arch()

==================== arch/i386/kernel/setup.c 659 708 ====================
[start_kernel()>setup_arch()]
659 /*

660 * Find the highest page frame number we have available

661 */

662 max_pfn = 0;

663 for (i = 0; i < e820.nr_map; i++) {

664 unsigned long start, end;

665 /* RAM? */

666 if (e820.map[i].type != E820_RAM)

667 continue;

668 start = PFN_UP(e820.map[i].addr);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1519

669 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);

670 if (start >= end)

671 continue;

672 if (end > max_pfn)

673 max_pfn = end;

674 }

675

676 /*

677 * Determine low and high memory ranges:

678 */

679 max_low_pfn = max_pfn;

680 if (max_low_pfn > MAXMEM_PFN) {

681 max_low_pfn = MAXMEM_PFN;

682 #ifndef CONFIG_HIGHMEM

683 /* Maximum memory usable is what is directly addressable */

684 printk(KERN_WARNING "Warning only %ldMB will be used.\n",

685 MAXMEM>>20);

686 if (max_pfn > MAX_NONPAE_PFN)

687 printk(KERN_WARNING "Use a PAE enabled kernel.\n");

688 else

689 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");

690 #else /* !CONFIG_HIGHMEM */

691 #ifndef CONFIG_X86_PAE

692 if (max_pfn > MAX_NONPAE_PFN) {

693 max_pfn = MAX_NONPAE_PFN;

694 printk(KERN_WARNING "Warning only 4GB will be used.\n");

695 printk(KERN_WARNING "Use a PAE enabled kernel.\n");

696 }

697 #endif /* !CONFIG_X86_PAE */

698 #endif /* !CONFIG_HIGHMEM */

699 }

700

701 #ifdef CONFIG_HIGHMEM

702 highstart_pfn = highend_pfn = max_pfn;

703 if (max_pfn > MAXMEM_PFN) {

704 highstart_pfn = MAXMEM_PFN;

705 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",

706 pages_to_mb(highend_pfn ­ highstart_pfn));

707 }

708 #endif

e820
RAM max_pfn for e820

PFN_UP() PFN_DOWN() 641 642
max_pfn RAM

2 Linux 32 0xC0000000

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1520

1GB
1GB

2
vmalloc()

RAMDISK

128MB
RAM 1024MB ­ 128MB = 896MB MAXMEM

MAXMEM_PFN max_pfn max_low_pfn
arch/i386/kernel/setup.c include/asm­i386/page.h

==================== arch/i386/kernel/setup.c 645 650 ====================
645 /*

646 * 128MB for vmalloc and initrd

647 */

648 #define VMALLOC_RESERVE (unsigned long)(128 << 20)

649 #define MAXMEM (unsigned long)(­PAGE_OFFSET­VMALLOC_RESERVE)

650 #define MAXMEM_PFN PFN_DOWN(MAXMEM)

==================== include/asm­i386/page.h 81 81 ====================
81 #define __PAGE_OFFSET (0xC0000000)

Linux 896MB RAM 32
CONFIG_HIGHMEM HIGHMEM 4GB

1MB 682 698 896MB RAM
CONFIG_HIGHMEM 896MB CONFIG_HIGHMEM

Pentium PAE 896MB
32 i386

ia64

==================== arch/i386/kernel/setup.c 709 779 ====================
[start_kernel()>setup_arch()]
709 /*

710 * Initialize the boot­time allocator (with low memory only):

711 */

712 bootmap_size = init_bootmem(start_pfn, max_low_pfn);

713

714 /*

715 * Register fully available low RAM pages with the bootmem allocator.

716 */

717 for (i = 0; i < e820.nr_map; i++) {

718 unsigned long curr_pfn, last_pfn, size;

719 /*

720 * Reserve usable low memory

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1521

721 */

722 if (e820.map[i].type != E820_RAM)

723 continue;

724 /*

725 * We are rounding up the start address of usable memory:

726 */

727 curr_pfn = PFN_UP(e820.map[i].addr);

728 if (curr_pfn >= max_low_pfn)

729 continue;

730 /*

731 * ... and at the end of the usable range downwards:

732 */

733 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);

734

735 if (last_pfn > max_low_pfn)

736 last_pfn = max_low_pfn;

737

738 /*

739 * .. finally, did all the rounding and playing

740 * around just make the area go away?

741 */

742 if (last_pfn <= curr_pfn)

743 continue;

744

745 size = last_pfn ­ curr_pfn;

746 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));

747 }

748 /*

749 * Reserve the bootmem bitmap itself as well. We do this in two

750 * steps (first step was init_bootmem()) because this catches

751 * the (very unlikely) case of us accidentally initializing the

752 * bootmem allocator with an invalid RAM area.

753 */

754 reserve_bootmem(HIGH_MEMORY, (PFN_PHYS(start_pfn) +

755 bootmap_size + PAGE_SIZE­1) ­ (HIGH_MEMORY));

756

757 /*

758 * reserve physical page 0 ­ it's a special BIOS page on many boxes,

759 * enabling clean reboots, SMP operation, laptop functions.

760 */

761 reserve_bootmem(0, PAGE_SIZE);

762

763 #ifdef CONFIG_SMP

764 /*

765 * But first pinch a few for the stack/trampoline stuff

766 * FIXME: Don't need the extra page at 4K, but need to fix

767 * trampoline before removing it. (see the GDT stuff)

768 */

769 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1522

770 smp_alloc_memory(); /* AP processor realmode stacks in low memory*/

771 #endif

772

773 #ifdef CONFIG_X86_IO_APIC

774 /*

775 * Find and reserve possible boot­time SMP configuration:

776 */

777 find_smp_config();

778 #endif

779 paging_init();

init_bootmem()
start_pfn _end

max_low_pfn
0 max_low_pfn

==================== mm/bootmem.c 283 288 ====================
[start_kernel()>setup_arch()>init_bootmem()]
283 unsigned long __init init_bootmem (unsigned long start, unsigned long pages)

284 {

285 max_low_pfn = pages;

286 min_low_pfn = start;

287 return(init_bootmem_core(&contig_page_data, start, 0, pages));

288 }

init_bootmem_core() pg_data_t contig_page_data
2 pg_data_t

UMA
contig_page_data NUMA UMA

pg_data_t node_next pgdat_list
contig_page_data

pg_data_t
contig_page_data

==================== mm/numa.c 14 15 ====================
14 static bootmem_data_t contig_bootmem_data;

15 pg_data_t contig_page_data = { bdata: &contig_bootmem_data };

pg_data_t bdata bootmem_data_t
include/linux/bootmem.h

==================== include/linux/bootmem.h 20 30 ====================
20 /*

21 * node_bootmem_map is a map pointer ­ the bits represent all physical

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1523

22 * memory pages (including holes) on the node.

23 */

24 typedef struct bootmem_data {

25 unsigned long node_boot_start;

26 unsigned long node_low_pfn;

27 void *node_bootmem_map;

28 unsigned long last_offset;

29 unsigned long last_pos;

30 } bootmem_data_t;

node_boot_start
init_bootmem_core() start 0 node_low_pfn

896MB node_bootmem_map
init_bootmem_core()

mm/bootmem.c

==================== mm/bootmem.c 41 65 ====================
[start_kernel()>setup_arch()>init_bootmem()>init_bootmem_core()]
41 /*

42 * Called once to set up the allocator itself.

43 */

44 static unsigned long __init init_bootmem_core (pg_data_t *pgdat,

45 unsigned long mapstart, unsigned long start, unsigned long end)

46 {

47 bootmem_data_t *bdata = pgdat­>bdata;

48 unsigned long mapsize = ((end ­ start)+7)/8;

49

50 pgdat­>node_next = pgdat_list;

51 pgdat_list = pgdat;

52

53 mapsize = (mapsize + (sizeof(long) ­ 1UL)) & ~(sizeof(long) ­ 1UL);

54 bdata­>node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);

55 bdata­>node_boot_start = (start << PAGE_SHIFT);

56 bdata­>node_low_pfn = end;

57

58 /*

59 * Initially all pages are reserved ­ setup_arch() has to

60 * register free RAM areas explicitly.

61 */

62 memset(bdata­>node_bootmem_map, 0xff, mapsize);

63

64 return mapsize;

65 }

start 0 mapstart init_bootmem() start
end max_low_pfn
setup_arch() 717 761

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1524

free_bootmem() contig_page_data 0
reserve_bootmem()

1 e820

• HIGH_MEMORY 1MB (start_pfn + bootmap_size)

• 0 0 BIOS BIOS

• SMP 1 PAGE_SIZE CPU
9

• RAMDISK

CONFIG_X86_IO_APIC SMP find_smp_config() BIOS
640KB

779 paging_init() arch/i386/mm/init.c

==================== arch/i386/mm/init.c 437 484 ====================
[start_kernel()>setup_arch()>paging_init()]
437 /*

438 * paging_init() sets up the page tables ­ note that the first 8MB are

439 * already mapped by head.S.

440 *

441 * This routines also unmaps the page at virtual kernel address 0, so

442 * that we can trap those pesky NULL­reference errors in the kernel.

443 */

444 void __init paging_init(void)

445 {

446 pagetable_init();

447

448 __asm__("movl %%ecx,%%cr3\n" ::"c"(__pa(swapper_pg_dir)));

449

450 #if CONFIG_X86_PAE

451 /*

452 * We will bail out later ­ printk doesnt work right now so

453 * the user would just see a hanging kernel.

454 */

455 if (cpu_has_pae)

456 set_in_cr4(X86_CR4_PAE);

457 #endif

458

459 __flush_tlb_all();

460

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1525

461 #ifdef CONFIG_HIGHMEM

462 kmap_init();

463 #endif

464 {

465 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};

466 unsigned int max_dma, high, low;

467

468 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

469 low = max_low_pfn;

470 high = highend_pfn;

471

472 if (low < max_dma)

473 zones_size[ZONE_DMA] = low;

474 else {

475 zones_size[ZONE_DMA] = max_dma;

476 zones_size[ZONE_NORMAL] = low ­ max_dma;

477 #ifdef CONFIG_HIGHMEM

478 zones_size[ZONE_HIGHMEM] = high ­ low;

479 #endif

480 }

481 free_area_init(zones_size);

482 }

483 return;

484 }

pagetabte_init() startup_32()
arch/i386/kernel/head.S 389 98 102
8MB

pagetable_init()

==================== arch/i386/mm/init.c 314 414 ====================
[start_kernel()>setup_arch()>paging_init()>pagetable_init()]
314 static void __init pagetable_init (void)

315 {

316 unsigned long vaddr, end;

317 pgd_t *pgd, *pgd_base;

318 int i, j, k;

319 pmd_t *pmd;

320 pte_t *pte;

321

322 /*

323 * This can be zero as well ­ no problem, in that case we exit

324 * the loops anyway due to the PTRS_PER_* conditions.

