initial
This commit is contained in:
286
venv/lib/python3.12/site-packages/cv2/optflow/__init__.pyi
Normal file
286
venv/lib/python3.12/site-packages/cv2/optflow/__init__.pyi
Normal file
@@ -0,0 +1,286 @@
|
||||
__all__: list[str] = []
|
||||
|
||||
import cv2
|
||||
import cv2.typing
|
||||
import typing as _typing
|
||||
|
||||
|
||||
# Enumerations
|
||||
SR_FIXED: int
|
||||
SR_CROSS: int
|
||||
SupportRegionType = int
|
||||
"""One of [SR_FIXED, SR_CROSS]"""
|
||||
|
||||
ST_STANDART: int
|
||||
ST_BILINEAR: int
|
||||
SolverType = int
|
||||
"""One of [ST_STANDART, ST_BILINEAR]"""
|
||||
|
||||
INTERP_GEO: int
|
||||
INTERP_EPIC: int
|
||||
INTERP_RIC: int
|
||||
InterpolationType = int
|
||||
"""One of [INTERP_GEO, INTERP_EPIC, INTERP_RIC]"""
|
||||
|
||||
GPC_DESCRIPTOR_DCT: int
|
||||
GPC_DESCRIPTOR_WHT: int
|
||||
GPCDescType = int
|
||||
"""One of [GPC_DESCRIPTOR_DCT, GPC_DESCRIPTOR_WHT]"""
|
||||
|
||||
|
||||
|
||||
# Classes
|
||||
class DualTVL1OpticalFlow(cv2.DenseOpticalFlow):
|
||||
# Functions
|
||||
def getTau(self) -> float: ...
|
||||
|
||||
def setTau(self, val: float) -> None: ...
|
||||
|
||||
def getLambda(self) -> float: ...
|
||||
|
||||
def setLambda(self, val: float) -> None: ...
|
||||
|
||||
def getTheta(self) -> float: ...
|
||||
|
||||
def setTheta(self, val: float) -> None: ...
|
||||
|
||||
def getGamma(self) -> float: ...
|
||||
|
||||
def setGamma(self, val: float) -> None: ...
|
||||
|
||||
def getScalesNumber(self) -> int: ...
|
||||
|
||||
def setScalesNumber(self, val: int) -> None: ...
|
||||
|
||||
def getWarpingsNumber(self) -> int: ...
|
||||
|
||||
def setWarpingsNumber(self, val: int) -> None: ...
|
||||
|
||||
def getEpsilon(self) -> float: ...
|
||||
|
||||
def setEpsilon(self, val: float) -> None: ...
|
||||
|
||||
def getInnerIterations(self) -> int: ...
|
||||
|
||||
def setInnerIterations(self, val: int) -> None: ...
|
||||
|
||||
def getOuterIterations(self) -> int: ...
|
||||
|
||||
def setOuterIterations(self, val: int) -> None: ...
|
||||
|
||||
def getUseInitialFlow(self) -> bool: ...
|
||||
|
||||
def setUseInitialFlow(self, val: bool) -> None: ...
|
||||
|
||||
def getScaleStep(self) -> float: ...
|
||||
|
||||
def setScaleStep(self, val: float) -> None: ...
|
||||
|
||||
def getMedianFiltering(self) -> int: ...
|
||||
|
||||
def setMedianFiltering(self, val: int) -> None: ...
|
||||
|
||||
@classmethod
|
||||
def create(cls, tau: float = ..., lambda_: float = ..., theta: float = ..., nscales: int = ..., warps: int = ..., epsilon: float = ..., innnerIterations: int = ..., outerIterations: int = ..., scaleStep: float = ..., gamma: float = ..., medianFiltering: int = ..., useInitialFlow: bool = ...) -> DualTVL1OpticalFlow: ...
|
||||
|
||||
|
||||
class PCAPrior:
|
||||
...
|
||||
|
||||
class OpticalFlowPCAFlow(cv2.DenseOpticalFlow):
|
||||
...
|
||||
|
||||
class RLOFOpticalFlowParameter:
|
||||
# Functions
|
||||
def setUseMEstimator(self, val: bool) -> None: ...
|
||||
|
||||
def setSolverType(self, val: SolverType) -> None: ...
|
||||
|
||||
def getSolverType(self) -> SolverType: ...
|
||||
|
||||
def setSupportRegionType(self, val: SupportRegionType) -> None: ...
|
||||
|
||||
def getSupportRegionType(self) -> SupportRegionType: ...
|
||||
|
||||
def setNormSigma0(self, val: float) -> None: ...
|
||||
|
||||
def getNormSigma0(self) -> float: ...
|
||||
|
||||
def setNormSigma1(self, val: float) -> None: ...
|
||||
|
||||
def getNormSigma1(self) -> float: ...
|
||||
|
||||
def setSmallWinSize(self, val: int) -> None: ...
|
||||
|
||||
def getSmallWinSize(self) -> int: ...
|
||||
|
||||
def setLargeWinSize(self, val: int) -> None: ...
|
||||
|
||||
def getLargeWinSize(self) -> int: ...
|
||||
|
||||
def setCrossSegmentationThreshold(self, val: int) -> None: ...
|
||||
|
||||
def getCrossSegmentationThreshold(self) -> int: ...
|
||||
|
||||
def setMaxLevel(self, val: int) -> None: ...
|
||||
|
||||
def getMaxLevel(self) -> int: ...
|
||||
|
||||
def setUseInitialFlow(self, val: bool) -> None: ...
|
||||
|
||||
def getUseInitialFlow(self) -> bool: ...
|
||||
|
||||
def setUseIlluminationModel(self, val: bool) -> None: ...