325 */

326 end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);

327

328 pgd_base = swapper_pg_dir;

329 #if CONFIG_X86_PAE

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1526

330 for (i = 0; i < PTRS_PER_PGD; i++) {

331 pgd = pgd_base + i;

332 __pgd_clear(pgd);

333 }

334 #endif

335 i = __pgd_offset(PAGE_OFFSET);

336 pgd = pgd_base + i;

337

338 for (; i < PTRS_PER_PGD; pgd++, i++) {

339 vaddr = i*PGDIR_SIZE;

340 if (end && (vaddr >= end))

341 break;

342 #if CONFIG_X86_PAE

343 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

344 set_pgd(pgd, __pgd(__pa(pmd) + 0x1));

345 #else

346 pmd = (pmd_t *)pgd;

347 #endif

348 if (pmd != pmd_offset(pgd, 0))

349 BUG();

350 for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

351 vaddr = i*PGDIR_SIZE + j*PMD_SIZE;

352 if (end && (vaddr >= end))

353 break;

354 if (cpu_has_pse) {

355 unsigned long __pe;

356

357 set_in_cr4(X86_CR4_PSE);

358 boot_cpu_data.wp_works_ok = 1;

359 __pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);

360 /* Make it "global" too if supported */

361 if (cpu_has_pge) {

362 set_in_cr4(X86_CR4_PGE);

363 __pe += _PAGE_GLOBAL;

364 }

365 set_pmd(pmd, __pmd(__pe));

366 continue;

367 }

368

369 pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

370 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));

371

372 if (pte != pte_offset(pmd, 0))

373 BUG();

374

375 for (k = 0; k < PTRS_PER_PTE; pte++, k++) {

376 vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;

377 if (end && (vaddr >= end))

378 break;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1527

379 *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);

380 }

381 }

382 }

383

384 /*

385 * Fixed mappings, only the page table structure has to be

386 * created ­ mappings will be set by set_fixmap():

387 */

388 vaddr = __fix_to_virt(__end_of_fixed_addresses ­ 1) & PMD_MASK;

389 fixrange_init(vaddr, 0, pgd_base);

390

391 #if CONFIG_HIGHMEM

392 /*

393 * Permanent kmaps:

394 */

395 vaddr = PKMAP_BASE;

396 fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

397

398 pgd = swapper_pg_dir + __pgd_offset(vaddr);

399 pmd = pmd_offset(pgd, vaddr);

400 pte = pte_offset(pmd, vaddr);

401 pkmap_page_table = pte;

402 #endif

403

404 #if CONFIG_X86_PAE

405 /*

406 * Add low memory identity­mappings ­ SMP needs it when

407 * starting up on an AP from real­mode. In the non­PAE

408 * case we already have these mappings through head.S.

409 * All user­space mappings are explicitly cleared after

410 * SMP startup.

411 */

412 pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];

413 #endif

414 }

2
swapper_pg_dir __pgd_offset(PAGE_OFFSET) 0xC0000000

10 0x300 1024
0x300 768

0xC0000000 3/4 0

448 movl swapper_pg_dir
%cr3 startup_32() %cr3 99

%cr3 CPU CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1528

TLB
CPU

HIGHMEM
swapper_pg_dir

__flush_tlb_all()
896MB CPU 32

CONFIG_HIGHMEM CONFIG_HIGHMEM 896MB
n

n

CONFIG_HIGHMEM
pte_t kmap_pte

kmap_init()
kmap_pte

2 pg_data_t node_zones[]
3 zone ZONE_DMA

ZONE_NORMAL ZONE_HIGHMEM ZONE_HIGHMEM CONFIG_HIGHMEM
ZONE_HIGHMEM

DMA
PC DMA 0x1000000 16MB

MAX_DMA_ADDRESS include/asm­i386/dma.h

==================== include/asm­i386/dma.h 75 76 ====================
75 /* The maximum address that we can perform a DMA transfer to on this platform */

76 #define MAX_DMA_ADDRESS (PAGE_OFFSET+0x1000000)

16MB ZONE_DMA 16MB max_low_pfn
ZONE_NORMAL 468 479 zones_size[]

free_area_init() zones_size[]
free_area_init() mm/page_alloc.c

paging_init() setup_arch()

==================== arch/i386/kernel/setup.c 780 791 ====================
[start_kernel()>setup_arch()]
780 #ifdef CONFIG_X86_IO_APIC

781 /*

782 * get boot­time SMP configuration:

783 */

784 if (smp_found_config)

785 get_smp_config();

786 #endif

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1529

787 #ifdef CONFIG_X86_LOCAL_APIC

788 init_apic_mappings();

789 #endif

790

791 #ifdef CONFIG_BLK_DEV_INITRD

.

==================== arch/i386/kernel/setup.c 807 852 ====================
807 #endif

808

809 /*

810 * Request address space for all standard RAM and ROM resources

811 * and also for regions reported as reserved by the e820.

812 */

813 probe_roms();

814 for (i = 0; i < e820.nr_map; i++) {

815 struct resource *res;

816 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)

817 continue;

818 res = alloc_bootmem_low(sizeof(struct resource));

819 switch (e820.map[i].type) {

820 case E820_RAM: res­>name = "System RAM"; break;

821 case E820_ACPI: res­>name = "ACPI Tables"; break;

822 case E820_NVS: res­>name = "ACPI Non­volatile Storage"; break;

823 default: res­>name = "reserved";

824 }

825 res­>start = e820.map[i].addr;

826 res­>end = res­>start + e820.map[i].size ­ 1;

827 res­>flags = IORESOURCE_MEM | IORESOURCE_BUSY;

828 request_resource(&iomem_resource, res);

829 if (e820.map[i].type == E820_RAM) {

830 /*

831 * We dont't know which RAM region contains kernel data,

832 * so we try it repeatedly and let the resource manager

833 * test it.

834 */

835 request_resource(res, &code_resource);

836 request_resource(res, &data_resource);

837 }

838 }

839 request_resource(&iomem_resource, &vram_resource);

840

841 /* request I/O space for devices used on all i[345]86 PCs */

842 for (i = 0; i < STANDARD_IO_RESOURCES; i++)

843 request_resource(&ioport_resource, standard_io_resources+i);

844

845 #ifdef CONFIG_VT

846 #if defined(CONFIG_VGA_CONSOLE)

847 conswitchp = &vga_con;

848 #elif defined(CONFIG_DUMMY_CONSOLE)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1530

849 conswitchp = &dummy_con;

850 #endif

851 #endif

852 }

include/linux/ioport.h resource

==================== arch/i386/kernel/setup.c 807 852 ====================
11 /*

12 * Resources are tree­like, allowing

13 * nesting etc..

14 */

15 struct resource {

16 const char *name;

17 unsigned long start, end;

18 unsigned long flags;

19 struct resource *parent, *sibling, *child;

20 };

I/O
RAM ROM

I/O
i386 I/O

I/O I/O I/O
I/O resource parent

sibling child resource resource

iomem_resource ioport_resource
resource

kernel/resource.c

==================== kernel/resource.c 18 19 ====================
18 struct resource ioport_resource = { "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

19 struct resource iomem_resource = { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };

resource rom_resources[] ROM
arch/i386/kernel/setup.c ROM PROM EPROM

Flash PC ROM
PC

ROM BIOS ROM
“System ROM 0xF0000 0xFFFFF

ROM 0xC0000 0xC7fff

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1531

==================== arch/i386/kernel/setup.c 325 330 ====================
325 /* System ROM resources */

326 #define MAXROMS 6

327 static struct resource rom_resources[MAXROMS] = {

328 { "System ROM", 0xF0000, 0xFFFFF, IORESOURCE_BUSY },

329 { "Video ROM", 0xc0000, 0xc7fff, IORESOURCE_BUSY }

330 };

BIOS ROM ROM ROM

probe_roms() arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 332 395 ====================
[start_kernel()>setup_arch()>probe_roms()]
332 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)

333

334 static void __init probe_roms(void)

335 {

336 int roms = 1;

337 unsigned long base;

338 unsigned char *romstart;

339

340 request_resource(&iomem_resource, rom_resources+0);

341

342 /* Video ROM is standard at C000:0000 ­ C7FF:0000, check signature */

343 for (base = 0xC0000; base < 0xE0000; base += 2048) {

344 romstart = bus_to_virt(base);

345 if (!romsignature(romstart))

346 continue;

347 request_resource(&iomem_resource, rom_resources + roms);

348 roms++;

349 break;

350 }

351

352 /* Extension roms at C800:0000 ­ DFFF:0000 */

353 for (base = 0xC8000; base < 0xE0000; base += 2048) {

354 unsigned long length;

355

356 romstart = bus_to_virt(base);

357 if (!romsignature(romstart))

358 continue;

359 length = romstart[2] * 512;

360 if (length) {

361 unsigned int i;

362 unsigned char chksum;

363

364 chksum = 0;

365 for (i = 0; i < length; i++)

366 chksum += romstart[i];

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1532

367

368 /* Good checksum? */

369 if (!chksum) {

370 rom_resources[roms].start = base;

371 rom_resources[roms].end = base + length ­ 1;

372 rom_resources[roms].name = "Extension ROM";

373 rom_resources[roms].flags = IORESOURCE_BUSY;

374

375 request_resource(&iomem_resource, rom_resources + roms);

376 roms++;

377 if (roms >= MAXROMS)

378 return;

379 }

380 }

381 }

382

383 /* Final check for motherboard extension rom at E000:0000 */

384 base = 0xE0000;

385 romstart = bus_to_virt(base);

386

387 if (romsignature(romstart)) {

388 rom_resources[roms].start = base;

389 rom_resources[roms].end = base + 65535;

390 rom_resources[roms].name = "Extension ROM";

391 rom_resources[roms].flags = IORESOURCE_BUSY;

392

393 request_resource(&iomem_resource, rom_resources + roms);

394 }

395 }

ROM BIOS ROM request_resource()
iomem_resource kernel/resource.c

==================== kernel/resource.c 114 122 ====================
[start_kernel()>setup_arch()>probe_roms()>request_resource()]
114 int request_resource(struct resource *root, struct resource *new)

115 {

116 struct resource *conflict;

117

118 write_lock(&resource_lock);

119 conflict = __request_resource(root, new);

120 write_unlock(&resource_lock);

121 return conflict ? ­EBUSY : 0;

122 }

__request_resource() kernel/resource.c

==================== kernel/resource.c 66 93 ====================
[start_kernel()>setup_arch()>probe_roms()>request_resource()__request_resource()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1533

66 /* Return the conflict entry if you can't request it */

67 static struct resource * __request_resource(struct resource *root, struct resource *new)

68 {

69 unsigned long start = new­>start;

70 unsigned long end = new­>end;

71 struct resource *tmp, **p;

72

73 if (end < start)

74 return root;

75 if (start < root­>start)

76 return root;

77 if (end > root­>end)

78 return root;

79 p = &root­>child;

80 for (;;) {

81 tmp = *p;

82 if (!tmp || tmp­>start > end) {

83 new­>sibling = tmp;

84 *p = new;

85 new­>parent = root;

86 return NULL;

87 }

88 p = &tmp­>sibling;

89 if (tmp­>end < start)

90 continue;

91 return tmp;

92 }

93 }

ROM
probe_roms() request_resource() BIOS ROM

ROM 0xaa55 “ROM romsignature()
ROM

2KB
setup_arch() ROM iomem_resource

e820 BIOS iomem_resource
814 838 RAM

RAM 0xA0000 0xBFFFF arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 321 323 ====================
321 static struct resource code_resource = { "Kernel code", 0x100000, 0 };

322 static struct resource data_resource = { "Kernel data", 0, 0 };

323 static struct resource vram_resource = { "Video RAM area", 0xa0000, 0xbffff, IORESOURCE_BUSY };

setup_arch() gcc _text
_etext _edata 634 637

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1534

I/O standard_io_resources[] arch/i386/kernel/setup.c 842 843
for resource ioport_resource

==================== arch/i386/kernel/setup.c 308 317 ====================
308 struct resource standard_io_resources[] = {

309 { "dma1", 0x00, 0x1f, IORESOURCE_BUSY },

310 { "pic1", 0x20, 0x3f, IORESOURCE_BUSY },

311 { "timer", 0x40, 0x5f, IORESOURCE_BUSY },

312 { "keyboard", 0x60, 0x6f, IORESOURCE_BUSY },

313 { "dma page reg", 0x80, 0x8f, IORESOURCE_BUSY },

314 { "pic2", 0xa0, 0xbf, IORESOURCE_BUSY },

315 { "dma2", 0xc0, 0xdf, IORESOURCE_BUSY },

316 { "fpu", 0xf0, 0xff, IORESOURCE_BUSY }

317 };

I/O 0x00 0x1f 32 DMA
0x00 0xff 256 0x100

I/O
PC VGA conswitchp vga_con

VGA
setup_arch()

“architecture setup_arch()

start_kernel()

==================== init/main.c 532 545 ====================
[start_kernel()]
532 printk("Kernel command line: %s\n", saved_command_line);

533 parse_options(command_line);

534 trap_init();

535 init_IRQ();

536 sched_init();

537 time_init();

538 softirq_init();

539

540 /*

541 * HACK ALERT! This is early. We're enabling the console before

542 * we've done PCI setups etc, and console_init() must be aware of

543 * this. But we do want output early, in case something goes wrong.

544 */

545 console_init();

init_IRQ() softirq_init() time_init() 3

setup_arch() 639
parse_options()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1535

parse_options()
checksetup() parse_options() checksetup()

init/main.c

==================== init/main.c 318 332 ====================
[start_kernel()>parse_options()>checksetup()]
318 static int __init checksetup(char *line)

319 {

320 struct kernel_param *p;

321

322 p = &__setup_start;

323 do {

324 int n = strlen(p­>str);

325 if (!strncmp(line,p­>str,n)) {

326 if (p­>setup_func(line+n))

327 return 1;

328 }

329 p++;

330 } while (p < &__setup_end);

331 return 0;

332 }

kernel_param include/linux/init.h

==================== include/linux/init.h 56 62 ====================
56 /*

57 * Used for kernel command line parameter setup

58 */

59 struct kernel_param {

60 const char *str;

61 int (*setup_func)(char *);

62 };

parse_options() checksetup()
kernel_param

include/linux/init.h __setup()

==================== include/linux/init.h 66 70 ====================
66 #define __setup(str, fn) \

67 static char __setup_str_##fn[] __initdata = str; \

68 static struct kernel_param __setup_##fn __attribute__((unused)) __initsetup = { __setup_str_##fn,

fn }

69

70 #endif /* __ASSEMBLY__ */

__initdata __initsetup

==================== include/linux/init.h 78 78 ====================
78 #define __initdata __attribute__ ((__section__ (".data.init")))

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1536

==================== include/linux/init.h 80 80 ====================
80 #define __initsetup __attribute__ ((unused,__section__ (".setup.init")))

“.data.init “.setup.init
“no387 include/asm­i386/bugs.h

==================== include/asm­i386/bugs.h 51 51 ====================
51 __setup("no387", no_387);

gcc

static char __setup_str_no_387[] __initdata = " no387"; \

static struct kernel_param __setup_no_387__attribute__((unused)) __initsetup =

 { __setup_str_no_387, no_387 }

“no387 checksetup()
no_387() include/asm­i386/bugs.h

==================== include/asm­i386/bugs.h 44 49 ====================
44 static int __init no_387(char *s)

45 {

46 boot_cpu_data.hard_math = 0;

47 write_cr0(0xE | read_cr0());

48 return 1;

49 }

boot_cpu_data.hard_math 0 %cr0
1 80387

“root= init/main.c

==================== init/main.c 316 316 ====================
316 __setup("root=", root_dev_setup);

root_dev_setup() init/main.c

==================== init/main.c 299 314 ====================
299 static int __init root_dev_setup(char *line)

300 {

301 int i;

302 char ch;

303

304 ROOT_DEV = name_to_kdev_t(line);

305 memset (root_device_name, 0, sizeof root_device_name);

306 if (strncmp (line, "/dev/", 5) == 0) line += 5;

307 for (i = 0; i < sizeof root_device_name ­ 1; ++i)

308 {

309 ch = line[i];

310 if (isspace (ch) || (ch == ',') || (ch == '\0')) break;

311 root_device_name[i] = ch;

312 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1537

313 return 1;

314 }

checksetup() “root= root_dev_setup()

xyz do_xyz()
“__setup("xyz", do_xyz);

trap_init() 3
trap_init()

cpu_init()
cpu_init() CPU CPU startup_32()

cpu_init()
startup_32() arch/i386/kernel/setup.c

==================== arch/i386/kernel/setup.c 2199 2266 ====================
[start_kernel()>trap_init()>cpu_init()]
2199 /*

2200 * cpu_init() initializes state that is per­CPU. Some data is already

2201 * initialized (naturally) in the bootstrap process, such as the GDT

2202 * and IDT. We reload them nevertheless, this function acts as a

2203 * 'CPU state barrier', nothing should get across.

2204 */

2205 void __init cpu_init (void)

2206 {

2207 int nr = smp_processor_id();

2208 struct tss_struct * t = &init_tss[nr];

2209

2210 if (test_and_set_bit(nr, &cpu_initialized)) {

2211 printk("CPU#%d already initialized!\n", nr);

2212 for (;;) __sti();

2213 }

2214 printk("Initializing CPU#%d\n", nr);

2215

2216 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)

2217 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

2218 #ifndef CONFIG_X86_TSC

2219 if (tsc_disable && cpu_has_tsc) {

2220 printk("Disabling TSC...\n");

2221 /**** FIX­HPA: DOES THIS REALLY BELONG HERE? ****/

2222 clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);

2223 set_in_cr4(X86_CR4_TSD);

2224 }

2225 #endif

2226

2227 __asm__ __volatile__("lgdt %0": "=m" (gdt_descr));

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1538

2228 __asm__ __volatile__("lidt %0": "=m" (idt_descr));

2229

2230 /*

2231 * Delete NT

2232 */

2233 __asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");

2234

2235 /*

2236 * set up and load the per­CPU TSS and LDT

2237 */

2238 atomic_inc(&init_mm.mm_count);

2239 current­>active_mm = &init_mm;

2240 if(current­>mm)

2241 BUG();

2242 enter_lazy_tlb(&init_mm, current, nr);

2243

2244 t­>esp0 = current­>thread.esp0;

2245 set_tss_desc(nr,t);

2246 gdt_table[__TSS(nr)].b &= 0xfffffdff;

2247 load_TR(nr);

2248 load_LDT(&init_mm);

2249

2250 /*

2251 * Clear all 6 debug registers:

2252 */

2253

2254 #define CD(register) __asm__("movl %0,%%db" #register ::"r"(0));

2255

2256 CD(0); CD(1); CD(2); CD(3); /* no db4 and db5 */; CD(6); CD(7);

2257

2258 #undef CD

2259

2260 /*

2261 * Force FPU initialization:

2262 */

2263 current­>flags &= ~PF_USEDFPU;

2264 current­>used_math = 0;

2265 stts();

2266 }

CPU trap_init() CPU start_secondary()
cpu_initialized CPU CPU

1 CPU CPU CPU
CPU cpu_initialized 1

CPU CPU
CPU CPU

CPU

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1539

for
TSC task_struct active_mm

task_struct mm 0 3
4 2233 CPU NT

“Nested Task 0
2248 load_LDT() LDTR

Linux VM86 2256 CPU
2263 2265

==================== kernel/sched.c 1244 1269 ====================
[start_kernel()>sched_init()]
1244 void __init sched_init(void)

1245 {

1246 /*

1247 * We have to do a little magic to get the first

1248 * process right in SMP mode.

1249 */

1250 int cpu = smp_processor_id();

1251 int nr;

1252

1253 init_task.processor = cpu;

1254

1255 for(nr = 0; nr < PIDHASH_SZ; nr++)

1256 pidhash[nr] = NULL;

1257

1258 init_timervecs();

1259

1260 init_bh(TIMER_BH, timer_bh);

1261 init_bh(TQUEUE_BH, tqueue_bh);

1262 init_bh(IMMEDIATE_BH, immediate_bh);

1263

1264 /*

1265 * The boot idle thread does lazy MMU switching as well:

1266 */

1267 atomic_inc(&init_mm.mm_count);

1268 enter_lazy_tlb(&init_mm, current, cpu);

1269 }

init_timervecs()

==================== init/main.c 546 562 ====================
[start_kernel()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1540

546 #ifdef CONFIG_MODULES

547 init_modules();

548 #endif

549 if (prof_shift) {

550 unsigned int size;

551 /* only text is profiled */

552 prof_len = (unsigned long) &_etext ­ (unsigned long) &_stext;

553 prof_len >>= prof_shift;

554

555 size = prof_len * sizeof(unsigned int) + PAGE_SIZE­1;

556 prof_buffer = (unsigned int *) alloc_bootmem(size);

557 }

558

559 kmem_cache_init();

560 sti();

561 calibrate_delay();

562 #ifdef CONFIG_BLK_DEV_INITRD

.