|
||||
|
||||
def getUseIlluminationModel(self) -> bool: ...
|
||||
|
||||
def setUseGlobalMotionPrior(self, val: bool) -> None: ...
|
||||
|
||||
def getUseGlobalMotionPrior(self) -> bool: ...
|
||||
|
||||
def setMaxIteration(self, val: int) -> None: ...
|
||||
|
||||
def getMaxIteration(self) -> int: ...
|
||||
|
||||
def setMinEigenValue(self, val: float) -> None: ...
|
||||
|
||||
def getMinEigenValue(self) -> float: ...
|
||||
|
||||
def setGlobalMotionRansacThreshold(self, val: float) -> None: ...
|
||||
|
||||
def getGlobalMotionRansacThreshold(self) -> float: ...
|
||||
|
||||
@classmethod
|
||||
def create(cls) -> RLOFOpticalFlowParameter: ...
|
||||
|
||||
|
||||
class DenseRLOFOpticalFlow(cv2.DenseOpticalFlow):
|
||||
# Functions
|
||||
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
|
||||
|
||||
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
|
||||
|
||||
def setForwardBackward(self, val: float) -> None: ...
|
||||
|
||||
def getForwardBackward(self) -> float: ...
|
||||
|
||||
def getGridStep(self) -> cv2.typing.Size: ...
|
||||
|
||||
def setGridStep(self, val: cv2.typing.Size) -> None: ...
|
||||
|
||||
def setInterpolation(self, val: InterpolationType) -> None: ...
|
||||
|
||||
def getInterpolation(self) -> InterpolationType: ...
|
||||
|
||||
def getEPICK(self) -> int: ...
|
||||
|
||||
def setEPICK(self, val: int) -> None: ...
|
||||
|
||||
def getEPICSigma(self) -> float: ...
|
||||
|
||||
def setEPICSigma(self, val: float) -> None: ...
|
||||
|
||||
def getEPICLambda(self) -> float: ...
|
||||
|
||||
def setEPICLambda(self, val: float) -> None: ...
|
||||
|
||||
def getFgsLambda(self) -> float: ...
|
||||
|
||||
def setFgsLambda(self, val: float) -> None: ...
|
||||
|
||||
def getFgsSigma(self) -> float: ...
|
||||
|
||||
def setFgsSigma(self, val: float) -> None: ...
|
||||
|
||||
def setUsePostProc(self, val: bool) -> None: ...
|
||||
|
||||
def getUsePostProc(self) -> bool: ...
|
||||
|
||||
def setUseVariationalRefinement(self, val: bool) -> None: ...
|
||||
|
||||
def getUseVariationalRefinement(self) -> bool: ...
|
||||
|
||||
def setRICSPSize(self, val: int) -> None: ...
|
||||
|
||||
def getRICSPSize(self) -> int: ...
|
||||
|
||||
def setRICSLICType(self, val: int) -> None: ...
|
||||
|
||||
def getRICSLICType(self) -> int: ...
|
||||
|
||||
@classmethod
|
||||
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> DenseRLOFOpticalFlow: ...
|
||||
|
||||
|
||||
class SparseRLOFOpticalFlow(cv2.SparseOpticalFlow):
|
||||
# Functions
|
||||
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
|
||||
|
||||
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
|
||||
|
||||
def setForwardBackward(self, val: float) -> None: ...
|
||||
|
||||
def getForwardBackward(self) -> float: ...
|
||||
|
||||
@classmethod
|
||||
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> SparseRLOFOpticalFlow: ...
|
||||
|
||||
|
||||
class GPCPatchDescriptor:
|
||||
...
|
||||
|
||||
class GPCPatchSample:
|
||||
...
|
||||
|
||||
class GPCTrainingSamples:
|
||||
...
|
||||
|
||||
class GPCTree(cv2.Algorithm):
|
||||
...
|
||||
|
||||
class GPCDetails:
|
||||
...
|
||||
|
||||
|
||||
# Functions
|
||||
@_typing.overload
|
||||
def calcOpticalFlowDenseRLOF(I0: cv2.typing.MatLike, I1: cv2.typing.MatLike, flow: cv2.typing.MatLike, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.typing.MatLike: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowDenseRLOF(I0: cv2.UMat, I1: cv2.UMat, flow: cv2.UMat, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.UMat: ...
|
||||
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
|
||||
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSparseRLOF(prevImg: cv2.typing.MatLike, nextImg: cv2.typing.MatLike, prevPts: cv2.typing.MatLike, nextPts: cv2.typing.MatLike, status: cv2.typing.MatLike | None = ..., err: cv2.typing.MatLike | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSparseRLOF(prevImg: cv2.UMat, nextImg: cv2.UMat, prevPts: cv2.UMat, nextPts: cv2.UMat, status: cv2.UMat | None = ..., err: cv2.UMat | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
||||
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSparseToDense(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, flow: cv2.typing.MatLike | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.typing.MatLike: ...
|
||||
@_typing.overload
|
||||
def calcOpticalFlowSparseToDense(from_: cv2.UMat, to: cv2.UMat, flow: cv2.UMat | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.UMat: ...
|
||||
|
||||
def createOptFlow_DeepFlow() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_DenseRLOF() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_DualTVL1() -> DualTVL1OpticalFlow: ...
|
||||
|
||||
def createOptFlow_Farneback() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_PCAFlow() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_SimpleFlow() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_SparseRLOF() -> cv2.SparseOpticalFlow: ...
|
||||
|
||||
def createOptFlow_SparseToDense() -> cv2.DenseOpticalFlow: ...
|
||||
|
||||
|
||||
Reference in New Issue
Block a user