==================== init/main.c 569 596 ====================
569 #endif

570 mem_init();

571 kmem_cache_sizes_init();

572 #ifdef CONFIG_3215_CONSOLE

573 con3215_activate();

574 #endif

575 #ifdef CONFIG_PROC_FS

576 proc_root_init();

577 #endif

578 mempages = num_physpages;

579

580 fork_init(mempages);

581 proc_caches_init();

582 vfs_caches_init(mempages);

583 buffer_init(mempages);

584 page_cache_init(mempages);

585 kiobuf_setup();

586 signals_init();

587 bdev_init();

588 inode_init(mempages);

589 #if defined(CONFIG_SYSVIPC)

590 ipc_init();

591 #endif

592 #if defined(CONFIG_QUOTA)

593 dquot_init_hash();

594 #endif

595 check_bugs();

596 printk("POSIX conformance testing by UNIFIX\n");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1541

init_modules() kernel/module.c

==================== kernel/module.c 229 237 ====================
[start_kernel()>init_modules()]
229 /*

230 * Called at boot time

231 */

232

233 void __init init_modules(void)

234 {

235 kernel_module.nsyms = __stop___ksymtab ­ __start___ksymtab;

236

237 #ifdef __alpha__

.

==================== kernel/module.c 239 240 ====================
239 #endif

240 }

empty_zero_page
0 1MB

mem_init()
arch/i386/mm/init.c

==================== arch/i386/mm/init.c 554 630 ====================
[start_kernel()>mem_init()]
554 void __init mem_init(void)

555 {

556 int codesize, reservedpages, datasize, initsize;

557 int tmp;

558

559 if (!mem_map)

560 BUG();

561

562 #ifdef CONFIG_HIGHMEM

563 highmem_start_page = mem_map + highstart_pfn;

564 max_mapnr = num_physpages = highend_pfn;

565 #else

566 max_mapnr = num_physpages = max_low_pfn;

567 #endif

568 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

569

570 /* clear the zero­page */

571 memset(empty_zero_page, 0, PAGE_SIZE);

572

573 /* this will put all low memory onto the freelists */

574 totalram_pages += free_all_bootmem();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1542

575

576 reservedpages = 0;

577 for (tmp = 0; tmp < max_low_pfn; tmp++)

578 /*

579 * Only count reserved RAM pages

580 */

581 if (page_is_ram(tmp) && PageReserved(mem_map+tmp))

582 reservedpages++;

583 #ifdef CONFIG_HIGHMEM

584 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {

585 struct page *page = mem_map + tmp;

586

587 if (!page_is_ram(tmp)) {

588 SetPageReserved(page);

589 continue;

590 }

591 ClearPageReserved(page);

592 set_bit(PG_highmem, &page­>flags);

593 atomic_set(&page­>count, 1);

594 __free_page(page);

595 totalhigh_pages++;

596 }

597 totalram_pages += totalhigh_pages;

598 #endif

599 codesize = (unsigned long) &_etext ­ (unsigned long) &_text;

600 datasize = (unsigned long) &_edata ­ (unsigned long) &_etext;

601 initsize = (unsigned long) &__init_end ­ (unsigned long) &__init_begin;

602

603 printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk

highmem)\n",

604 (unsigned long) nr_free_pages() << (PAGE_SHIFT­10),

605 max_mapnr << (PAGE_SHIFT­10),

606 codesize >> 10,

607 reservedpages << (PAGE_SHIFT­10),

608 datasize >> 10,

609 initsize >> 10,

610 (unsigned long) (totalhigh_pages << (PAGE_SHIFT­10))

611);

612

613 #if CONFIG_X86_PAE

614 if (!cpu_has_pae)

615 panic("cannot execute a PAE­enabled kernel on a PAE­less CPU!");

616 #endif

617 if (boot_cpu_data.wp_works_ok < 0)

618 test_wp_bit();

619

620 /*

621 * Subtle. SMP is doing it's boot stuff late (because it has to

622 * fork idle threads) ­ but it also needs low mappings for the

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1543

623 * protected­mode entry to work. We zap these entries only after

624 * the WP­bit has been tested.

625 */

626 #ifndef CONFIG_SMP

627 zap_low_mappings();

628 #endif

629

630 }

571 empty_zero_page 0 free_all_bootmem()

==================== mm/bootmem.c 300 303 ====================
[start_kernel()>mem_init()>free_all_bootmem()]
300 unsigned long __init free_all_bootmem (void)

301 {

302 return(free_all_bootmem_core(&contig_page_data));

303 }

==================== mm/bootmem.c 224 261 ====================
[start_kernel()>mem_init()>free_all_bootmem()>free_all_bootmem_core()]
224 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)

225 {

226 struct page *page = pgdat­>node_mem_map;

227 bootmem_data_t *bdata = pgdat­>bdata;

228 unsigned long i, count, total = 0;

229 unsigned long idx;

230

231 if (!bdata­>node_bootmem_map) BUG();

232

233 count = 0;

234 idx = bdata­>node_low_pfn ­ (bdata­>node_boot_start >> PAGE_SHIFT);

235 for (i = 0; i < idx; i++, page++) {

236 if (!test_bit(i, bdata­>node_bootmem_map)) {

237 count++;

238 ClearPageReserved(page);

239 set_page_count(page, 1);

240 __free_page(page);

241 }

242 }

243 total += count;

244

245 /*

246 * Now free the allocator bitmap itself, it's not

247 * needed anymore:

248 */

249 page = virt_to_page(bdata­>node_bootmem_map);

250 count = 0;

251 for (i = 0; i < ((bdata­>node_low_pfn­(bdata­>node_boot_start >> PAGE_SHIFT))/8 +

PAGE_SIZE­1)/PAGE_SIZE; i++,page++) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1544

252 count++;

253 ClearPageReserved(page);

254 set_page_count(page, 1);

255 __free_page(page);

256 }

257 total += count;

258 bdata­>node_bootmem_map = NULL;

259

260 return total;

261 }

bdata­>node_boot_start init_bootmem_core()
0 0 bdata­>node_low_pfn
HIGHMEM 235 242 for

0 page
1 __free_page() page

251 256 for
mem_init() test_wp_bit() 80386 CPU

627 zap_low_mappings()

8MB
0xC0000000

SMP CPU CPU

start_kernel() kmem_cache_sizes_init() slab
kmem_cache_create() 32 64 128KB

slab kmalloc() slab proc_root_init()
/proc 5 fork_init()

kernel/fork.c

==================== kernel/fork.c 66 77 ====================
[start_kernel()>fork_init()]
66 void __init fork_init(unsigned long mempages)

67 {

68 /*

69 * The default maximum number of threads is set to a safe

70 * value: the thread structures can take up at most half

71 * of memory.

72 */

73 max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 2;

74

75 init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1545

76 init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

77 }

proc_caches_init() vfs_caches_init() buffer_init() kiobuf_setup() signals_init()
bdev_init() inode_init() slab

page_cache_init() page_hash_table mm/filemap.c

==================== mm/filemap.c 2583 2608 ====================
[start_kernel()>page_cache_ink()]
2583 void __init page_cache_init(unsigned long mempages)

2584 {

2585 unsigned long htable_size, order;

2586

2587 htable_size = mempages;

2588 htable_size *= sizeof(struct page *);

2589 for(order = 0; (PAGE_SIZE << order) < htable_size; order++)

2590 ;

2591

2592 do {

2593 unsigned long tmp = (PAGE_SIZE << order) / sizeof(struct page *);

2594

2595 page_hash_bits = 0;

2596 while((tmp >>= 1UL) != 0UL)

2597 page_hash_bits++;

2598

2599 page_hash_table = (struct page **)

2600 __get_free_pages(GFP_ATOMIC, order);

2601 } while(page_hash_table == NULL && ­­order > 0);

2602

2603 printk("Page­cache hash table entries: %d (order: %ld, %ld bytes)\n",

2604 (1 << page_hash_bits), order, (PAGE_SIZE << order));

2605 if (!page_hash_table)

2606 panic("Failed to allocate page hash table\n");

2607 memset((void *)page_hash_table, 0, PAGE_HASH_SIZE * sizeof(struct page *));

2608 }

include/linux/pagemap.h

==================== include/linux/pagemap.h 42 43 ====================
42 #define PAGE_HASH_BITS (page_hash_bits)

43 #define PAGE_HASH_SIZE (1 << PAGE_HASH_BITS)

page page
2

0

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1546

ipc_init() Sys V

==================== ipc/util.c 34 40 ====================
[start_kernel()>ipc_init()]
34 void __init ipc_init (void)

35 {

36 sem_init();

37 msg_init();

38 shm_init();

39 return;

40 }

msg_ids shm_ids /proc
/proc “sysvipc/shm

==================== init/main.c 597 608 ====================
[start_kernel()]
597

598 /*

599 * We count on the initial thread going ok

600 * Like idlers init is an unlocked kernel thread, which will

601 * make syscalls (and thus be locked).

602 */

603 smp_init();

604 kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

605 unlock_kernel();

606 current­>need_resched = 1;

607 cpu_idle();

608 }

CPU SMP
CPU CPU CPU CPU

CPU smp_init() SMP
CPU

smp_init() start_kernel() SMP CPU
start_secondary() cpu_idle() CPU
init() CPU cpu_idle() CPU CPU

cpu_idle() CPU cpu_idle()
arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 117 139 ====================
[start_kernel()>cpu_idle()]
117 /*

118 * The idle thread. There's no useful work to be

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1547

119 * done, so just try to conserve power and have a

120 * low exit latency (ie sit in a loop waiting for

121 * somebody to say that they'd like to reschedule)

122 */

123 void cpu_idle (void)

124 {

125 /* endless idle loop with no priority at all */

126 init_idle();

127 current­>nice = 20;

128 current­>counter = ­100;

129

130 while (1) {

131 void (*idle)(void) = pm_idle;

132 if (!idle)

133 idle = default_idle;

134 while (!current­>need_resched)

135 idle();

136 schedule();

137 check_pgt_cache();

138 }

139 }

CPU

CPU CPU cpu_idle() CPU
task_struct CPU

init_tasks[]

CPU
task_struct need_resched 1 schedule() CPU
schedule() cpu_idle()
current­>need_resched 1 default_idle() arch/i386/kernel/process.c

“idle=poll pm_idle poll_idle()

==================== arch/i386/kernel/process.c 80 89 ====================
[cpu_idle()>default_idle()]
80 static void default_idle(void)

81 {

82 if (current_cpu_data.hlt_works_ok && !hlt_counter) {

83 __cli();

84 if (!current­>need_resched)

85 safe_halt();

86 else

87 __sti();

88 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1548

89 }

==================== include/asm­i386/system.h 300 301 ====================
300 /* used in the idle loop; sti takes one instruction cycle to complete */

301 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")

CPU cpu_idle() task_struct need_resched 0
“hlt CPU

hlt
CPU hlt default_idle()

need_resched 1 cpu_idle()
134 while schedule() default_idle()

CPU cpu_idle() 604
init() CPU schedule() CPU

schedule() schedule() CPU
CPU 606 need_resched 1

CPU init() CPU cpu_idle() 134

10.4

init()
CPU startup_32()

start_kernel() start_secondary() CPU CPU CPU
CPU start_kernel()

cpu_idle() CPU
init() CPU CPU
init() CPU

init() init/main.c

==================== init/main.c 761 773 ====================
761 static int init(void * unused)

762 {

763 lock_kernel();

764 do_basic_setup();

765

766 /*

767 * Ok, we have completed the initial bootup, and

768 * we're essentially up and running. Get rid of the

769 * initmem segments and start the user­mode stuff..

770 */

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1549

771 free_initmem();

772 unlock_kernel();

773

do_basic_setup() free_initmem()
CPU

init() CPU

do_basic_setup() init/main.c

• CONFIG_BLK_DEV_INITRD RAMDISK
• CONFIG_MTRR CPU MTRR

MTRR
• CONFIG_SYSCTL
• CONFIG_SBUS SBUS Sparc
• CONFIG_PPC Power PC
• CONFIG_MCA PS/2 Micro Channel
• CONFIG_ARCH_ACORN ARM
• CONFIG_ZORRO
• CONFIG_DIO
• CONFIG_NUBUS Macintosh
• CONFIG_ISAPNP ISA PnP Plug and Play
• CONFIG_TC Turbo Channel
• CONFIG_IRDA
• CONFIG_PCMCIA

CONFIG_PCI PCI
PC pci_init()

==================== init/main.c 641 650 ====================
[init()>do_basic_setup()]
641 /*

642 * Ok, the machine is now initialized. None of the devices

643 * have been touched yet, but the CPU subsystem is up and

644 * running, and memory and process management works.

645 *

646 * Now we can finally start doing some real work..

647 */

648 static void __init do_basic_setup(void)

649 {

650 #ifdef CONFIG_BLK_DEV_INITRD

.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1550

==================== init/main.c 652 715 ====================
652 #endif

653

654 /*

655 * Tell the world that we're going to be the grim

656 * reaper of innocent orphaned children.

657 *

658 * We don't want people to have to make incorrect

659 * assumptions about where in the task array this

660 * can be found.

661 */

662 child_reaper = current;

663

664 #if defined(CONFIG_MTRR) /* Do this after SMP initialization */

665 /*

666 * We should probably create some architecture­dependent "fixup after

667 * everything is up" style function where this would belong better

668 * than in init/main.c..

669 */

670 mtrr_init();

671 #endif

672

673 #ifdef CONFIG_SYSCTL

674 sysctl_init();

675 #endif

676

677 /*

678 * Ok, at this point all CPU's should be initialized, so

679 * we can start looking into devices..

680 */

681 #ifdef CONFIG_PCI

682 pci_init();

683 #endif

684 #ifdef CONFIG_SBUS

685 sbus_init();

686 #endif

687 #if defined(CONFIG_PPC)

688 ppc_init();

689 #endif

690 #ifdef CONFIG_MCA

691 mca_init();

692 #endif

693 #ifdef CONFIG_ARCH_ACORN

694 ecard_init();

695 #endif

696 #ifdef CONFIG_ZORRO

697 zorro_init();

698 #endif

699 #ifdef CONFIG_DIO

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1551

700 dio_init();

701 #endif

702 #ifdef CONFIG_NUBUS

703 nubus_init();

704 #endif

705 #ifdef CONFIG_ISAPNP

706 isapnp_init();

707 #endif

708 #ifdef CONFIG_TC

709 tc_init();

710 #endif

711

712 /* Networking initialization needs a process context */

713 sock_init();

714

715 #ifdef CONFIG_BLK_DEV_INITRD

.

==================== init/main.c 720 740 ====================
720 #endif

721

722 start_context_thread();

723 do_initcalls();

724

725 /* .. filesystems .. */

726 filesystem_setup();

727

728 #ifdef CONFIG_IRDA

729 irda_device_init(); /* Must be done after protocol initialization */

730 #endif

731 #ifdef CONFIG_PCMCIA

732 init_pcmcia_ds(); /* Do this last */

733 #endif

734

735 /* Mount the root filesystem.. */

736 mount_root();

737

738 mount_devfs_fs ();

739

740 #ifdef CONFIG_BLK_DEV_INITRD

.

==================== init/main.c 758 759 ====================
758 #endif

759 }

sock_init() 7
start_context_thread() kernel/context.c

==================== kernel/context.c 149 153 ====================
[init()>do_basic_setup()>start_context_thread()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1552

149 int start_context_thread(void)

150 {

151 kernel_thread(context_thread, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);

152 return 0;

153 }

daemon
“keventd context_thread() kernel/context.c

==================== kernel/context.c 66 108 ====================
66 static int context_thread(void *dummy)

67 {

68 struct task_struct *curtask = current;

69 DECLARE_WAITQUEUE(wait, curtask);

70 struct k_sigaction sa;

71

72 daemonize();

73 strcpy(curtask­>comm, "keventd");

74 keventd_running = 1;

75 keventd_task = curtask;

76

77 spin_lock_irq(&curtask­>sigmask_lock);

78 siginitsetinv(&curtask­>blocked, sigmask(SIGCHLD));

79 recalc_sigpending(curtask);

80 spin_unlock_irq(&curtask­>sigmask_lock);

81

82 /* Install a handler so SIGCLD is delivered */

83 sa.sa.sa_handler = SIG_IGN;

84 sa.sa.sa_flags = 0;

85 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));

86 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);

87

88 /*

89 * If one of the functions on a task queue re­adds itself

90 * to the task queue we call schedule() in state TASK_RUNNING

91 */

92 for (;;) {

93 set_task_state(curtask, TASK_INTERRUPTIBLE);

94 add_wait_queue(&context_task_wq, &wait);

95 if (TQ_ACTIVE(tq_context))

96 set_task_state(curtask, TASK_RUNNING);

97 schedule();

98 remove_wait_queue(&context_task_wq, &wait);

99 run_task_queue(&tq_context);

100 wake_up(&context_task_done);

101 if (signal_pending(curtask)) {

102 while (waitpid(­1, (unsigned int *)0, __WALL|WNOHANG) > 0)

103 ;

104 flush_signals(curtask);

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1553

105 recalc_sigpending(curtask);

106 }

107 }

108 }

for context_task_wq

keventd keventd
keventd tq_struct schedule_task()

tq_context context_task_wq keventd keventd
run_task_queue() tq_context

schedule_task() kernel/context.c context_thread()

==================== kernel/context.c 44 64 ====================
44 /**

45 * schedule_task ­ schedule a function for subsequent execution in process context.

46 * @task: pointer to a &tq_struct which defines the function to be scheduled.

47 *

48 * May be called from interrupt context. The scheduled function is run at some

49 * time in the near future by the keventd kernel thread. If it can sleep, it

50 * should be designed to do so for the minimum possible time, as it will be

51 * stalling all other scheduled tasks.

52 *

53 * schedule_task() returns non­zero if the task was successfully scheduled.

54 * If @task is already residing on a task queue then schedule_task() fails

55 * to schedule your task and returns zero.

56 */

57 int schedule_task(struct tq_struct *task)

58 {

59 int ret;

60 need_keventd(__FUNCTION__);

61 ret = queue_task(task, &tq_context);

62 wake_up(&context_task_wq);

63 return ret;

64 }

3 bh bh

bh
keventd

context_thread() daemonize()

init_task

==================== kernel/sched.c 1197 1226 ====================
[context_thread()>daemonize()]

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1554

1197 /*

1198 * Put all the gunge required to become a kernel thread without

1199 * attached user resources in one place where it belongs.

1200 */

1201

1202 void daemonize(void)

1203 {

1204 struct fs_struct *fs;

1205

1206

1207 /*

1208 * If we were started as result of loading a module, close all of the

1209 * user space pages. We don't need them, and if we didn't close them

1210 * they would be locked into memory.

1211 */

1212 exit_mm(current);

1213

1214 current­>session = 1;

1215 current­>pgrp = 1;

1216

1217 /* Become as one with the init task */

1218

1219 exit_fs(current); /* current­>fs­>count­­; */

1220 fs = init_task.fs;

1221 current­>fs = fs;

1222 atomic_inc(&fs­>count);

1223 exit_files(current);

1224 current­>files = init_task.files;

1225 atomic_inc(¤t­>files­>count);

1226 }

do_basic_setup() do_initcalls() init/main.c

==================== init/main.c 627 639 ====================
[init()>do_basic_setup()>do_initcalls()]
627 static void __init do_initcalls(void)

628 {

629 initcall_t *call;

630

631 call = &__initcall_start;

632 do {

633 (*call)();

634 call++;

635 } while (call < &__initcall_end);

636

637 /* Make sure there is no pending stuff from the initcall sequence */

638 flush_scheduled_tasks();

639 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1555

arch/i386/vmlinux.lds
GNU ld

“.text.init “.initcall.init
include/linux/init.h

==================== include/linux/init.h 43 49 ====================
43 /*

44 * Used for initialization calls..

45 */

46 typedef int (*initcall_t)(void);

47 typedef void (*exitcall_t)(void);

48

49 extern initcall_t __initcall_start, __initcall_end;

.

==================== include/linux/init.h 51 52 ====================
51 #define __initcall(fn) \

52 static initcall_t __initcall_##fn __init_call = fn

.

==================== include/linux/init.h 76 76 ====================
76 #define __init __attribute__ ((__section__ (".text.init")))

.

==================== include/linux/init.h 81 81 ====================
81 #define __init_call __attribute__ ((unused,__section__ (".initcall.init")))

__init do_initcalls()

do_initcalls()

do_initcalls()

do_initcalls()

do_initcalls() do­while __initcall_start __initcall_end
xyz

xyz.c xyz_init() “__initcall(xyz_init);
do_initcalls()

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1556

mm/slab.c
mm_cpucache_init() SMP stab

mm/slab.c

==================== mm/slab.c 471 471 ====================
471 __initcall(kmem_cpucache_init);

gcc kmem_cpucache_init()
__initcall_kmem_cpucache_init

static initcall_t __initcall_kmem_cpucache_init

 __attribute__ ((unused, __section__ (".initcall.init "))) = kmem_cpucache_init;

drivers/pci/proc.c pci_proc_init() /proc /proc/pci
PCI

==================== drivers/pci/proc.c 437 437 ====================
437 __initcall(pci_proc_init);

gcc pci_proc_init() __initcall_pci_proc_init
fs/partitions/check.c partition_setup()

==================== fs/partitions/check.c 456 456 ====================
456 __initcall(partition_setup);

==================== fs/partitions/check.c 442 454 ====================
[init()>do_basic_setup()>do_initcalls()>partition_setup()]
442 int __init partition_setup(void)

443 {

444 device_init();

445

446 #ifdef CONFIG_BLK_DEV_RAM

447 #ifdef CONFIG_BLK_DEV_INITRD

448 if (initrd_start && mount_initrd) initrd_load();

449 else

450 #endif

451 rd_load();

452 #endif

453 return 0;

454 }

device_init() drivers/block/genhd.c

==================== drivers/block/genhd.c 34 67 ====================
[init()>do_basic_setup()>do_initcalls()>partition_setup()>device_init()]
34 void __init device_init(void)

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1557

35 {

36 #ifdef CONFIG_PARPORT

37 parport_init();

38 #endif

39 chr_dev_init();

40 blk_dev_init();

41 sti();

42 #ifdef CONFIG_I2O

43 i2o_init();

44 #endif

45 #ifdef CONFIG_BLK_DEV_DAC960

46 DAC960_Initialize();

47 #endif

48 #ifdef CONFIG_FC4_SOC

49 /* This has to be done before scsi_dev_init */

50 soc_probe();

51 #endif

52 #ifdef CONFIG_IEEE1394

53 ieee1394_init();

54 #endif

55 #ifdef CONFIG_BLK_CPQ_DA

56 cpqarray_init();

57 #endif

58 #ifdef CONFIG_NET

59 net_dev_init();

60 #endif

61 #ifdef CONFIG_ATM

62 (void) atmdev_init();

63 #endif

64 #ifdef CONFIG_VT

65 console_map_init();

66 #endif

67 }

blk_dev_init()
chr_dev_init() parport_init()

net_dev_init() atmdev­init()

blk_dev_init() ide_init() IDE
__initcall()

module_init() include/linux/init.h

==================== include/linux/init.h 89 89 ====================
89 #define module_init(x) __initcall(x);

Ext2 fs/ext2/super.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1558

==================== fs/ext2/super.c 800 800 ====================
800 module_init(init_ext2_fs)

init_ext2_fs() do_initcalls()

==================== fs/ext2/super.c 788 791 ====================
[init()>do_basic_setup()>do_initcalls()>init_ext2_fs()]
788 static int __init init_ext2_fs(void)

789 {

790 return register_filesystem(&ext2_fs_type);

791 }

do_initcalls()

do_basic_setup() 726 filesystem_setup()
devfs ”

nfs Unix96 PTY
devfs devfs devfs

“root= devfs kern_mount()
do_mount()

==================== fs/filesystems.c 28 39 ====================
[init()>do_basic_setup()>filesystem_setup()]
28 void __init filesystem_setup(void)

29 {

30 init_devfs_fs(); /* Header file may make this empty */

31

32 #ifdef CONFIG_NFS_FS

33 init_nfs_fs();

34 #endif

35

36 #ifdef CONFIG_DEVPTS_FS

37 init_devpts_fs();

38 #endif

39 }

/dev
/dev

“/
devfs

do_mount()

mount_root() fs/super.c

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1559

==================== fs/super.c 1462 1474 ====================
[init()>do_basic_setup()>mount_root()]
1462 void __init mount_root(void)

1463 {

1464 struct file_system_type * fs_type;

1465 struct super_block * sb;

1466 struct vfsmount *vfsmnt;

1467 struct block_device *bdev = NULL;

1468 mode_t mode;

1469 int retval;

1470 void *handle;

1471 char path[64];

1472 int path_start = ­1;

1473

1474 #ifdef CONFIG_ROOT_NFS

.

==================== fs/super.c 1507 1509 ====================
1507 #endif

1508

1509 #ifdef CONFIG_BLK_DEV_FD

.

==================== fs/super.c 1529 1541 ====================
1529 #endif

1530

1531 devfs_make_root (root_device_name);

1532 handle = devfs_find_handle (NULL, ROOT_DEVICE_NAME,

1533 MAJOR (ROOT_DEV), MINOR (ROOT_DEV),

1534 DEVFS_SPECIAL_BLK, 1);

1535 if (handle) /* Sigh: bd*() functions only paper over the cracks */

1536 {

1537 unsigned major, minor;

1538

1539 devfs_get_maj_min (handle, &major, &minor);

1540 ROOT_DEV = MKDEV (major, minor);

1541 }

root_device_name[] “root=
root_dev_setup() “/dev/

devfs_make_root() “ide/hd/0
“/host0/bus1/target2/lun3/part4 devfs_find_handle() devfs

fs/super.c include/linux/devfs_fs_kernel.h

==================== include/linux/devfs_fs_kernel.h 48 52 ====================
48 #ifdef CONFIG_BLK_DEV_INITRD

49 # define ROOT_DEVICE_NAME ((real_root_dev ==ROOT_DEV) ? root_device_name:NULL)

50 #else

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1560

51 # define ROOT_DEVICE_NAME root_device_name

52 #endif

==================== fs/super.c 59 59 ====================
59 kdev_t ROOT_DEV;

ROOT_DEV
setup_arch() BIOS

“root= BIOS
Unix/Linux BIOS IDE
Linux BIOS LILO

setup

1531 1541 “root=
devfs ROOT_DEV

==================== fs/super.c 1542 1581 ====================
[init()>do_basic_setup()>mount_root()]
1542

1543 /*

1544 * Probably pure paranoia, but I'm less than happy about delving into

1545 * devfs crap and checking it right now. Later.

1546 */

1547 if (!ROOT_DEV)

1548 panic("I have no root and I want to scream");

1549

1550 bdev = bdget(kdev_t_to_nr(ROOT_DEV));

1551 if (!bdev)

1552 panic(__FUNCTION__ ": unable to allocate root device");

1553 bdev­>bd_op = devfs_get_ops (handle);

1554 path_start = devfs_generate_path (handle, path + 5, sizeof (path) ­ 5);

1555 mode = FMODE_READ;

1556 if (!(root_mountflags & MS_RDONLY))

1557 mode |= FMODE_WRITE;

1558 retval = blkdev_get(bdev, mode, 0, BDEV_FS);

1559 if (retval == ­EROFS) {

1560 root_mountflags |= MS_RDONLY;

1561 retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS);

1562 }

1563 if (retval) {

1564 /*

1565 * Allow the user to distinguish between failed open

1566 * and bad superblock on root device.

1567 */

1568 printk ("VFS: Cannot open root device \"%s\" or %s\n",

1569 root_device_name, kdevname (ROOT_DEV));

1570 printk ("Please append a correct \"root=\" boot option\n");

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1561

1571 panic("VFS: Unable to mount root fs on %s",

1572 kdevname(ROOT_DEV));

1573 }

1574

1575 check_disk_change(ROOT_DEV);

1576 sb = get_super(ROOT_DEV);

1577 if (sb) {

1578 fs_type = sb­>s_type;

1579 goto mount_it;

1580 }

1581

1550 bdget()
block_device 1553

devfs_get_ops() block_device_operations blkdev_get()
open 1558 1561

1576 get_super()
1578

1579

==================== fs/super.c 1582 1597 ====================
[init()>do_basic_setup()>mount_root()]
1542

1543 /*

1544 * Probably pure paranoia, but I'm less than happy about delving into

1545 * devfs crap and checking it right now. Later.

1546 */

1547 if (!ROOT_DEV)

1548 panic("I have no root and I want to scream");

1549

1550 bdev = bdget(kdev_t_to_nr(ROOT_DEV));

1551 if (!bdev)

1552 panic(__FUNCTION__ ": unable to allocate root device");

1553 bdev­>bd_op = devfs_get_ops (handle);

1554 path_start = devfs_generate_path (handle, path + 5, sizeof (path) ­ 5);

1555 mode = FMODE_READ;

1556 if (!(root_mountflags & MS_RDONLY))

1557 mode |= FMODE_WRITE;

1558 retval = blkdev_get(bdev, mode, 0, BDEV_FS);

1559 if (retval == ­EROFS) {

1560 root_mountflags |= MS_RDONLY;

1561 retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS);

1562 }

1563 if (retval) {

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1562

1564 /*

1565 * Allow the user to distinguish between failed open

1566 * and bad superblock on root device.

1567 */

1568 printk ("VFS: Cannot open root device \"%s\" or %s\n",

1569 root_device_name, kdevname (ROOT_DEV));

1570 printk ("Please append a correct \"root=\" boot option\n");

1571 panic("VFS: Unable to mount root fs on %s",

1572 kdevname(ROOT_DEV));

1573 }

1574

1575 check_disk_change(ROOT_DEV);

1576 sb = get_super(ROOT_DEV);

1577 if (sb) {

1578 fs_type = sb­>s_type;

1579 goto mount_it;

1580 }

1581

file_systems file_system_type
read_super

file_system_type read_super()

read_super()

==================== fs/super.c 1598 1619 ====================
[init()>do_basic_setup()>mount_root()]
1598 mount_it:

1599 printk ("VFS: Mounted root (%s filesystem)%s.\n",

1600 fs_type­>name,

1601 (sb­>s_flags & MS_RDONLY) ? " readonly" : "");

1602 if (path_start >= 0) {

1603 devfs_mk_symlink (NULL, "root", DEVFS_FL_DEFAULT,

1604 path + 5 + path_start, NULL, NULL);

1605 memcpy (path + path_start, "/dev/", 5);

1606 vfsmnt = add_vfsmnt(NULL, sb­>s_root, path + path_start);

1607 }

1608 else

1609 vfsmnt = add_vfsmnt(NULL, sb­>s_root, "/dev/root");

1610 /* FIXME: if something will try to umount us right now... */

1611 if (vfsmnt) {

1612 set_fs_root(current­>fs, vfsmnt, sb­>s_root);

1613 set_fs_pwd(current­>fs, vfsmnt, sb­>s_root);

1614 if (bdev)

1615 bdput(bdev); /* sb holds a reference */

1616 return;

1617 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1563

1618 panic("VFS: add_vfsmnt failed for root fs");

1619 }

add_vfsmnt() set_fs_root()
fs_struct root rootmnt dentry

sb­>s_root ”vfsmount vfsmnt
set_fs_pwd() pwd pwdmnt

fork()

devfs
kern_mount() devfs

do_basic_setup()
mount_devfs_fs()

==================== fs/devfs/base.c 3363 3371 ====================
[init()>do_basic_setup()>mount_devfs_fs()]
3363 void __init mount_devfs_fs (void)

3364 {

3365 int err;

3366

3367 if ((boot_options & OPTION_NOMOUNT)) return;

3368 err = do_mount ("none", "/dev", "devfs", 0, "");

3369 if (err == 0) printk ("Mounted devfs on /dev\n");

3370 else printk ("Warning: unable to mount devfs, err: %d\n", err);

3371 } /* End Function mount_devfs_fs */

devfs /dev
do_basic_setup() init()

free_initmem()
arch/i386/mm/init.c

==================== arch/i386/mm/init.c 656 668 ====================
[init()>free_initmem()]
656 void free_initmem(void)

657 {

658 unsigned long addr;

659

660 addr = (unsigned long)(&__init_begin);

661 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {

662 ClearPageReserved(virt_to_page(addr));

663 set_page_count(virt_to_page(addr), 1);

664 free_page(addr);

665 totalram_pages++;

666 }

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1564

667 printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end ­ &__init_begin) >> 10);

668 }

init()

==================== init/main.c 774 794 ====================
[init()]
774 if (open("/dev/console", O_RDWR, 0) < 0)

775 printk("Warning: unable to open an initial console.\n");

776

777 (void) dup(0);

778 (void) dup(0);

779

780 /*

781 * We try each of these until one succeeds.

782 *

783 * The Bourne shell can be used instead of init if we are

784 * trying to recover a really broken machine.

785 */

786

787 if (execute_command)

788 execve(execute_command,argv_init,envp_init);

789 execve("/sbin/init",argv_init,envp_init);

790 execve("/etc/init",argv_init,envp_init);

791 execve("/bin/init",argv_init,envp_init);

792 execve("/bin/sh",argv_init,envp_init);

793 panic("No init found. Try passing init= option to kernel.");

794 }

dup() execve() init()
C

execve() include/asm­i386/unistd.h

==================== include/asm­i386/unistd.h 273 282 ====================
273 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \

274 type name(type1 arg1,type2 arg2,type3 arg3) \

275 { \

276 long __res; \

277 __asm__ volatile ("int $0x80" \

278 : "=a" (__res) \

279 : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

280 "d" ((long)(arg3))); \

281 __syscall_return(type,__res); \

282 }

==================== include/asm­i386/unistd.h 233 240 ====================
233 #define __syscall_return(type, res) \

234 do { \

235 if ((unsigned long)(res) >= (unsigned long)(­125)) { \

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1565

236 errno = ­(res); \

237 res = ­1; \

238 } \

239 return (type) (res); \

240 } while (0)

_syscall3() execve()

==================== include/asm­i386/unistd.h 342 342 ====================
342 static inline _syscall3(int,execve,const char *,file,char **,argv,char **,envp)

gcc execve()

int execve(const char *file, char **argv, char **envp)

{

 long res

 __asm__ volatile ("int $0x80"

 : "=a" (__res)

 : "0" (__NR_execve), "b" ((long)(file)), "c" ((long)(argv)),

 "d" ((long)(envp)));

 do {

 if ((unsigned long)(res) >= (unsigned long)(­125)) {

 errno= ­(res);

 res = ­1;

 }

 return (int) (res);

 } while (0)

}

file %ebx argv
%ecx envp %edx __NR_execve 0

res res
“int 0x80 res

%eax %eax
dup() open()

1 2 _syscall0() _syscall1() syscall2()
/dev/console 0

dup() 0 0 1 2
stdin stdout

stderr I/O shell
execve() 4 execve()

exit()
execve() /sbin/init /etc/init /bin/init /bin/sh

/bin/sh

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1566

/sbin/init /etc/inittab
/etc/rc.d/rc “man 8 init”

Linux
/sbin/getty /bin/login /sbin/sulogin

1
0

1

10.5

Linux reboot()
sys_reboot()

cmd
• LINUX_REBOOT_CMD_RESTART LINUX_REBOOT_CMD_RESTART2
• LINUX_REBOOT_CMD_HALT
• LINUX_REBOOT_CMD_POWER_OFF

C_A_D Ctrl­Alt­Delete DOS Windows
Windows NT Linux

reboot() sync()

sys_reboot() kernel/sys.c

==================== kernel/sys.c 261 331 ====================
261 /*

262 * Reboot system call: for obvious reasons only root may call it,

263 * and even root needs to set up some magic numbers in the registers

264 * so that some mistake won't make this reboot the whole machine.

265 * You can also set the meaning of the ctrl­alt­del­key here.

266 *

267 * reboot doesn't sync: do that yourself before calling this.

268 */

269 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void * arg)

270 {

271 char buffer[256];

272

273 /* We only trust the superuser with rebooting the system. */

274 if (!capable(CAP_SYS_BOOT))

275 return ­EPERM;

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1567

276

277 /* For safety, we require "magic" arguments. */

278 if (magic1 != LINUX_REBOOT_MAGIC1 ||

279 (magic2 != LINUX_REBOOT_MAGIC2 && magic2 != LINUX_REBOOT_MAGIC2A &&

280 magic2 != LINUX_REBOOT_MAGIC2B))

281 return ­EINVAL;

282

283 lock_kernel();

284 switch (cmd) {

285 case LINUX_REBOOT_CMD_RESTART:

286 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);

287 printk(KERN_EMERG "Restarting system.\n");

288 machine_restart(NULL);

289 break;

290

291 case LINUX_REBOOT_CMD_CAD_ON:

292 C_A_D = 1;

293 break;

294

295 case LINUX_REBOOT_CMD_CAD_OFF:

296 C_A_D = 0;

297 break;

298

299 case LINUX_REBOOT_CMD_HALT:

300 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);

301 printk(KERN_EMERG "System halted.\n");

302 machine_halt();

303 do_exit(0);

304 break;

305

306 case LINUX_REBOOT_CMD_POWER_OFF:

307 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);

308 printk(KERN_EMERG "Power down.\n");

309 machine_power_off();

310 do_exit(0);

311 break;

312

313 case LINUX_REBOOT_CMD_RESTART2:

314 if (strncpy_from_user(&buffer[0], (char *)arg, sizeof(buffer) ­ 1) < 0) {

315 unlock_kernel();

316 return ­EFAULT;

317 }

318 buffer[sizeof(buffer) ­ 1] = '\0';

319

320 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);

321 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);

322 machine_restart(buffer);

323 break;

324

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1568

325 default:

326 unlock_kernel();

327 return ­EINVAL;

328 }

329 unlock_kernel();

330 return 0;

331 }

sys_reboot()

sys_reboot()
286 289

notifier_call_chain()
notifier_block include/linux/notifier.h

==================== include/linux/notifier.h 14 19 ====================
14 struct notifier_block

15 {

16 int (*notifier_call)(struct notifier_block *self, unsigned long, void *);

17 struct notifier_block *next;

18 int priority;

19 };

notifier_block
register_reboot_notifier() kernel/sys.c

==================== kernel/sys.c 149 152 ====================
149 int register_reboot_notifier(struct notifier_block * nb)

150 {

151 return notifier_chain_register(&reboot_notifier_list, nb);

152 }

sys_reboot() notifier_call_chain()

==================== kernel/sys.c 105 136 ====================
[sys_reboot()>notifier_call_chain()]
105 /**

106 * notifier_call_chain ­ Call functions in a notifier chain

107 * @n: Pointer to root pointer of notifier chain

108 * @val: Value passed unmodified to notifier function

109 * @v: Pointer passed unmodified to notifier function

110 *

111 * Calls each function in a notifier chain in turn.

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1569

112 *

113 * If the return value of the notifier can be and'd

114 * with %NOTIFY_STOP_MASK, then notifier_call_chain

115 * will return immediately, with the return value of

116 * the notifier function which halted execution.

117 * Otherwise, the return value is the return value

118 * of the last notifier function called.

119 */

120

121 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)

122 {

123 int ret=NOTIFY_DONE;

124 struct notifier_block *nb = *n;

125

126 while(nb)

127 {

128 ret=nb­>notifier_call(nb,val,v);

129 if(ret&NOTIFY_STOP_MASK)

130 {

131 return ret;

132 }

133 nb=nb­>next;

134 }

135 return ret;

136 }

machine_restart()
arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 346 375 ====================
[sys_reboot()>machine_restart()]
346 void machine_restart(char * __unused)

347 {

348 #if CONFIG_SMP

349 /*

350 * Stop all CPUs and turn off local APICs and the IO­APIC, so

351 * other OSs see a clean IRQ state.

352 */

353 smp_send_stop();

354 disable_IO_APIC();

355 #endif

356

357 if(!reboot_thru_bios) {

358 /* rebooting needs to touch the page at absolute addr 0 */

359 *((unsigned short *)__va(0x472)) = reboot_mode;

360 for (;;) {

361 int i;

362 for (i=0; i<100; i++) {

363 kb_wait();

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1570

364 udelay(50);

365 outb(0xfe,0x64); /* pulse reset low */

366 udelay(50);

367 }

368 /* That didn't work ­ force a triple fault.. */

369 __asm__ __volatile__("lidt %0": :"m" (no_idt));

370 __asm__ __volatile__("int3");

371 }

372 }

373

374 machine_real_restart(jump_to_bios, sizeof(jump_to_bios));

375 }

SMP smp_send_stop() CPU
CPU ”APIC sys_reboot() CPU

APIC
BIOS

reset “root=
reboot_thru_bios 0

360 371 PC i386

“root=
reboot_setup() reboot_thru_bios reboot_mode
reboot()

==================== arch/i386/kernel/process.c 157 182 ====================
157 static int __init reboot_setup(char *str)

158 {

159 while(1) {

160 switch (*str) {

161 case 'w': /* "warm" reboot (no memory testing etc) */

162 reboot_mode = 0x1234;

163 break;

164 case 'c': /* "cold" reboot (with memory testing etc) */

165 reboot_mode = 0x0;

166 break;

167 case 'b': /* "bios" reboot by jumping through the BIOS */

168 reboot_thru_bios = 1;

169 break;

170 case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */

171 reboot_thru_bios = 0;

172 break;

173 }

174 if((str = strchr(str,',')) != NULL)

175 str++;

176 else

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1571

177 break;

178 }

179 return 1;

180 }

181

182 __setup("reboot=", reboot_setup);

BIOS
machine_real_restart() BIOS

BIOS “int 0x13 BIOS BIOS
BIOS 0xffff0 jmp

BIOS 16 CPU
32 CPU

CPU
startup_32()

BIOS machine_real_restart()
CPU arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 254 344 ====================
[sys_reboot()>machine_restart()>machine_real_restart()]
254 /*

255 * Switch to real mode and then execute the code

256 * specified by the code and length parameters.

257 * We assume that length will aways be less that 100!

258 */

259 void machine_real_restart(unsigned char *code, int length)

260 {

261 unsigned long flags;

262

263 cli();

264

265 /* Write zero to CMOS register number 0x0f, which the BIOS POST

266 routine will recognize as telling it to do a proper reboot. (Well

267 that's what this book in front of me says ­­ it may only apply to

268 the Phoenix BIOS though, it's not clear). At the same time,

269 disable NMIs by setting the top bit in the CMOS address register,

270 as we're about to do peculiar things to the CPU. I'm not sure if

271 `outb_p' is needed instead of just `outb'. Use it to be on the

272 safe side. (Yes, CMOS_WRITE does outb_p's. ­ Paul G.)

273 */

274

275 spin_lock_irqsave(&rtc_lock, flags);

276 CMOS_WRITE(0x00, 0x8f);

277 spin_unlock_irqrestore(&rtc_lock, flags);

278

279 /* Remap the kernel at virtual address zero, as well as offset zero

280 from the kernel segment. This assumes the kernel segment starts at

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1572

281 virtual address PAGE_OFFSET. */

282

283 memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,

284 sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);

285

286 /* Make sure the first page is mapped to the start of physical memory.

287 It is normally not mapped, to trap kernel NULL pointer dereferences. */

288

289 pg0[0] = _PAGE_RW | _PAGE_PRESENT;

290

291 /*

292 * Use `swapper_pg_dir' as our page directory.

293 */

294 asm volatile("movl %0,%%cr3": :"r" (__pa(swapper_pg_dir)));

295

296 /* Write 0x1234 to absolute memory location 0x472. The BIOS reads

297 this on booting to tell it to "Bypass memory test (also warm

298 boot)". This seems like a fairly standard thing that gets set by

299 REBOOT.COM programs, and the previous reset routine did this

300 too. */

301

302 *((unsigned short *)0x472) = reboot_mode;

303

304 /* For the switch to real mode, copy some code to low memory. It has

305 to be in the first 64k because it is running in 16­bit mode, and it

306 has to have the same physical and virtual address, because it turns

307 off paging. Copy it near the end of the first page, out of the way

308 of BIOS variables. */

309

310 memcpy ((void *) (0x1000 ­ sizeof (real_mode_switch) ­ 100),

311 real_mode_switch, sizeof (real_mode_switch));

312 memcpy ((void *) (0x1000 ­ 100), code, length);

313

314 /* Set up the IDT for real mode. */

315

316 __asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));

317

318 /* Set up a GDT from which we can load segment descriptors for real

319 mode. The GDT is not used in real mode; it is just needed here to

320 prepare the descriptors. */

321

322 __asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));

323

324 /* Load the data segment registers, and thus the descriptors ready for

325 real mode. The base address of each segment is 0x100, 16 times the

326 selector value being loaded here. This is so that the segment

327 registers don't have to be reloaded after switching to real mode:

328 the values are consistent for real mode operation already. */

329

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1573

330 __asm__ __volatile__ ("movl $0x0010,%%eax\n"

331 "\tmovl %%eax,%%ds\n"

332 "\tmovl %%eax,%%es\n"

333 "\tmovl %%eax,%%fs\n"

334 "\tmovl %%eax,%%gs\n"

335 "\tmovl %%eax,%%ss" : : : "eax");

336

337 /* Jump to the 16­bit code that we copied earlier. It disables paging

338 and the cache, switches to real mode, and jumps to the BIOS reset

339 entry point. */

340

341 __asm__ __volatile__ ("ljmp $0x0008,%0"

342 :

343 : "i" ((void *) (0x1000 ­ sizeof (real_mode_switch) ­ 100)));

344 }

CMOS 0x8f
0 BIOS ”NMI

==================== include/asm­i386/mc146818rtc.h 22 25 ====================
22 #define CMOS_WRITE(val, addr) ({ \

23 outb_p((addr),RTC_PORT(0)); \

24 outb_p((val),RTC_PORT(1)); \

25 })

0
CPU

283 swapper_pg_dir
256 283 284

include/asm­i386/pgtable­2level.h include/asm­i386/pgtable.h

==================== include/asm­i386/pgtable­2level.h 8 8 ====================
8 #define PGDIR_SHIFT 22

==================== include/asm­i386/pgtable.h 123 124 ====================
123 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)

124 #define KERNEL_PGD_PTRS (PTRS_PER_PGD­USER_PGD_PTRS)

pg0[0]
289 _PAGE_RW

_PAGE_PRESENT 0
294 %cr3

%cr3 swapper_pg_dir CPU

reboot_mode

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1574

0x1234 162 0 BIOS
0x472 0 0

302 reboot_mode BIOS

310 312
real_mode_switch jump_to_bios

316 real_mode_idt

==================== arch/i386/kernel/process.c 205 205 ====================
205 real_mode_idt = { 0x3ff, 0 };

322 real_mode_gdt GDTR
arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 184 204 ====================
184 /* The following code and data reboots the machine by switching to real

185 mode and jumping to the BIOS reset entry point, as if the CPU has

186 really been reset. The previous version asked the keyboard

187 controller to pulse the CPU reset line, which is more thorough, but

188 doesn't work with at least one type of 486 motherboard. It is easy

189 to stop this code working; hence the copious comments. */

190

191 static unsigned long long

192 real_mode_gdt_entries [3] =

193 {

194 0x0000000000000000ULL, /* Null descriptor */

195 0x00009a000000ffffULL, /* 16­bit real­mode 64k code at 0x00000000 */

196 0x000092000100ffffULL /* 16­bit real­mode 64k data at 0x00000100 */

197 };

198

199 static struct

200 {

201 unsigned short size __attribute__ ((packed));

202 unsigned long long * base __attribute__ ((packed));

203 }

204 real_mode_gdt = { sizeof (real_mode_gdt_entries) ­ 1, real_mode_gdt_entries },

real_mode_gdt_entries[] 2
1 0 2

100 64KB 330 CS
0x0010 341 343 ljmp “l

0x0008 real_mode_gdt_entries[] 195
0 0x1000 ­ sizeof(real_mode_switch) ­ 100

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

1575

real_mode_switch jump_to_bios
arch/i386/kernel/process.c

==================== arch/i386/kernel/process.c 226 243 ====================
226 static unsigned char real_mode_switch [] =

227 {

228 0x66, 0x0f, 0x20, 0xc0, /* movl %cr0,%eax */

229 0x66, 0x83, 0xe0, 0x11, /* andl $0x00000011,%eax */

230 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /* orl $0x60000000,%eax */

231 0x66, 0x0f, 0x22, 0xc0, /* movl %eax,%cr0 */

232 0x66, 0x0f, 0x22, 0xd8, /* movl %eax,%cr3 */

233 0x66, 0x0f, 0x20, 0xc3, /* movl %cr0,%ebx */

234 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /* andl $0x60000000,%ebx */

235 0x74, 0x02, /* jz f */

236 0x0f, 0x08, /* invd */

237 0x24, 0x10, /* f: andb $0x10,al */

238 0x66, 0x0f, 0x22, 0xc0 /* movl %eax,%cr0 */

239 };

240 static unsigned char jump_to_bios [] =

241 {

242 0xea, 0x00, 0x00, 0xff, 0xff /* ljmp $0xffff,$0x0000 */

243 };

228 jmp IP

%cr0 %cr3 CPU invd
%cr0 238 mov CPU

jump_to_bios real_mode_switch[]
238 mov 242 jmp 0xffff 0

0xffff0 BIOS

http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

	第1章 预备知识
	1.1 Linux内核简介

	1.2 Intel X86 CPU 系列的寻址方式

	1.3 i386的页式内存管理机制

	1.4 Linux内核源代码中的C语言代码
	1.5 Linux内核代码中的汇编语言代码

	第2章 存储管理
	2.1 Linux内存管理的基本框架

	2.2 地址映射的全过程

	2.3 几个重要的数据结构和函数

	2.4 越界访问

	2.5 用户堆栈的扩展

	2.6 物理页面的使用和周转

	2.7 物理页面的分配

	2.8 页面的定期换出

	2.9 页面的换入

	2.10 内核缓冲区的管理

	2.11 外部设备存储空间的地址映射

	2.12 系统调用brk()

	2.13 系统调用mmap()

	第3章 中断、异常和系统调用
	X86 CPU对中断的硬件支持

	3.2 中断向量表IDT的初始化

	3.3 中断请求队列的初始化

	3.4 中断的响应和服务

	3.5 软中断与 Bottom Half

	3.6 页面异常的进入和返回

	3.7 时钟中断

	3.8 系统调用

	3.9 系统调用号与跳转表

	第4章 进程与进程调度
	4.1 进程四要素

	4.2 进程三部曲：创建、执行与消亡
	4.3 系统调用fork()、vfork()、与clone()

	4.4 系统调用execve()

	4.5 系统调用exit()与wait4()

	4.6 进程的调度与切换

	4.7 强制性调度

	4.8 系统调用nanosleep()与pause()

	4.9 内核中的互斥操作

	第5章 文件系统
	5.1 概述

	5.2 从路径名到目标节点

	5.3 访问权限与文件安全性

	5.4 文件系统的安装和拆卸

	5.5 文件的打开与关闭

	5.6 文件的写与读

	5.7 其他文件操作

	5.8 特殊文件系统/proc

	第6章 传统的Unix进程间通信
	6.1 概述

	6.2 管道和系统调用pipe()

	6.3 命名管道

	6.4 信号

	6.5 系统调用ptrace()和进程跟踪

	6.6 报文传递

	6.7 共享内存

	6.8 信号量

	第7章 基于socket的进程间通信
	7.1 系统调用socket()

	7.2 函数sys_socket()--创建插口

	7.3 函数sys_bind()--指定插口地址

	7.4 函数sys_listen()--设定server插口

	7.5 函数sys_accept()--接受连接请求

	7.6 函数sys_connect()--请求连接

	7.7 报文的接受与发送

	7.8 插口的关闭

	7.9 其它

	第8章 设备驱动
	8.1 概述

	8.2 系统调用mknod

	8.3 可安装模块

	8.4 PCI总线

	8.5 块设备驱动

	8.6 字符设备驱动概述

	8.7 终端设备与汉字信息处理

	8.8 控制台的驱动

	8.9 通用串行外部总线USB

	8.10 系统调用select()以及异步输入/输出
	8.11 设备文件系统devfs

	第9章 多处理器的SMP系统结构
	9.1 概述

	9.2 SMP结构中的互斥问题

	9.3 高速缓存与内存的一致性

	9.4 SMP结构中的中断机制

	9.5 SMP结构中的进程调度

	9.6 SMP系统的引导

	第10章 系统的引导和初始化
	10.1 系统引导过程概述

	10.2 系统初始化（第一阶段）
	10.3 系统初始化（第二阶段）
	10.4 系统初始化（第三阶段）
	10.5 系统的关闭和重引导

